Vizzuality/landgriffon

View on GitHub
data/notebooks/Lab/0_4_1_H3_calculations.ipynb

Summary

Maintainability
Test Coverage
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "21b9e467",
   "metadata": {},
   "source": [
    "### Explore  h3 data calculations:\n",
    "\n",
    "You can see more information in this [document](https://docs.google.com/document/d/1ciLKvZ_cfLWPEzo2buGikIDbM3auH0-L-pjcf-MkKeE/edit#heading=h.ftwkw9gb3uew)\n",
    "\n",
    "The different resolutions would be:\n",
    "\n",
    "<img src=\"../../datasets/raw/h3_levels.png\" width=\"800\" height=\"400\"> \n",
    "\n",
    "## Table of Contents\n",
    "- ### [Python libraries](#libraries)\n",
    "- ### [1. Explore h3 levels](#h3_levels)\n",
    "    - #### [1.1.Import geometries](#geometries)\n",
    "    - #### [1.2. Test H3 resolution](#test_h3)\n",
    "- ### [2. H3 Calculations](#crop_data)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1dc3047c",
   "metadata": {},
   "source": [
    "<a id='libraries'></a>\n",
    "## Python libraries"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "b663265f",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Requirement already satisfied: h3 in /opt/conda/lib/python3.8/site-packages (3.7.3)\r\n"
     ]
    }
   ],
   "source": [
    "# install h3 lib\n",
    "!pip install h3"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 155,
   "id": "9d6f124f",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "\n",
       "    <div class=\"bk-root\">\n",
       "        <a href=\"https://bokeh.org\" target=\"_blank\" class=\"bk-logo bk-logo-small bk-logo-notebook\"></a>\n",
       "        <span id=\"4915\">Loading BokehJS ...</span>\n",
       "    </div>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/javascript": [
       "\n",
       "(function(root) {\n",
       "  function now() {\n",
       "    return new Date();\n",
       "  }\n",
       "\n",
       "  var force = true;\n",
       "\n",
       "  if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n",
       "    root._bokeh_onload_callbacks = [];\n",
       "    root._bokeh_is_loading = undefined;\n",
       "  }\n",
       "\n",
       "  var JS_MIME_TYPE = 'application/javascript';\n",
       "  var HTML_MIME_TYPE = 'text/html';\n",
       "  var EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n",
       "  var CLASS_NAME = 'output_bokeh rendered_html';\n",
       "\n",
       "  /**\n",
       "   * Render data to the DOM node\n",
       "   */\n",
       "  function render(props, node) {\n",
       "    var script = document.createElement(\"script\");\n",
       "    node.appendChild(script);\n",
       "  }\n",
       "\n",
       "  /**\n",
       "   * Handle when an output is cleared or removed\n",
       "   */\n",
       "  function handleClearOutput(event, handle) {\n",
       "    var cell = handle.cell;\n",
       "\n",
       "    var id = cell.output_area._bokeh_element_id;\n",
       "    var server_id = cell.output_area._bokeh_server_id;\n",
       "    // Clean up Bokeh references\n",
       "    if (id != null && id in Bokeh.index) {\n",
       "      Bokeh.index[id].model.document.clear();\n",
       "      delete Bokeh.index[id];\n",
       "    }\n",
       "\n",
       "    if (server_id !== undefined) {\n",
       "      // Clean up Bokeh references\n",
       "      var cmd = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n",
       "      cell.notebook.kernel.execute(cmd, {\n",
       "        iopub: {\n",
       "          output: function(msg) {\n",
       "            var id = msg.content.text.trim();\n",
       "            if (id in Bokeh.index) {\n",
       "              Bokeh.index[id].model.document.clear();\n",
       "              delete Bokeh.index[id];\n",
       "            }\n",
       "          }\n",
       "        }\n",
       "      });\n",
       "      // Destroy server and session\n",
       "      var cmd = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n",
       "      cell.notebook.kernel.execute(cmd);\n",
       "    }\n",
       "  }\n",
       "\n",
       "  /**\n",
       "   * Handle when a new output is added\n",
       "   */\n",
       "  function handleAddOutput(event, handle) {\n",
       "    var output_area = handle.output_area;\n",
       "    var output = handle.output;\n",
       "\n",
       "    // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n",
       "    if ((output.output_type != \"display_data\") || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n",
       "      return\n",
       "    }\n",
       "\n",
       "    var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n",
       "\n",
       "    if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n",
       "      toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n",
       "      // store reference to embed id on output_area\n",
       "      output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n",
       "    }\n",
       "    if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n",
       "      var bk_div = document.createElement(\"div\");\n",
       "      bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n",
       "      var script_attrs = bk_div.children[0].attributes;\n",
       "      for (var i = 0; i < script_attrs.length; i++) {\n",
       "        toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n",
       "        toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n",
       "      }\n",
       "      // store reference to server id on output_area\n",
       "      output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n",
       "    }\n",
       "  }\n",
       "\n",
       "  function register_renderer(events, OutputArea) {\n",
       "\n",
       "    function append_mime(data, metadata, element) {\n",
       "      // create a DOM node to render to\n",
       "      var toinsert = this.create_output_subarea(\n",
       "        metadata,\n",
       "        CLASS_NAME,\n",
       "        EXEC_MIME_TYPE\n",
       "      );\n",
       "      this.keyboard_manager.register_events(toinsert);\n",
       "      // Render to node\n",
       "      var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n",
       "      render(props, toinsert[toinsert.length - 1]);\n",
       "      element.append(toinsert);\n",
       "      return toinsert\n",
       "    }\n",
       "\n",
       "    /* Handle when an output is cleared or removed */\n",
       "    events.on('clear_output.CodeCell', handleClearOutput);\n",
       "    events.on('delete.Cell', handleClearOutput);\n",
       "\n",
       "    /* Handle when a new output is added */\n",
       "    events.on('output_added.OutputArea', handleAddOutput);\n",
       "\n",
       "    /**\n",
       "     * Register the mime type and append_mime function with output_area\n",
       "     */\n",
       "    OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n",
       "      /* Is output safe? */\n",
       "      safe: true,\n",
       "      /* Index of renderer in `output_area.display_order` */\n",
       "      index: 0\n",
       "    });\n",
       "  }\n",
       "\n",
       "  // register the mime type if in Jupyter Notebook environment and previously unregistered\n",
       "  if (root.Jupyter !== undefined) {\n",
       "    var events = require('base/js/events');\n",
       "    var OutputArea = require('notebook/js/outputarea').OutputArea;\n",
       "\n",
       "    if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n",
       "      register_renderer(events, OutputArea);\n",
       "    }\n",
       "  }\n",
       "\n",
       "  \n",
       "  if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n",
       "    root._bokeh_timeout = Date.now() + 5000;\n",
       "    root._bokeh_failed_load = false;\n",
       "  }\n",
       "\n",
       "  var NB_LOAD_WARNING = {'data': {'text/html':\n",
       "     \"<div style='background-color: #fdd'>\\n\"+\n",
       "     \"<p>\\n\"+\n",
       "     \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n",
       "     \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n",
       "     \"</p>\\n\"+\n",
       "     \"<ul>\\n\"+\n",
       "     \"<li>re-rerun `output_notebook()` to attempt to load from CDN again, or</li>\\n\"+\n",
       "     \"<li>use INLINE resources instead, as so:</li>\\n\"+\n",
       "     \"</ul>\\n\"+\n",
       "     \"<code>\\n\"+\n",
       "     \"from bokeh.resources import INLINE\\n\"+\n",
       "     \"output_notebook(resources=INLINE)\\n\"+\n",
       "     \"</code>\\n\"+\n",
       "     \"</div>\"}};\n",
       "\n",
       "  function display_loaded() {\n",
       "    var el = document.getElementById(\"4915\");\n",
       "    if (el != null) {\n",
       "      el.textContent = \"BokehJS is loading...\";\n",
       "    }\n",
       "    if (root.Bokeh !== undefined) {\n",
       "      if (el != null) {\n",
       "        el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n",
       "      }\n",
       "    } else if (Date.now() < root._bokeh_timeout) {\n",
       "      setTimeout(display_loaded, 100)\n",
       "    }\n",
       "  }\n",
       "\n",
       "\n",
       "  function run_callbacks() {\n",
       "    try {\n",
       "      root._bokeh_onload_callbacks.forEach(function(callback) {\n",
       "        if (callback != null)\n",
       "          callback();\n",
       "      });\n",
       "    } finally {\n",
       "      delete root._bokeh_onload_callbacks\n",
       "    }\n",
       "    console.debug(\"Bokeh: all callbacks have finished\");\n",
       "  }\n",
       "\n",
       "  function load_libs(css_urls, js_urls, callback) {\n",
       "    if (css_urls == null) css_urls = [];\n",
       "    if (js_urls == null) js_urls = [];\n",
       "\n",
       "    root._bokeh_onload_callbacks.push(callback);\n",
       "    if (root._bokeh_is_loading > 0) {\n",
       "      console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n",
       "      return null;\n",
       "    }\n",
       "    if (js_urls == null || js_urls.length === 0) {\n",
       "      run_callbacks();\n",
       "      return null;\n",
       "    }\n",
       "    console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n",
       "    root._bokeh_is_loading = css_urls.length + js_urls.length;\n",
       "\n",
