File base-impact.service.ts
has 387 lines of code (exceeds 250 allowed). Consider refactoring. Open
import { Injectable, Logger } from '@nestjs/common';
import {
AnyImpactTableDto,
GetActualVsScenarioImpactTableDto,
GetImpactTableDto,
Function getEntityTree
has 67 lines of code (exceeds 25 allowed). Consider refactoring. Open
async getEntityTree(
impactTableDto: AnyImpactTableDto,
): Promise<ImpactTableEntityType[]> {
const treeOptions: CommonFiltersDto = {
...(impactTableDto.materialIds && {
Function getTotalPurchasedVolumeByYear
has 39 lines of code (exceeds 25 allowed). Consider refactoring. Open
getTotalPurchasedVolumeByYear(
rangeOfYears: number[],
dataForImpactTable: ImpactTableData[],
lastYearWithData: number,
scenarioId?: string,
Function paginateTable
has 38 lines of code (exceeds 25 allowed). Consider refactoring. Open
static paginateTable(data: any, fetchSpecification: FetchSpecification): any {
if (fetchSpecification.disablePagination) {
return {
data,
metadata: undefined,
Function processDataForComparison
has 30 lines of code (exceeds 25 allowed). Consider refactoring. Open
static processDataForComparison(
impactTableData: ImpactTableData[],
): ActualVsScenarioImpactTableData[] {
// Separate the data into different maps depending on whether data is from a scenario or not
const actualData: Map<string, ActualVsScenarioImpactTableData> = new Map();
Function processDataForComparison
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
static processDataForComparison(
impactTableData: ImpactTableData[],
): ActualVsScenarioImpactTableData[] {
// Separate the data into different maps depending on whether data is from a scenario or not
const actualData: Map<string, ActualVsScenarioImpactTableData> = new Map();
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function getDataForImpactTable
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
getDataForImpactTable(
impactTableDto: AnyImpactTableDto,
entities: ImpactTableEntityType[],
): Promise<ImpactTableData[]> {
if (entities.length) {
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Similar blocks of code found in 2 locations. Consider refactoring. Open
for (const data of scenarioData.values()) {
const matchingMatchingData: ActualVsScenarioImpactTableData | undefined =
actualData.get(BaseImpactService.getImpactTableDataKey(data));
if (matchingMatchingData) {
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 73.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 3 locations. Consider refactoring. Open
constructor(
protected readonly impactRepository: ImpactRepository,
protected readonly businessUnitsService: BusinessUnitsService,
protected readonly adminRegionsService: AdminRegionsService,
protected readonly suppliersService: SuppliersService,
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 55.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76