       "    function on_load() {\n",
       "      root._bokeh_is_loading--;\n",
       "      if (root._bokeh_is_loading === 0) {\n",
       "        console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n",
       "        run_callbacks()\n",
       "      }\n",
       "    }\n",
       "\n",
       "    function on_error() {\n",
       "      console.error(\"failed to load \" + url);\n",
       "    }\n",
       "\n",
       "    for (var i = 0; i < css_urls.length; i++) {\n",
       "      var url = css_urls[i];\n",
       "      const element = document.createElement(\"link\");\n",
       "      element.onload = on_load;\n",
       "      element.onerror = on_error;\n",
       "      element.rel = \"stylesheet\";\n",
       "      element.type = \"text/css\";\n",
       "      element.href = url;\n",
       "      console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n",
       "      document.body.appendChild(element);\n",
       "    }\n",
       "\n",
       "    const hashes = {\"https://cdn.bokeh.org/bokeh/release/bokeh-2.2.3.min.js\": \"T2yuo9Oe71Cz/I4X9Ac5+gpEa5a8PpJCDlqKYO0CfAuEszu1JrXLl8YugMqYe3sM\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-2.2.3.min.js\": \"98GDGJ0kOMCUMUePhksaQ/GYgB3+NH9h996V88sh3aOiUNX3N+fLXAtry6xctSZ6\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-2.2.3.min.js\": \"89bArO+nlbP3sgakeHjCo1JYxYR5wufVgA3IbUvDY+K7w4zyxJqssu7wVnfeKCq8\"};\n",
       "\n",
       "    for (var i = 0; i < js_urls.length; i++) {\n",
       "      var url = js_urls[i];\n",
       "      var element = document.createElement('script');\n",
       "      element.onload = on_load;\n",
       "      element.onerror = on_error;\n",
       "      element.async = false;\n",
       "      element.src = url;\n",
       "      if (url in hashes) {\n",
       "        element.crossOrigin = \"anonymous\";\n",
       "        element.integrity = \"sha384-\" + hashes[url];\n",
       "      }\n",
       "      console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n",
       "      document.head.appendChild(element);\n",
       "    }\n",
       "  };\n",
       "\n",
       "  function inject_raw_css(css) {\n",
       "    const element = document.createElement(\"style\");\n",
       "    element.appendChild(document.createTextNode(css));\n",
       "    document.body.appendChild(element);\n",
       "  }\n",
       "\n",
       "  \n",
       "  var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-2.2.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-2.2.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-2.2.3.min.js\"];\n",
       "  var css_urls = [];\n",
       "  \n",
       "\n",
       "  var inline_js = [\n",
       "    function(Bokeh) {\n",
       "      Bokeh.set_log_level(\"info\");\n",
       "    },\n",
       "    function(Bokeh) {\n",
       "    \n",
       "    \n",
       "    }\n",
       "  ];\n",
       "\n",
       "  function run_inline_js() {\n",
       "    \n",
       "    if (root.Bokeh !== undefined || force === true) {\n",
       "      \n",
       "    for (var i = 0; i < inline_js.length; i++) {\n",
       "      inline_js[i].call(root, root.Bokeh);\n",
       "    }\n",
       "    if (force === true) {\n",
       "        display_loaded();\n",
       "      }} else if (Date.now() < root._bokeh_timeout) {\n",
       "      setTimeout(run_inline_js, 100);\n",
       "    } else if (!root._bokeh_failed_load) {\n",
       "      console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n",
       "      root._bokeh_failed_load = true;\n",
       "    } else if (force !== true) {\n",
       "      var cell = $(document.getElementById(\"4915\")).parents('.cell').data().cell;\n",
       "      cell.output_area.append_execute_result(NB_LOAD_WARNING)\n",
       "    }\n",
       "\n",
       "  }\n",
       "\n",
       "  if (root._bokeh_is_loading === 0) {\n",
       "    console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n",
       "    run_inline_js();\n",
       "  } else {\n",
       "    load_libs(css_urls, js_urls, function() {\n",
       "      console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n",
       "      run_inline_js();\n",
       "    });\n",
       "  }\n",
       "}(window));"
      ],
      "application/vnd.bokehjs_load.v0+json": "\n(function(root) {\n  function now() {\n    return new Date();\n  }\n\n  var force = true;\n\n  if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n    root._bokeh_onload_callbacks = [];\n    root._bokeh_is_loading = undefined;\n  }\n\n  \n\n  \n  if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n    root._bokeh_timeout = Date.now() + 5000;\n    root._bokeh_failed_load = false;\n  }\n\n  var NB_LOAD_WARNING = {'data': {'text/html':\n     \"<div style='background-color: #fdd'>\\n\"+\n     \"<p>\\n\"+\n     \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n     \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n     \"</p>\\n\"+\n     \"<ul>\\n\"+\n     \"<li>re-rerun `output_notebook()` to attempt to load from CDN again, or</li>\\n\"+\n     \"<li>use INLINE resources instead, as so:</li>\\n\"+\n     \"</ul>\\n\"+\n     \"<code>\\n\"+\n     \"from bokeh.resources import INLINE\\n\"+\n     \"output_notebook(resources=INLINE)\\n\"+\n     \"</code>\\n\"+\n     \"</div>\"}};\n\n  function display_loaded() {\n    var el = document.getElementById(\"4915\");\n    if (el != null) {\n      el.textContent = \"BokehJS is loading...\";\n    }\n    if (root.Bokeh !== undefined) {\n      if (el != null) {\n        el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n      }\n    } else if (Date.now() < root._bokeh_timeout) {\n      setTimeout(display_loaded, 100)\n    }\n  }\n\n\n  function run_callbacks() {\n    try {\n      root._bokeh_onload_callbacks.forEach(function(callback) {\n        if (callback != null)\n          callback();\n      });\n    } finally {\n      delete root._bokeh_onload_callbacks\n    }\n    console.debug(\"Bokeh: all callbacks have finished\");\n  }\n\n  function load_libs(css_urls, js_urls, callback) {\n    if (css_urls == null) css_urls = [];\n    if (js_urls == null) js_urls = [];\n\n    root._bokeh_onload_callbacks.push(callback);\n    if (root._bokeh_is_loading > 0) {\n      console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n      return null;\n    }\n    if (js_urls == null || js_urls.length === 0) {\n      run_callbacks();\n      return null;\n    }\n    console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n    root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n    function on_load() {\n      root._bokeh_is_loading--;\n      if (root._bokeh_is_loading === 0) {\n        console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n        run_callbacks()\n      }\n    }\n\n    function on_error() {\n      console.error(\"failed to load \" + url);\n    }\n\n    for (var i = 0; i < css_urls.length; i++) {\n      var url = css_urls[i];\n      const element = document.createElement(\"link\");\n      element.onload = on_load;\n      element.onerror = on_error;\n      element.rel = \"stylesheet\";\n      element.type = \"text/css\";\n      element.href = url;\n      console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n      document.body.appendChild(element);\n    }\n\n    const hashes = {\"https://cdn.bokeh.org/bokeh/release/bokeh-2.2.3.min.js\": \"T2yuo9Oe71Cz/I4X9Ac5+gpEa5a8PpJCDlqKYO0CfAuEszu1JrXLl8YugMqYe3sM\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-2.2.3.min.js\": \"98GDGJ0kOMCUMUePhksaQ/GYgB3+NH9h996V88sh3aOiUNX3N+fLXAtry6xctSZ6\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-2.2.3.min.js\": \"89bArO+nlbP3sgakeHjCo1JYxYR5wufVgA3IbUvDY+K7w4zyxJqssu7wVnfeKCq8\"};\n\n    for (var i = 0; i < js_urls.length; i++) {\n      var url = js_urls[i];\n      var element = document.createElement('script');\n      element.onload = on_load;\n      element.onerror = on_error;\n      element.async = false;\n      element.src = url;\n      if (url in hashes) {\n        element.crossOrigin = \"anonymous\";\n        element.integrity = \"sha384-\" + hashes[url];\n      }\n      console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n      document.head.appendChild(element);\n    }\n  };\n\n  function inject_raw_css(css) {\n    const element = document.createElement(\"style\");\n    element.appendChild(document.createTextNode(css));\n    document.body.appendChild(element);\n  }\n\n  \n  var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-2.2.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-2.2.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-2.2.3.min.js\"];\n  var css_urls = [];\n  \n\n  var inline_js = [\n    function(Bokeh) {\n      Bokeh.set_log_level(\"info\");\n    },\n    function(Bokeh) {\n    \n    \n    }\n  ];\n\n  function run_inline_js() {\n    \n    if (root.Bokeh !== undefined || force === true) {\n      \n    for (var i = 0; i < inline_js.length; i++) {\n      inline_js[i].call(root, root.Bokeh);\n    }\n    if (force === true) {\n        display_loaded();\n      }} else if (Date.now() < root._bokeh_timeout) {\n      setTimeout(run_inline_js, 100);\n    } else if (!root._bokeh_failed_load) {\n      console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n      root._bokeh_failed_load = true;\n    } else if (force !== true) {\n      var cell = $(document.getElementById(\"4915\")).parents('.cell').data().cell;\n      cell.output_area.append_execute_result(NB_LOAD_WARNING)\n    }\n\n  }\n\n  if (root._bokeh_is_loading === 0) {\n    console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n    run_inline_js();\n  } else {\n    load_libs(css_urls, js_urls, function() {\n      console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n      run_inline_js();\n    });\n  }\n}(window));"
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# import libraries\n",
    "import h3\n",
    "\n",
    "import pandas as pd\n",
    "import geopandas as gpd\n",
    "import json\n",
    "import time\n",
    "\n",
    "from shapely.geometry import shape, Polygon, Point\n",
    "\n",
    "\n",
    "from rasterstats import gen_zonal_stats\n",
    "\n",
    "\n",
    "import pandas_bokeh\n",
    "pandas_bokeh.output_notebook()\n",
    "\n",
    "import numpy as np\n",
    "import scipy.special\n",
    "\n",
    "from bokeh.layouts import gridplot\n",
    "from bokeh.plotting import figure, output_file, show\n",
    "from bokeh.models import ColumnDataSource\n",
    "from datetime import datetime\n",
    "from bokeh.palettes import Spectral10"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1097e3cc",
   "metadata": {},
   "source": [
    "<a id='h3_levels'></a>\n",
    "## 1. Explore h3 levels\n",
    "\n",
    "Based on the import data we will have two different set of resolutions:\n",
    "\n",
    "    1. Deforestation dataser is 30m = 0.030km resolution and therefore, the carbon, biodiversity and deforestation metrics will have this  resolution - \n",
    "    2. Water indicator will have 12051.13116077543236m = 12.051km resolution\n",
    "    \n",
    "The H3 resolution that we choose should be slightly higher that the pixel resolution. Therefore:\n",
    "\n",
    "    1. H3 Resolution 10 would be good for the deforestation, carbon and biodiversity dataset\n",
    "    2. H3 Resolution 5 would be good for the water indicator dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "id": "3d6caef3",
   "metadata": {},
   "outputs": [],
   "source": [
    "# define function to covert geoms to h3\n",
    "def generate_h3_features(geometry, res):\n",
    "    \"\"\"\n",
    "    Generate h3 for geometry\n",
    "    \n",
    "    Input\n",
    "    ------\n",
    "    geometry: shapely.polygon or shapely.multipolygon\n",
    "    \n",
    "    Output\n",
    "    ------\n",
    "    gdf with H3_hexes\n",
    "    \"\"\"\n",
    "    # Create an empty dataframe to write data into\n",
    "    h3_df = pd.DataFrame([],columns=['h3_id'])\n",
    "    if geometry.geom_type == 'MultiPolygon':\n",
    "        district_polygon = list(geometry)\n",
    "        for polygon in district_polygon:\n",
    "            poly_geojson = gpd.GeoSeries([polygon]).__geo_interface__\n",
    "            poly_geojson = poly_geojson['features'][0]['geometry'] \n",
    "            h3_hexes = h3.polyfill_geojson(poly_geojson, res)\n",
    "            for h3_hex in h3_hexes:\n",
    "                coords = h3.h3_set_to_multi_polygon([h3_hex], geo_json=True)\n",
    "                yield {\n",
    "                    \"type\": \"Feature\",\n",
    "                    \"properties\": {\"hexid\": h3_hex},\n",
    "                    \"geometry\": {\"type\": \"Polygon\", \"coordinates\": coords[0]},\n",
    "                }\n",
    "    elif geometry.geom_type == 'Polygon':\n",
    "        poly_geojson = gpd.GeoSeries(geometry).__geo_interface__\n",
    "        poly_geojson = poly_geojson['features'][0]['geometry']\n",
    "        h3_hexes = h3.polyfill_geojson(poly_geojson, res)\n",
    "        for h3_hex in h3_hexes:\n",
    "            coords = h3.h3_set_to_multi_polygon([h3_hex], geo_json=True)\n",
    "            yield {\n",
    "                \"type\": \"Feature\",\n",
    "                \"properties\": {\"hexid\": h3_hex},\n",
    "                \"geometry\": {\"type\": \"Polygon\", \"coordinates\": coords[0]},\n",
    "            }\n",
    "    else:\n",
    "        print('Shape is not a polygon or multypolygon.')\n",
    "        \n",
    "\n",
    "        \n",
    "def get_h3_array(geom, raster_path, res, stats, prefix):\n",
    "    \"\"\"\n",
    "    Function that trasnlate a raster into h3\n",
    "    \n",
    "    Input\n",
    "    ------\n",
    "    geom - geometry used for filling with h3\n",
    "    raster_path - path to raster used for getting the information into the h3 features\n",
    "    res - resolution of the h3 level\n",
    "    stats - stats used in the summary stats\n",
    "    prefix - for output in the summary stats column\n",
    "    \n",
    "    Output\n",
    "    ------\n",
    "    array - temporal array with hex id and stats info\n",
    "    \"\"\"\n",
    "    h3_features = generate_h3_features(geom, res)\n",
    "    \n",
    "    summ_stats_h3_r5 = gen_zonal_stats(\n",
    "        h3_features,\n",
    "        raster_path,\n",
    "        stats=stats,\n",
    "        prefix=prefix,\n",
    "        percent_cover_weighting=True,\n",
    "        geojson_out=True,\n",
    "        all_touched=True\n",
    "        )\n",
    "    \n",
    "    _array = []\n",
    "    for feature in summ_stats_h3_r5:\n",
    "        if feature['properties'][f'{prefix}{stats}'] !=0:\n",
    "            element = {\n",
    "                'sumStats':feature['properties'][f'{prefix}{stats}'],\n",
    "                'hexId':feature['properties']['hexid'],  \n",
    "            }\n",
    "            _array.append(element)\n",
    "    return _array \n",
    "\n",
    "\n",
    "def make_plot(title, hist, edges, x, pdf, cdf):\n",
    "    p = figure(title=title, tools='', background_fill_color=\"#fafafa\")\n",
    "    p.quad(top=hist, bottom=0, left=edges[:-1], right=edges[1:],\n",
    "           fill_color=\"navy\", line_color=\"white\", alpha=0.5)\n",
    "    p.line(x, pdf, line_color=\"#ff8888\", line_width=4, alpha=0.7, legend_label=\"PDF\")\n",
    "    p.line(x, cdf, line_color=\"orange\", line_width=2, alpha=0.7, legend_label=\"CDF\")\n",
    "\n",
    "    p.y_range.start = 0\n",
    "    p.legend.location = \"center_right\"\n",
    "    p.legend.background_fill_color = \"#fefefe\"\n",
    "    p.xaxis.axis_label = 'x'\n",
    "    p.yaxis.axis_label = 'Pr(x)'\n",
    "    p.grid.grid_line_color=\"white\"\n",
    "    return p"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9bff637d",
   "metadata": {},
   "source": [
    "<a id='geometries'></a>\n",
    "### 1.1. Import geometries:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "c1c747ec",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>fid</th>\n",
       "      <th>Material</th>\n",
       "      <th>Material d</th>\n",
       "      <th>Volume</th>\n",
       "      <th>Country</th>\n",
       "      <th>Address</th>\n",
       "      <th>Latitude</th>\n",
       "      <th>Longitude</th>\n",
       "      <th>Location t</th>\n",
       "      <th>Accuracy</th>\n",
       "      <th>geometry</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>1.0</td>\n",
       "      <td>Rubber</td>\n",
       "      <td>None</td>\n",
       "      <td>2600.0</td>\n",
       "      <td>Indonesia</td>\n",
       "      <td>None</td>\n",
       "      <td>None</td>\n",
       "      <td>None</td>\n",
       "      <td>Origin country</td>\n",
       "      <td>Low</td>\n",
       "      <td>POLYGON ((11206146.856 334111.171, 11237288.10...</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   fid Material Material d  Volume    Country Address Latitude Longitude  \\\n",
       "0  1.0   Rubber       None  2600.0  Indonesia    None     None      None   \n",
       "\n",
       "       Location t Accuracy                                           geometry  \n",
       "0  Origin country      Low  POLYGON ((11206146.856 334111.171, 11237288.10...  "
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#import indonesia clip test shape\n",
    "gdf_ind = gpd.read_file('../../datasets/raw/input_data_test/indonesia_test_shape_clip.shp')\n",
    "gdf_ind"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "3b5f55e0",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<Geographic 2D CRS: EPSG:4326>\n",
       "Name: WGS 84\n",
       "Axis Info [ellipsoidal]:\n",
       "- Lat[north]: Geodetic latitude (degree)\n",
       "- Lon[east]: Geodetic longitude (degree)\n",
       "Area of Use:\n",
       "- name: World.\n",
       "- bounds: (-180.0, -90.0, 180.0, 90.0)\n",
       "Datum: World Geodetic System 1984 ensemble\n",
       "- Ellipsoid: WGS 84\n",
       "- Prime Meridian: Greenwich"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#set geom to epsg 4326 for summ stats\n",
    "gdf_ind = gdf_ind.to_crs('EPSG:4326')\n",
    "gdf_ind.crs"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "01e0e121",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/svg+xml": [
       "<svg xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"100.0\" height=\"100.0\" viewBox=\"99.83999867557633 -1.1600344286434052 4.070019801912764 4.320035752803742\" preserveAspectRatio=\"xMinYMin meet\"><g transform=\"matrix(1,0,0,-1,0,1.9999668955169319)\"><path fill-rule=\"evenodd\" fill=\"#66cc99\" stroke=\"#555555\" stroke-width=\"0.08640071505607484\" opacity=\"0.6\" d=\"M 100.66652996631993,2.9999999999824207 L 100.94627659999999,2.8712553999999995 L 101.03971339999998,2.830575299999998 L 101.1600488,2.725984299999993 L 101.2016667,2.6916667 L 101.28447159999999,2.628849899999991 L 101.58008029999999,2.4045721999999925 L 101.77499999999999,2.2566666999999896 L 101.83279839999999,2.213268299999999 L 101.8438836,2.2049184000000013 L 102.1158593,2.001165399999997 L 102.22333329999998,1.919999999999997 L 102.31018,1.8618554999999883 L 102.3474851,1.839534699999993 L 102.58333329999999,1.6866667000000055 L 102.7368014,1.5714493999999968 L 102.8597279,1.479138900000001 L 103.0119132,1.3629040999999915 L 103.06499999999998,1.3249999999999897 L 103.37999999999998,1.2499999999999953 L 103.4092894,1.2365919999999904 L 103.43293849999999,1.2366512999999946 L 103.44402289999998,1.2307549999999947 L 103.4704774,1.2208637999999963 L 103.48039689999999,1.2162274999999936 L 103.51607490000002,1.2108886999999988 L 103.5666667,1.1954999999999878 L 103.57332999999998,1.1947518999999953 L 103.6583195,1.184772 L 103.67072219999999,1.179444399999994 L 103.74069439999998,1.130361099999999 L 103.75001715331118,1.1363172192161124 L 103.75001715331118,-1.0000331044654889 L 99.99999999975424,-1.0000331044654889 L 99.99999999975424,2.9999999999824207 L 100.66652996631993,2.9999999999824207 z\" /></g></svg>"
      ],
      "text/plain": [
       "<shapely.geometry.polygon.Polygon at 0x7f42eb9b79a0>"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#get geometry to parse\n",
    "geom = gdf_ind.iloc[0]['geometry']\n",
    "geom"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "f26d7c49",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>FID</th>\n",
       "      <th>geometry</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0</td>\n",
       "      <td>MULTIPOLYGON (((-71.11750 -54.40319, -71.70583...</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   FID                                           geometry\n",
       "0    0  MULTIPOLYGON (((-71.11750 -54.40319, -71.70583..."
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#import world dataset\n",
    "gdf_world = gpd.read_file('../../datasets/raw/input_data_test/world_shape_simpl.shp')\n",
    "gdf_world"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "b0dcf65b",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<Geographic 2D CRS: EPSG:4326>\n",
       "Name: WGS 84\n",
       "Axis Info [ellipsoidal]:\n",
       "- Lat[north]: Geodetic latitude (degree)\n",
       "- Lon[east]: Geodetic longitude (degree)\n",
       "Area of Use:\n",
       "- name: World.\n",
       "- bounds: (-180.0, -90.0, 180.0, 90.0)\n",
       "Datum: World Geodetic System 1984 ensemble\n",
       "- Ellipsoid: WGS 84\n",
       "- Prime Meridian: Greenwich"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#check crs of world geom\n",
    "gdf_world.crs"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "485c4c02",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/svg+xml": [
       "<svg xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"300\" height=\"167.89541321000002\" viewBox=\"-194.4 -69.85791626 388.8 167.89541321000002\" preserveAspectRatio=\"xMinYMin meet\"><g transform=\"matrix(1,0,0,-1,0,28.17958069000001)\"><g><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -71.11750031,-54.40319443 L -71.70583344,-54.15180588 L -71.43972015,-53.94902802 L -70.96193695,-54.19596863 L -71.11750031,-54.40319443 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -69.26139069,-55.20180511 L -68.4952774,-54.92402649 L -68.31973267,-55.34930038 L -68.59027863,-55.45791626 L -69.26139069,-55.20180511 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -67.6652832,-54.94097137 L -67.16638947,-54.97346878 L -67.28916931,-55.33152771 L -67.93694305,-55.19485855 L -67.6652832,-54.94097137 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -35.96722412109375,-54.81638717651367 L -36.53610992431635,-54.50249862670893 L -37.26892089843744,-54.26080322265625 L -36.974433898925724,-54.05508041381836 L -35.888065338134766,-54.54536437988281 L -35.96722412109375,-54.81638717651367 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 147.81672668,-39.91097641 L 148.28863525,-39.9699173 L 148.04278564,-40.24628067 L 147.81672668,-39.91097641 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -73.37431335,-42.24457932 L -73.78180695,-42.58847046 L -73.6076355,-42.7504158 L -73.80625153,-43.31069565 L -74.4015274,-43.26874924 L -74.17236328,-42.90346909 L -74.17458344,-42.26902771 L -74.06153107,-41.83485794 L -73.54013824,-41.79652786 L -73.37431335,-42.24457932 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 145.73182678,-43.13884354 L 145.25956726,-42.52313614 L 145.18806458,-41.94172287 L 144.93455505,-41.72428131 L 144.68365479,-41.23520279 L 144.69625854,-40.66193008 L 146.3994751,-41.17235947 L 147.02268982,-40.98115158 L 147.44148254,-41.00291443 L 148.01116943,-40.74550247 L 148.33863831,-40.99485779 L 148.28352356,-42.03416061 L 148.07276917,-42.1125946 L 147.81488037,-42.88841248 L 147.35583496,-42.95115662 L 147.23213196,-43.27595139 L 146.890625,-43.53583527 L 146.03204346,-43.46809769 L 145.73182678,-43.13884354 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 138.12763977,-35.84674454 L 137.3711853,-35.99848557 L 136.70806885,-36.03748322 L 136.58743286,-35.74885559 L 137.31256104,-35.57946396 L 138.12763977,-35.84674454 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 174.78677368,-41.26467514 L 175.18081665,-40.59750366 L 175.16249084,-40.10712433 L 173.91577148,-39.51951599 L 173.91123962,-39.12008667 L 174.38990784,-38.98882294 L 174.61450195,-38.7059288 L 174.68733215,-38.12921906 L 174.84368896,-37.80391312 L 174.69160461,-37.35715866 L 174.70637512,-36.92652893 L 174.42440796,-36.82421875 L 173.98370361,-36.23374557 L 173.05427551,-35.19135284 L 173.08747864,-34.90074158 L 172.66093445,-34.47772598 L 172.86920166,-34.41448975 L 173.33990479,-34.95866776 L 173.84214783,-34.99404144 L 174.28977966,-35.27507782 L 174.56031799,-35.71630478 L 174.46014404,-35.9141655 L 174.82209778,-36.27828217 L 174.77641296,-36.78924561 L 175.2833252,-36.98850632 L 175.62492371,-36.75257874 L 175.81407166,-36.84257889 L 175.92356873,-37.57519531 L 177.16040039,-37.98748016 L 177.54678345,-37.90758133 L 178.04823303,-37.54210281 L 178.55044556,-37.68936157 L 178.33416748,-38.02389908 L 178.2930603,-38.52687073 L 177.97346497,-38.68089676 L 177.8870697,-39.03162766 L 177.04579163,-39.19422531 L 176.87313843,-39.4563446 L 177.00508118,-39.83589554 L 176.62265015,-40.49040985 L 176.30981445,-40.71631241 L 176.06245422,-41.13101578 L 175.44146729,-41.56632614 L 174.78677368,-41.26467514 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 1.023471,5.97013807 L 0.80819601,5.77152681 L 0.33486,5.78430605 L -0.32541701,5.50958395 L -0.81597102,5.2129178 L -1.620139,5.02569389 L -2.09013796,4.74569511 L -2.40097094,4.94680595 L -3.97485995,5.25513887 L -5.86430502,5.031528 L -6.91347313,4.66402721 L -7.47597313,4.36291695 L -7.72013903,4.37180519 L -8.25014019,4.57263803 L -9.29514027,5.14958286 L -9.5951376,5.4776392 L -10.39374924,6.14430523 L -10.81819534,6.31236219 L -10.85902786,6.45735979 L -11.36069489,6.70625114 L -11.4034729,6.85458422 L -11.91625118,7.17430592 L -12.46541786,7.37708282 L -12.54763985,7.67736101 L -12.96097183,7.91736078 L -13.13097095,8.19402695 L -13.32541847,9.27902794 L -14.09152794,10.17486095 L -14.4529171,10.20652676 L -14.65847301,10.47708321 L -14.60763931,10.70485973 L -14.81597233,10.92930508 L -15.32763767,11.13347244 L -15.39402676,11.50069523 L -15.66302395,11.79430485 L -15.96763992,11.7709713 L -16.3279171,12.01764011 L -16.34152794,12.19458294 L -16.77173805,12.4040556 L -16.73605919,13.03029156 L -16.81319427,13.33819389 L -16.52819252,13.55541801 L -16.7504158,13.81603813 L -16.77541733,14.06069565 L -17.25250816,14.70303917 L -16.54375076,15.76461792 L -16.43680573,16.63513947 L -16.14430618,17.3306942 L -16.02180481,17.98513794 L -16.0526371,18.4379158 L -16.25152779,19.07125092 L -16.46041679,19.2476387 L -16.20124817,20.19763947 L -16.66791725,20.73513794 L -16.92874908,21.1609745 L -16.98208237,21.71875191 L -16.80708122,22.16236115 L -16.4948616,22.32430649 L -16.18958282,23.12708473 L -15.7420826,23.78513908 L -15.76379013,23.94935226 L -14.88597107,24.69735909 L -14.84597301,25.20375061 L -14.47486115,26.17986107 L -13.68624973,26.64013863 L -13.53208256,26.79819489 L -13.15986156,27.69708252 L -12.90595818,27.95452309 L -12.08236122,28.08652687 L -11.46374893,28.33736038 L -11.04569435,28.75986099 L -10.51069546,29.02791595 L -9.78930664,29.86513901 L -9.5984726,30.40013885 L -9.78375053,30.60958099 L -9.8334713,31.41402817 L -9.26207924,32.17514038 L -9.28597355,32.54180527 L -8.5134716,33.26514053 L -7.52180576,33.62486267 L -6.78319502,34.09347153 L -6.39014006,34.69763947 L -5.93014002,35.78847122 L -5.33958387,35.87708282 L -5.24347305,35.55291748 L -4.78263807,35.23791504 L -4.35902882,35.14847183 L -3.70847201,35.28847122 L -3.33819509,35.18569565 L -3.07486105,35.28763962 L -2.8095839,35.10235977 L -1.77513897,35.11902618 L -1.27486205,35.36652374 L -1.18180704,35.58124924 L -0.386026,35.90852356 L -0.111251,35.78819275 L 0.33847299,36.19097137 L 1.19291604,36.51486206 L 2.64736009,36.61875153 L 2.90180492,36.80625153 L 3.49930501,36.76930618 L 3.73041701,36.88486099 L 4.75458288,36.89513779 L 5.27180481,36.63763809 L 6.21236086,36.90847397 L 6.33680677,37.06902695 L 6.93097305,36.88069534 L 7.26458311,37.06986237 L 7.76986122,36.95986176 L 8.78347206,36.95291519 L 9.02791691,37.13958359 L 9.66652775,37.33847046 L 10.06652832,37.27013779 L 10.20474529,36.83781052 L 10.41208267,36.71458435 L 11.0462513,37.08263779 L 11.13236141,36.86958313 L 10.79125023,36.45069504 L 10.56930542,36.39541626 L 10.4831953,36.05347061 L 10.64763927,35.81513977 L 11.03791618,35.63180542 L 11.1273613,35.24874878 L 10.86569309,34.81430435 L 10.02513885,34.08625031 L 10.33569431,33.70735931 L 10.69680691,33.49430466 L 10.91874886,33.66930389 L 11.1081953,33.55764008 L 11.18819523,33.20180511 L 11.56319523,33.16708374 L 12.33680439,32.82402802 L 12.71319485,32.79264069 L 13.23263931,32.9118042 L 14.17715454,32.71152878 L 14.50632191,32.50402832 L 15.21430683,32.3745842 L 15.48402882,31.67652702 L 15.65986156,31.44958115 L 16.12430573,31.25180626 L 16.69930458,31.21930504 L 17.30041885,31.08458328 L 18.17430305,30.78986168 L 18.94214058,30.28736115 L 19.37769699,30.31624985 L 19.77602959,30.53152847 L 20.05436325,30.84736252 L 20.17325211,31.16402626 L 19.99208069,31.47319412 L 19.9584713,31.9920826 L 20.57763863,32.54791641 L 21.70708275,32.94041824 L 22.17486191,32.92736053 L 23.12819481,32.61458206 L 23.25347137,32.20347214 L 23.76958275,32.16652679 L 24.08791542,32.01208496 L 24.99652863,31.96263885 L 25.17319489,31.53513908 L 25.90875053,31.62819672 L 27.34019661,31.37277985 L 27.44374275,31.21622276 L 28.43736267,31.08708382 L 29.01958275,30.8223629 L 29.53375053,30.96458244 L 30.00902939,31.27986145 L 31.0526371,31.60180664 L 31.53236198,31.44708252 L 31.83625031,31.52069473 L 32.6143074,31.05680466 L 33.19626236,31.06678581 L 33.88541794,31.16402626 L 34.45208359,31.54680634 L 34.78374863,32.12902832 L 34.94680405,32.73569489 L 35.28754425,33.462883 L 35.57719421,33.9102211 L 35.65951157,34.24642944 L 35.98474121,34.52850342 L 35.88097382,34.88263702 L 35.91432571,35.41875458 L 35.73458481,35.56402588 L 35.97847366,36.02041626 L 35.77958298,36.31902695 L 36.15986252,36.59319305 L 36.01708221,36.93013763 L 35.61875153,36.60263824 L 35.37597275,36.55347061 L 34.83319473,36.79041672 L 34.56069565,36.76847076 L 33.6954155,36.16986084 L 32.8045845,36.02180481 L 32.29541779,36.23430634 L 32.05374908,36.52291489 L 31.31597137,36.81263733 L 30.5779171,36.80069351 L 30.47708321,36.39736176 L 29.77763939,36.13653183 L 29.3531971,36.22958374 L 28.58763885,36.81541824 L 28.09541512,36.64569473 L 28.07208252,36.94041824 L 27.4976387,36.98652649 L 27.61069489,37.25708389 L 27.19152832,37.35514069 L 27.09097481,37.63986206 L 27.27736092,37.92652893 L 26.7654171,38.21652603 L 26.93930626,38.44597244 L 26.72791672,38.72624969 L 26.95791435,38.93930435 L 26.73374939,39.24041748 L 26.92263985,39.58375168 L 26.07097244,39.47180557 L 26.17708397,39.98819351 L 26.75235939,40.40291595 L 27.78180504,40.31236267 L 28.7681942,40.39402771 L 28.99124908,40.64458466 L 29.02180481,40.97819519 L 29.25847244,41.23069382 L 29.99097252,41.13458252 L 30.26319504,41.20708466 L 30.75569534,41.08625031 L 31.34180641,41.13874817 L 31.39180565,41.30597305 L 32.51263809,41.80625153 L 33.32986069,42.01874924 L 34.80152893,41.95541763 L 35.02097321,42.08874893 L 35.29402924,41.70930481 L 35.96430588,41.73291779 L 36.43763733,41.24430466 L 36.62069321,41.36736298 L 37.53652954,41.02097321 L 38.35625076,40.9090271 L 39.41819382,41.10763931 L 40.22486115,40.92708588 L 41.41541672,41.39041519 L 41.76985931,41.80486298 L 41.44594574,42.73291779 L 40.86541748,43.07541656 L 40.27736282,43.19041824 L 38.99902725,44.1609726 L 38.2206955,44.4109726 L 37.83097076,44.72041702 L 37.38624954,44.76180649 L 37.25986099,44.97708511 L 36.63347244,45.14125061 L 36.84208298,45.45097351 L 37.33069611,45.32986069 L 37.60374832,45.47041702 L 37.9370842,45.99402618 L 38.29180527,46.24402618 L 37.88236237,46.43680573 L 38.0593071,46.64652634 L 39.24902725,47.08375168 L 39.22874832,47.26041794 L 37.53569412,47.08069611 L 36.97847366,46.85930634 L 35.92152786,46.65986252 L 35.35819626,46.36041641 L 34.82458496,46.19208145 L 34.9679184,45.77125168 L 35.5284729,45.28347397 L 36.28374863,45.48152924 L 36.59708405,45.43763733 L 36.44486237,45.08736038 L 35.35013962,44.96430588 L 34.45569611,44.70930481 L 34.34736252,44.54791641 L 33.72763824,44.39152908 L 33.53013992,44.61486053 L 33.61291504,44.90486145 L 33.42375183,45.18930435 L 32.56069565,45.46819305 L 33.67652893,45.89819336 L 33.18458176,46.15597153 L 32.53874969,46.06874847 L 32.23180389,46.1301384 L 31.98013878,46.6590271 L 30.75541687,46.54763794 L 30.7523613,46.3745842 L 30.25847244,45.89347076 L 29.64736176,45.52875137 L 29.76291656,45.31347275 L 29.55708313,44.82458496 L 29.10652733,44.75986099 L 28.62624931,44.29930496 L 28.66791725,43.98680496 L 28.47097206,43.38152695 L 28.08430481,43.36791611 L 27.88541603,43.00652695 L 27.90013885,42.70013809 L 27.5004158,42.54236221 L 27.99180603,42.06375122 L 27.97763824,41.86208344 L 28.27291679,41.49569321 L 29.11624908,41.23430634 L 28.98041725,41.00180435 L 28.61902618,40.96069336 L 28.1618042,41.07208252 L 27.5106945,40.97402954 L 27.30930519,40.70236206 L 26.10708427,40.59875107 L 25.95014191,40.84236145 L 25.12694168,40.9524765 L 24.39735985,40.93486023 L 24.04541588,40.71847153 L 23.92041588,40.36458206 L 23.29486084,40.23569489 L 22.9106884,40.38042068 L 22.54818916,40.14179993 L 22.93652534,39.57347107 L 22.81790733,39.2720871 L 23.04707718,38.74264145 L 23.67764091,38.33958054 L 23.95430946,38.28541946 L 24.05402756,37.73458481 L 23.45069504,38.02347183 L 23.13931084,37.92153168 L 22.97624969,37.51680374 L 22.72791672,37.49458313 L 23.10041809,36.7776413 L 22.78292274,36.79875183 L 22.47707939,36.61486053 L 22.14068985,36.92874908 L 21.7290287,36.79847336 L 21.56568909,37.16431046 L 21.60597229,37.50097275 L 21.10986137,37.84208298 L 21.36486053,38.1170845 L 21.9481945,38.32847214 L 22.8726387,37.93319321 L 22.89542007,38.21430969 L 22.50430489,38.38097382 L 21.14930534,38.30125046 L 20.71569061,39.01625061 L 20.28624916,39.32680893 L 19.85791016,40.04187012 L 19.46736145,40.21708298 L 19.35680771,40.69985962 L 19.61847305,41.7804184 L 17.5368042,42.94097137 L 16.88958359,43.39347076 L 16.42407227,43.54571533 L 16.09097481,43.47402954 L 15.20902824,44.12985992 L 15.27736092,44.36572266 L 14.9879179,44.57402802 L 14.8204174,45.11597061 L 14.33152676,45.35597229 L 13.99791622,44.8073616 L 13.63629246,45.07147217 L 13.43291569,45.68152618 L 12.71958256,45.52541733 L 12.14735985,45.30097198 L 12.46652794,44.84736252 L 12.24041653,44.6870842 L 12.39013767,44.21486282 L 13.27180576,43.68652725 L 13.50902843,43.62985992 L 13.99708366,42.70486069 L 14.71875,42.10430527 L 15.38652706,41.90013885 L 16.08458328,41.94097137 L 15.9818058,41.44486237 L 17.04569435,41.08097076 L 17.84152794,40.69041824 L 18.4240284,40.29430389 L 18.36902809,39.79319382 L 17.99430466,39.99514008 L 17.86347008,40.2820816 L 17.50541687,40.29486084 L 17.11375046,40.51985931 L 16.60902786,40.08458328 L 16.52458382,39.65987015 L 17.13624954,39.37597275 L 17.11347198,38.90986252 L 16.60458374,38.8129158 L 16.56736183,38.42319489 L 16.06347466,37.92402649 L 15.63875008,38.00152969 L 15.98624992,38.7234726 L 16.18486023,38.7495842 L 15.99541664,39.44374847 L 15.77985954,39.89430618 L 15.28458405,40.0340271 L 14.94513798,40.28013992 L 14.90874958,40.54586411 L 14.52402687,40.60764313 L 14.04708385,40.85775757 L 13.82624912,41.17375183 L 13.33791733,41.29124832 L 13.06541729,41.22180557 L 12.61958408,41.44597244 L 12.12208462,41.92791748 L 11.19208336,42.51013947 L 10.78458309,42.89485931 L 10.4948616,42.93152618 L 10.5079174,43.28236008 L 10.1609726,43.96347046 L 9.23708439,44.34486008 L 8.74402714,44.42708206 L 8.12874985,43.92569351 L 7.24791622,43.69097137 L 6.66430521,43.21152878 L 5.81402779,43.10597229 L 5.35124922,43.33458328 L 4.57986212,43.36236191 L 3.90569401,43.51680374 L 3.08124995,43.07597351 L 3.2026391,41.89125061 L 2.26458406,41.45847321 L 2.11347198,41.28958511 L 0.98708302,41.04097366 L 0.70625001,40.80958176 L 0.049305,40.03513718 L -0.334306,39.42597198 L -0.135139,38.96902847 L 0.22041599,38.76402664 L -0.37458199,38.44291687 L -0.63847202,38.13680649 L -0.91509998,37.55908203 L -1.32097304,37.56319427 L -1.80819499,37.2140274 L -2.00208402,36.83625031 L -2.36736107,36.84152603 L -2.69958305,36.6823616 L -3.26097298,36.7531929 L -4.39263916,36.72291565 L -4.63902807,36.50624847 L -5.21736097,36.37930679 L -5.58125019,36.01263809 L -6.05402708,36.20291519 L -6.39263821,36.63263702 L -6.51708317,36.97458267 L -6.99407196,37.25097275 L -7.79208422,37.01708221 L -8.63319492,37.12236023 L -8.80839729,37.41396713 L -8.77680492,38.28180695 L -9.48614407,38.70805359 L -9.33652687,39.28291702 L -9.07319546,39.59263992 L -8.86180592,40.13763809 L -8.66070747,40.929245 L -8.88069534,41.7531929 L -8.88152695,42.45486069 L -8.98097229,42.7784729 L -9.29819393,42.92152786 L -8.91402721,43.31986237 L -8.50874901,43.32624817 L -8.3231926,43.5256958 L -7.67652702,43.76958466 L -7.17041588,43.55597305 L -5.69458389,43.54513931 L -4.6537509,43.40097046 L -3.58958411,43.51430511 L -3.03402805,43.36763763 L -2.73847198,43.4295845 L -2.12708306,43.29097366 L -1.59902799,43.43264008 L -1.30930603,44.1590271 L -1.151528,45.48708344 L -1.23930502,45.71374893 L -1.06041801,46.04513931 L -1.29569495,46.29041672 L -1.81624997,46.49902725 L -2.14263797,46.81874847 L -2.00847197,47.06347275 L -2.55291605,47.37014008 L -2.78208399,47.62069321 L -4.34597206,47.83847046 L -4.27041578,48.13347244 L -4.77680588,48.51958466 L -4.32402802,48.67708206 L -3.56791592,48.68541718 L -3.09319496,48.87041855 L -2.63958311,48.52375031 L -2.3284719,48.67347336 L -1.55402803,48.64458466 L -1.59236097,49.13624954 L -1.88569498,49.54097366 L -1.38152695,49.70624924 L -1.16958404,49.41125107 L -0.003195,49.32458496 L 0.205973,49.71458435 L 1.02208304,49.91597366 L 1.45416605,50.11013794 L 1.57805598,50.85402679 L 2.42472291,51.05597305 L 3.54305601,51.4054184 L 3.69027901,51.72097397 L 4.37694407,52.18819427 L 4.87361097,52.88847351 L 5.88361216,53.38874817 L 6.81694508,53.4631958 L 7.2969451,53.68069458 L 8.01194382,53.71125031 L 8.24305534,53.58235931 L 8.8269453,54.0256958 L 8.91749859,54.42430496 L 8.6211834,54.89331436 L 8.6202774,55.42708206 L 8.07638931,55.56236267 L 8.38253403,55.90616989 L 8.12744904,56.43180084 L 8.73527813,56.48014069 L 8.87861347,56.76319504 L 9.29805565,56.99736023 L 9.93749905,57.04902649 L 10.27083397,56.93597412 L 10.34638977,56.57678604 L 10.79472256,56.53791809 L 10.69305515,56.14041519 L 9.59805584,55.42597198 L 9.47416687,55.13097382 L 10.13583374,54.48402786 L 10.79361057,54.31347275 L 11.18083382,54.01541519 L 12.1091671,54.17569351 L 12.51083469,54.48291779 L 13.47694397,54.11875153 L 14.40769577,53.91960907 L 16.2046833,54.31521988 L 16.52988243,54.54068375 L 17.24335289,54.72993088 L 18.32936668,54.83533478 L 18.58037567,54.43770599 L 19.1802578,54.35104752 L 19.92694473,54.49097061 L 19.97808838,54.96130371 L 21.21694374,54.92458344 L 21.24416733,55.48625183 L 20.98305321,56.21763992 L 21.06916618,56.84402847 L 21.41083336,57.05291748 L 21.68583298,57.5545845 L 22.4552784,57.72986221 L 23.12194252,57.3670845 L 23.31305695,57.06152725 L 23.9291687,57.00569534 L 24.41249847,57.27069473 L 24.25902748,58.27677536 L 23.74540901,58.35918808 L 23.49657631,58.68856812 L 23.4913311,59.20994568 L 24.3654747,59.47182083 L 25.40343285,59.48929977 L 26.02415848,59.62223816 L 26.93709564,59.43839645 L 27.91407776,59.40172577 L 28.00138855,59.68930817 L 28.95750046,59.80791855 L 29.13038826,59.98736191 L 30.02894402,59.86225128 L 29.92656326,60.14530945 L 29.11249924,60.16666794 L 28.625,60.35416794 L 28.60208321,60.66041565 L 28.04999924,60.51041794 L 27.23125076,60.52500153 L 25.92083359,60.25 L 25.23697853,60.25156021 L 24.09166718,60.02291489 L 23.22361183,59.89125061 L 22.45000076,59.99995041 L 22.35000038,60.36458206 L 21.54635429,60.51823044 L 21.27083397,60.86458206 L 21.26666641,60.86458206 L 21.52083397,61.28333282 L 21.5,61.76666641 L 21.37708282,62.22916794 L 21.06510353,62.66614914 L 21.24166679,62.85416794 L 21.25208282,62.88750076 L 21.52083397,63.13541794 L 22.24635315,63.41719055 L 22.63750076,63.77291489 L 22.72916603,63.84583282 L 23.40364647,63.94739914 L 24.69375038,64.86250305 L 25.39426994,65.0078125 L 25.20624924,65.5625 L 24.08749962,65.8125 L 23.18802071,65.74635315 L 22.44427109,65.85884857 L 22.00416756,65.4291687 L 21.46666718,65.37291718 L 21.4609375,65.02135468 L 21.125,64.77500153 L 21.51198006,64.40885162 L 20.67343712,63.81406021 L 19.25468826,63.4369812 L 18.57500076,63.12083435 L 17.72500038,62.39791489 L 17.12916756,61.63333511 L 17.13802147,60.9526062 L 17.40208244,60.64583206 L 17.9375,60.60208511 L 18.61406326,60.2348938 L 18.97416687,59.87430573 L 18.80416679,59.67902756 L 18.45861053,59.50152588 L 18.70305634,59.27402878 L 17.03138924,58.63180542 L 16.74027824,58.42152786 L 16.80527878,57.98764038 L 16.5336113,57.85514069 L 16.72027779,57.43958282 L 16.58083344,57.04291534 L 15.85638905,56.08791733 L 15.56416798,56.18597412 L 14.67416668,56.15097046 L 14.2402792,55.86208344 L 14.20138836,55.38708496 L 12.96027756,55.40180588 L 13.05472088,55.69235992 L 12.56750107,56.14347076 L 12.93861008,56.58874893 L 12.36194324,56.91875076 L 12.10972309,57.43402863 L 11.41527653,58.19791794 L 11.11638927,58.99236298 L 10.4519434,59.17458344 L 9.58416653,58.88458252 L 8.2513876,58.12985992 L 7.59805489,58.00069427 L 6.62416697,58.07180405 L 5.66194487,58.55291748 L 5.58416796,59.03652954 L 5.22194481,59.50180435 L 5.79194498,59.92763901 L 5.4000001,60.15416718 L 5.08125019,60.61249924 L 4.9729166,60.73125076 L 5.27291679,60.82083511 L 5.20208311,60.83333206 L 5.99739599,61.12656021 L 7.04791641,61.06041718 L 7.20208311,61.13124847 L 5.72343731,61.16614914 L 5.3104167,61.35625076 L 4.97135401,61.67343521 L 5.34375,62.05833435 L 6.7166667,62.49166489 L 6.24166679,62.55208206 L 7.08125019,62.65208435 L 7.76041651,62.56666565 L 6.98541641,62.72499847 L 7.0291667,62.96875 L 8.4609375,63.13385391 L 8.53125,63.38333511 L 9.69583321,63.64166641 L 10.03958321,64.06041718 L 10.63177109,64.5223999 L 10.71249962,64.82917023 L 11.35000038,64.89375305 L 12.5354166,65.44999695 L 12.3557291,65.63176727 L 12.9333334,66.02083588 L 13.19375038,66.6645813 L 14.58125019,67.27500153 L 15.41250038,68.14167023 L 16.36666679,68.03541565 L 16.07968712,68.41822815 L 17.25052071,68.75676727 L 18.35260391,69.40989685 L 18.93333244,69.32291412 L 19.27708244,69.77708435 L 20.46875,69.75624847 L 21.12083244,69.87083435 L 21.48593712,70.30989838 L 23.20260429,70.20259857 L 24.56718826,70.85676575 L 26.05833244,70.72916412 L 28.43906212,70.8671875 L 30.20364571,70.67343903 L 31.04114532,70.38801575 L 29.70208359,69.9145813 L 31.52135468,69.6796875 L 32.06041718,69.94374847 L 33.1015625,69.73698425 L 32.50624847,69.48124695 L 33.9380188,69.3119812 L 36.28125,69.09791565 L 39.57968521,68.0317688 L 41.03697586,67.63176727 L 41.34739304,66.9921875 L 40.5619812,66.45051575 L 39.11875153,66.1020813 L 38.24375153,66.06041718 L 35.37916565,66.4145813 L 34.90416718,66.59375 L 33.50208282,66.71666718 L 33.47499847,66.44791412 L 34.53489304,66.0703125 L 35.00833511,65.73958588 L 34.43125153,65.37916565 L 35.02030945,64.7411499 L 34.78749847,64.53541565 L 35.61510086,64.37968445 L 36.25260162,64.00676727 L 37.40000153,63.78541565 L 38.00885391,63.93593979 L 37.78802109,64.36510468 L 37.1088562,64.40052032 L 36.4526062,64.87135315 L 36.98125076,65.16666412 L 38.20624924,64.77083588 L 38.87083435,64.7416687 L 39.54791641,64.54166412 L 40.44218445,64.62343597 L 40.2973938,65.01093292 L 39.72135162,65.3359375 L 39.8588562,65.62239838 L 40.76458359,65.9916687 L 41.33541489,66.06041718 L 42.11875153,66.4916687 L 43.26874924,66.41041565 L 44.06927109,66.23072815 L 44.52083206,66.90000153 L 43.76718521,67.2588501 L 44.23541641,67.875 L 44.2036438,68.30156708 L 44.87916565,68.55208588 L 45.88750076,68.45625305 L 46.54531479,68.12031555 L 46.69166565,67.80625153 L 45.36249924,67.71458435 L 44.95833206,67.31874847 L 45.58124924,67.16041565 L 46.03333282,66.81874847 L 46.66041565,66.81458282 L 47.74531555,67.00468445 L 47.83177185,67.57865143 L 48.47291565,67.63541412 L 50.83750153,68.33750153 L 51.56874847,68.42292023 L 53.375,68.8833313 L 53.9223938,68.20468903 L 56.01458359,68.64375305 L 57.33906555,68.53385162 L 57.65885162,68.73384857 L 58.87916565,68.9770813 L 59.8046875,68.61510468 L 60.51874924,68.70833588 L 60.88906479,69.13072968 L 60.22343445,69.5078125 L 60.88750076,69.85624695 L 62.78333282,69.71458435 L 64.30833435,69.49791718 L 65.41874695,69.1645813 L 68.13957977,68.40000153 L 68.93906403,68.62760162 L 67.83750153,69.49375153 L 66.8041687,69.73124695 L 67.37291718,70.76249695 L 66.7807312,70.91093445 L 66.9375,71.27083588 L 68.09739685,71.56926727 L 68.52656555,71.84739685 L 68.9921875,72.66197968 L 69.29374695,72.82291412 L 71.63124847,72.88749695 L 72.70207977,72.72291565 L 72.83073425,72.29114532 L 72.31822968,71.70051575 L 71.84166718,71.5229187 L 72.80573273,70.84531403 L 72.42343903,70.2890625 L 72.66822815,69.75260162 L 72.48802185,69.06510162 L 73.50572968,68.56406403 L 73.07551575,68.20781708 L 73.09218597,67.73802185 L 72.03801727,67.29322815 L 71.86823273,66.9776001 L 70.86042023,66.81874847 L 69.04792023,66.81458282 L 69.45207977,66.48750305 L 70.37916565,66.32917023 L 71.27916718,66.34999847 L 72.08958435,66.22916412 L 72.48542023,66.59791565 L 73.85364532,66.98802185 L 73.9067688,67.27448273 L 74.62916565,67.625 L 74.79948425,68.02448273 L 74.3125,68.36458588 L 74.70417023,68.7729187 L 76.20833588,68.9770813 L 77.31666565,68.48750305 L 77.1963501,68.09218597 L 78.17656708,68.25572968 L 77.68281555,68.87656403 L 76.03125,69.23958588 L 74.72916412,69.07499695 L 73.76927185,69.16301727 L 73.90364838,69.3973999 L 73.52968597,69.73384857 L 74.23072815,70.42760468 L 74.26823425,70.6640625 L 73.0317688,71.42656708 L 73.46510315,71.77656555 L 74.61250305,72.01457977 L 75.2505188,71.94322968 L 75.41041565,71.29374695 L 76.05677032,71.19426727 L 78.36042023,71.06458282 L 76.2588501,71.58802032 L 76.03593445,71.90364838 L 76.95156097,72.02031708 L 78.24531555,71.96198273 L 77.89427185,72.30781555 L 79.4916687,72.34999847 L 80.65416718,72.09375 L 81.37708282,71.74791718 L 83.28281403,71.70259857 L 82.9682312,71.38801575 L 82.2505188,71.2494812 L 82.40625,70.76667023 L 83.13072968,70.84010315 L 83.16093445,71.24010468 L 83.6869812,71.5942688 L 82.6640625,71.92240143 L 82.21666718,72.28333282 L 80.76718903,72.50676727 L 80.87916565,72.95417023 L 80.3744812,73.29218292 L 80.5395813,73.5541687 L 83.54792023,73.64375305 L 86.86250305,73.88541412 L 86.75416565,74.6958313 L 89.18541718,75.47083282 L 93.6020813,75.84583282 L 93.72499847,76.12083435 L 95.8979187,76.13957977 L 97.26615143,75.95365143 L 99.41041565,76.4458313 L 100.95207977,76.47916412 L 100.92552185,76.85781097 L 102.64009857,77.48906708 L 104.0,77.6958313 L 105.87708282,77.53749847 L 105.59739685,77.24427032 L 107.29582977,77.00416565 L 106.6020813,76.48332977 L 108.375,76.69374847 L 110.4375,76.73958588 L 111.62708282,76.65833282 L 112.67082977,76.17500305 L 113.91874695,75.80625153 L 113.38124847,75.51667023 L 113.66041565,75.28749847 L 109.09739685,74.04426575 L 108.20833588,73.6645813 L 107.32917023,73.6020813 L 106.42292023,73.18333435 L 107.79582977,73.15416718 L 109.79166412,73.43541718 L 109.97499847,74.0 L 111.6651001,73.75468445 L 113.44322968,73.65781403 L 113.52916718,72.95207977 L 113.22083282,72.82707977 L 113.90625,73.33958435 L 113.57707977,73.51249695 L 115.46875,73.7104187 L 117.33281708,73.57865143 L 118.62916565,73.5625 L 118.51667023,73.17500305 L 121.15000153,72.92500305 L 122.87916565,72.90208435 L 123.65833282,73.18541718 L 123.4296875,73.65156555 L 124.35624695,73.79792023 L 125.88124847,73.47499847 L 126.9291687,73.38124847 L 128.2250061,73.40833282 L 128.12290955,73.39375305 L 128.94114685,73.08802032 L 127.84166718,72.93958282 L 127.74583435,72.90000153 L 127.59166718,72.69166565 L 126.64583588,72.51249695 L 129.1333313,71.98750305 L 129.49583435,71.26041412 L 130.24842834,70.9463501 L 131.6182251,70.85884857 L 132.5463562,71.8661499 L 133.68959045,71.43541718 L 134.33958435,71.36250305 L 135.80000305,71.64167023 L 137.38697815,71.39323425 L 138.9833374,71.68958282 L 140.5229187,72.46875 L 141.58332825,72.76457977 L 144.48124695,72.62708282 L 146.03125,72.47291565 L 146.52708435,72.3125 L 148.3979187,72.31874847 L 149.47291565,72.16666412 L 149.7124939,71.74791718 L 150.8833313,71.38541412 L 151.52915955,71.3208313 L 152.41041565,70.82917023 L 153.0375061,70.8125 L 155.9437561,71.07499695 L 157.38542175,71.0541687 L 159.125,70.83125305 L 159.8182373,70.56822968 L 160.1000061,70.25624847 L 159.74583435,69.80000305 L 160.91926575,69.63072968 L 161.5088501,69.37864685 L 162.3520813,69.63124847 L 164.13697815,69.74531555 L 164.56040955,69.58125305 L 166.9604187,69.4770813 L 167.74583435,69.76875305 L 168.27030945,69.55156708 L 168.34165955,69.20625305 L 169.33332825,69.07917023 L 169.4630127,68.80885315 L 170.1333313,68.79374695 L 170.9598999,69.01615143 L 170.57499695,69.59583282 L 170.57344055,70.07865143 L 172.80259705,69.90885162 L 173.2333374,69.76041412 L 174.02082825,69.89167023 L 176.1640625,69.82551575 L 177.1484375,69.59843445 L 178.76249695,69.39583588 L 179.9833374,68.96875 L 180.0,68.94973755 L 180.0,68.85520935 L 180.0,67.49953461 L 180.0,67.49871826 L 180.0,65.9841156 L 179.99790955,65.02708435 L 178.7895813,64.63124847 L 177.68592834,64.69426727 L 177.4838562,64.41093445 L 178.35676575,64.31822968 L 178.6937561,63.94374847 L 178.78541565,63.39583206 L 179.62916565,62.6875 L 179.18281555,62.3203125 L 178.09375,62.53125 L 177.0458374,62.53749847 L 174.84791565,61.93333435 L 174.09375,61.82916641 L 172.1015625,60.87239838 L 170.6505127,60.41302109 L 170.29109192,59.92761993 L 169.7494812,60.38697815 L 169.12083435,60.55208206 L 168.19792175,60.57708359 L 166.9859314,60.29948044 L 166.29055786,59.8125 L 166.2749939,60.47291565 L 165.16615295,60.07551956 L 163.87374878,60.00363922 L 163.21000671,59.56972122 L 163.335495,59.28612518 L 162.13499451,58.37333298 L 161.97866821,58.01039505 L 162.7121582,57.94238663 L 163.29475403,57.73397446 L 162.78207397,57.34877777 L 162.77667236,56.77444458 L 163.23460388,56.73920441 L 163.36154175,56.18438721 L 163.0461731,56.00805664 L 162.60261536,56.26225662 L 162.20610046,56.14677429 L 161.73722839,55.41361237 L 162.12995911,54.75804901 L 161.71580505,54.50529861 L 160.98497009,54.58810043 L 159.97790527,54.12537384 L 159.66601563,53.24697876 L 159.08721924,53.10666656 L 158.48573303,52.73894501 L 158.57119751,52.38497162 L 158.27389526,51.96138763 L 156.87722778,51.02222061 L 156.54777527,51.28499985 L 156.4659729,52.13974762 L 156.14137268,52.86235046 L 155.90167236,53.98110962 L 155.55722046,55.19722366 L 155.6505127,55.96693039 L 156.08833313,56.78972244 L 156.68777466,57.05749893 L 157.00054932,57.43347549 L 156.84666443,57.79499817 L 157.35797119,57.77216339 L 157.67362976,58.01255417 L 158.32194519,58.07051849 L 159.02484131,58.40304947 L 159.7305603,58.86611176 L 159.86495972,59.13219833 L 160.85340881,59.60929871 L 161.8348999,60.15468979 L 162.2041626,60.52708435 L 163.6791687,60.88124847 L 163.6171875,61.1088562 L 164.0307312,61.34218979 L 164.1567688,62.27447891 L 164.7354126,62.45624924 L 164.61198425,62.68072891 L 163.2505188,62.51406479 L 163.1390686,62.01094055 L 162.84791565,61.70833206 L 162.42500305,61.67291641 L 161.9854126,61.37291718 L 160.86302185,60.84531021 L 159.9119873,61.2578125 L 160.4119873,61.76094055 L 159.04374695,61.91666794 L 158.0713501,61.7338562 L 157.52082825,61.79166794 L 156.68959045,61.52708435 L 156.56040955,61.21041489 L 155.90415955,60.76666641 L 154.8046875,60.29322815 L 154.22319031,59.87401962 L 154.07749939,59.50476074 L 154.64503479,59.54237747 L 155.07225037,59.1917572 L 153.94393921,59.06895828 L 153.49499512,59.23373795 L 152.8910675,58.91709137 L 152.40887451,59.02433395 L 151.36186218,58.8560524 L 151.46054077,59.16154099 L 152.11495972,59.15066147 L 151.40504456,59.60520554 L 150.75062561,59.52876663 L 149.58853149,59.75819778 L 149.16459656,59.48450851 L 147.88334656,59.38582611 L 147.47460938,59.24710464 L 146.44326782,59.46239471 L 146.30281067,59.2756424 L 145.57676697,59.42057419 L 144.98535156,59.36694336 L 143.21083069,59.35548401 L 142.42222595,59.18805695 L 141.68165588,58.68157959 L 140.77290344,58.30030823 L 140.49031067,57.84216309 L 138.61000061,56.95444489 L 137.58758545,56.11647797 L 136.41999817,55.56750107 L 136.13389587,55.28833389 L 135.52067566,55.08238602 L 135.26055908,54.73722076 L 135.94389343,54.56611252 L 136.81460571,54.63405991 L 136.71372986,53.79142761 L 137.56443787,53.96305466 L 137.31500244,53.53250122 L 137.95111084,53.58111191 L 138.36889648,53.90027618 L 138.76940918,53.98076248 L 138.72738647,54.30678558 L 139.31861877,54.17698669 L 139.79110718,54.20249939 L 140.19999695,54.054245 L 140.55055237,53.64444351 L 140.94778442,53.49833298 L 141.36500549,53.13750076 L 141.14683533,52.99132156 L 141.26568604,52.58932114 L 141.11677551,52.41049194 L 141.51451111,52.16044998 L 140.67132568,51.32689285 L 140.49833679,50.86777878 L 140.5473175,49.56492996 L 140.33575439,49.24975967 L 140.16651917,48.44145966 L 139.26481628,47.80235672 L 139.05271912,47.40804291 L 138.60388184,47.07500076 L 138.10888672,46.24583435 L 137.68647766,45.80869293 L 136.80000305,45.19648743 L 136.1098175,44.47722244 L 135.64805603,44.17499924 L 135.50375366,43.84791565 L 135.09680176,43.50263977 L 134.12791443,42.99791718 L 133.15042114,42.68486023 L 132.98042297,42.83486176 L 132.29069519,42.87763977 L 132.31263733,43.23680496 L 132.05931091,43.32958221 L 131.47264099,42.98097229 L 131.34791565,42.79013824 L 130.84013367,42.56430435 L 130.69458008,42.28791809 L 130.40458679,42.31069946 L 129.90235901,41.91319656 L 129.64985657,41.49403 L 129.73042297,40.85764313 L 129.20985413,40.69181061 L 129.09625244,40.48958588 L 128.61985779,40.29986572 L 128.29763794,40.03569794 L 127.99430847,40.06042099 L 127.55208588,39.79319382 L 127.44680786,39.15625381 L 128.33653259,38.69903183 L 128.60929871,38.14875031 L 129.3493042,37.24874878 L 129.47764587,36.69930649 L 129.37347412,36.2523613 L 129.52708435,35.86291504 L 129.43180847,35.48014069 L 129.01818848,35.05902863 L 128.47485352,35.09791565 L 128.20069885,34.89319611 L 127.8970871,34.95680618 L 127.31708527,34.45458221 L 126.97624969,34.48847198 L 126.47846985,34.35597229 L 126.55874634,34.66069412 L 126.29486084,34.96458435 L 126.31764221,35.20847321 L 126.62791443,35.74902725 L 126.45402527,36.5956955 L 126.12819672,36.73680496 L 126.49819183,37.06541824 L 126.5929184,37.44235992 L 126.39013672,37.89041901 L 125.39097595,37.73486328 L 124.72013855,38.1368103 L 125.17263794,38.66736603 L 125.20180511,38.99819946 L 125.41236115,39.30986404 L 125.18680573,39.57875061 L 124.26847076,39.87319946 L 123.30319214,39.79626083 L 122.24819183,39.34236526 L 121.96347046,39.03347778 L 121.68569183,39.02014542 L 121.52929688,39.6423645 L 122.30124664,40.47402954 L 121.9404068,40.80319977 L 121.15680695,40.90986252 L 120.67430878,40.53792191 L 120.44264221,40.19569397 L 119.5845871,39.91374969 L 119.36180878,39.74541855 L 119.30568695,39.42097092 L 119.00319672,39.19708252 L 118.33597565,39.02458191 L 117.91596985,39.2076416 L 117.74680328,39.0973587 L 117.56846619,38.62319946 L 117.69458008,38.38235855 L 118.11125183,38.14403152 L 118.84625244,38.14458466 L 119.0984726,37.83430481 L 118.96679688,37.27624893 L 119.24402618,37.13486099 L 119.74903107,37.12292099 L 119.84513855,37.37597275 L 120.37124634,37.69680405 L 120.87735748,37.83235931 L 121.54374695,37.43542099 L 122.15763855,37.53792191 L 122.57125092,37.36180878 L 122.42402649,36.86653137 L 122.00958252,36.96792221 L 121.18596649,36.6854248 L 120.68013763,36.38042068 L 120.66570282,36.1368103 L 120.28569794,36.06042099 L 119.91319275,35.63597488 L 119.22402954,35.05764008 L 119.17180634,34.85736084 L 119.7820816,34.46986008 L 120.26403046,34.30902863 L 120.89597321,33.00431061 L 120.98513794,32.55374908 L 121.39347076,32.37763977 L 121.39180756,32.18096924 L 121.85041809,31.91570282 L 121.66236115,31.72735977 L 121.3290329,31.87874985 L 121.29957581,31.51902962 L 121.86235809,31.11347008 L 121.89041901,30.84791756 L 121.52680206,30.82152939 L 121.11207581,30.58847046 L 121.68597412,29.98597145 L 121.91401672,29.92291832 L 121.93541718,29.19431114 L 121.51013947,28.66486168 L 121.3584671,28.13904953 L 121.13319397,28.24625015 L 120.68374634,27.69847488 L 120.53263855,27.22458267 L 120.10902405,26.92458344 L 120.10124207,26.69542122 L 119.86736298,26.34986115 L 119.51568604,26.08292007 L 119.58125305,25.58570099 L 119.15013885,25.39931107 L 119.26875305,25.17597008 L 118.94069672,25.00656128 L 118.62819672,24.54541969 L 118.19346619,24.52763939 L 118.13458252,24.27486038 L 117.70625305,23.95208359 L 116.89598083,23.54347038 L 116.77236176,23.25708008 L 116.45569611,22.9493103 L 115.87569427,22.7970829 L 115.23069763,22.83152962 L 114.8840332,22.60042191 L 114.72097015,22.79597282 L 114.42652893,22.60180473 L 114.27347565,22.32263947 L 113.64402771,22.64014053 L 113.56903076,22.11180687 L 113.40013885,22.00986099 L 112.76847076,21.93736076 L 112.56208038,21.76208115 L 112.1204071,21.80014038 L 111.62319183,21.54319382 L 110.74318695,21.38236046 L 110.4154129,21.19292068 L 110.34792328,20.99542046 L 110.53098297,20.48125076 L 110.28263855,20.25403023 L 109.94958496,20.25597191 L 109.67652893,20.86346817 L 109.77153015,21.3243103 L 108.84874725,21.68597031 L 108.18736267,21.58875084 L 107.32803345,20.9864502 L 106.98764038,20.956707 L 106.5851059,20.55025101 L 106.58335876,20.21803856 L 105.96774292,19.93468285 L 105.63717651,18.89720726 L 106.10054779,18.27597237 L 106.42093658,18.10257149 L 106.46374512,17.75980568 L 106.6554718,17.45093918 L 107.1129303,17.08571625 L 107.30941772,16.80233955 L 108.09048462,16.22712326 L 108.61833954,15.51491737 L 108.88275146,15.32807636 L 108.92047882,15.01445007 L 109.29213715,13.87276363 L 109.22820282,13.48003006 L 109.45602417,12.91322899 L 109.19028473,12.63000679 L 109.27771759,11.95077038 L 109.01451111,11.35593414 L 108.78643799,11.3124094 L 108.34017944,10.9581089 L 107.25461578,10.37935925 L 106.7827301,10.37564468 L 106.78377533,10.09736824 L 106.48796082,9.55054188 L 105.54222107,9.11970234 L 105.10786438,8.63602638 L 104.83797455,8.56121159 L 104.79946136,8.89856434 L 104.85050964,9.68119144 L 105.07879639,10.00441456 L 104.61621857,10.14800549 L 104.24416351,10.57083321 L 103.49164581,10.6194973 L 103.71279144,10.85126209 L 103.09941101,10.91586494 L 103.09117889,11.35873699 L 102.75133514,12.04439545 L 102.26555634,12.26777935 L 101.74944305,12.70778275 L 101.41440582,12.59212971 L 101.09989929,12.6782608 L 100.85575867,12.91049099 L 100.97222137,13.46638775 L 100.57250214,13.51444244 L 100.0577774,13.41611958 L 99.95451355,12.62112522 L 100.02055359,12.18930721 L 99.8161087,11.90166569 L 99.5008316,11.17278004 L 99.49651337,10.87523746 L 99.14868927,10.31154919 L 99.17138672,9.65333271 L 99.26694489,9.21916676 L 99.81790161,9.29719734 L 99.95226288,8.63229561 L 100.21833038,8.43444443 L 100.54608917,7.13962889 L 101.03221893,6.85055399 L 101.56416321,6.83583307 L 101.75866699,6.52587605 L 102.37166595,6.13196087 L 102.47833252,5.87972212 L 103.14916992,5.33388996 L 103.42494965,4.81476402 L 103.49262238,4.32510614 L 103.32554626,3.73750091 L 103.42944336,3.40750098 L 103.45305634,2.86495709 L 103.75805664,2.62388802 L 104.25971985,1.61250103 L 104.13527679,1.34277701 L 103.79915619,1.48558295 L 103.51515961,1.30513203 L 103.35493469,1.54190505 L 102.47944641,2.10472202 L 102.15333557,2.21861005 L 101.76341248,2.60018301 L 101.47589111,2.69165111 L 101.30012512,3.24838996 L 101.0524292,3.59734607 L 100.71381378,3.877285 L 100.76166534,4.08555508 L 100.55805206,4.3125 L 100.66442108,4.60591984 L 100.42582703,4.93943977 L 100.32964325,6.03691196 L 100.09916687,6.52888918 L 99.69777679,6.86583424 L 99.67028809,7.03988886 L 99.33818054,7.3783412 L 99.12970734,7.81612587 L 98.74059296,8.07691383 L 98.7068634,8.28684521 L 98.20585632,8.55688572 L 98.31867981,9.18260479 L 98.5252533,9.56606007 L 98.54000092,10.36583424 L 98.44833374,10.68833447 L 98.60138702,10.80360985 L 98.75722504,11.27499866 L 98.8201828,11.82188034 L 98.61722565,12.1022234 L 98.64805603,12.65916634 L 98.57611084,13.18472099 L 98.34139252,13.62889099 L 98.06694794,13.7902813 L 98.10056305,14.11500072 L 97.78922272,14.91300964 L 97.69139099,15.8908329 L 97.55750275,16.08222008 L 97.61966705,16.51707649 L 97.34999847,16.51999855 L 97.19000244,16.92778015 L 96.84583282,16.96333122 L 96.66610718,16.57305908 L 95.74305725,16.12944412 L 95.48722076,15.76250076 L 95.28341675,15.72028923 L 94.8556366,16.11501694 L 94.20108032,16.03999519 L 94.38104248,16.90208054 L 94.5644455,17.31472206 L 94.47994995,18.06165123 L 94.20134735,18.75097084 L 94.07055664,18.87221909 L 93.98964691,19.39861107 L 93.35373688,20.06805992 L 92.76119232,20.20195961 L 92.32776642,20.74611282 L 91.8741684,21.55361176 L 91.9084549,21.93030739 L 91.70861053,22.48749924 L 91.44888306,22.78139114 L 90.67744446,22.27702522 L 90.59443665,22.71666527 L 90.36777496,22.59499931 L 90.23000336,22.1902771 L 89.83586121,21.8509407 L 89.66928864,21.840065 L 89.47528076,22.23083115 L 89.11888885,22.12166595 L 88.80473328,22.28380966 L 88.60221863,21.90666962 L 88.15383148,21.95960999 L 87.78971863,21.69499969 L 87.1138916,21.5083313 L 86.82417297,21.13778114 L 87.02700043,20.69634819 L 86.76917267,20.33111191 L 86.36266327,19.95277977 L 85.66361237,19.73916817 L 85.29528809,19.55361176 L 84.84430695,19.19625282 L 84.3529129,18.55513954 L 84.06958008,18.27597237 L 83.71347046,18.11069489 L 83.1609726,17.56069374 L 82.43958282,17.17319489 L 82.29957581,16.59181023 L 81.71875,16.3115406 L 81.39263916,16.34208298 L 81.14569092,15.97375011 L 80.50875092,15.84014034 L 80.27041626,15.67319584 L 80.04846954,15.09458542 L 80.19736481,14.59319305 L 80.12680817,14.16624928 L 80.24485779,13.81958389 L 80.10902405,13.51930523 L 80.34570313,13.32764053 L 80.15736389,12.47124863 L 79.88486481,12.0648613 L 79.75708008,11.58403015 L 79.83875275,11.34819412 L 79.8840332,10.30597019 L 79.39679718,10.31791973 L 78.93428802,9.60681057 L 79.0654068,9.29958057 L 78.41152954,9.11208439 L 78.21097565,8.96097183 L 78.05486298,8.38208294 L 77.55236053,8.07792091 L 76.97875214,8.38152695 L 76.61930847,8.85042953 L 76.33930206,9.41152763 L 76.26069641,9.87819481 L 75.83319092,11.10486221 L 75.52986145,11.70458221 L 75.17124939,12.11514091 L 74.82125092,12.85291958 L 74.60930634,13.86207962 L 74.24958038,14.73958397 L 73.92292023,15.11014175 L 73.62596893,15.85208035 L 73.51013947,15.93958092 L 73.31124878,16.54236031 L 73.28847504,17.05791664 L 72.85542297,18.69597054 L 72.98264313,18.81014061 L 72.77597046,19.22208214 L 72.6654129,19.93486023 L 72.89763641,20.58708382 L 72.59319305,21.3120842 L 72.30596924,21.62846947 L 72.04792023,21.16069031 L 70.97736359,20.70347023 L 70.3207016,20.92736053 L 69.26985931,21.90708351 L 69.2234726,22.2579174 L 70.16291809,22.55153084 L 70.23542023,22.97958565 L 69.71125031,22.73819542 L 69.19735718,22.83847046 L 68.65235901,23.15513992 L 68.48929596,23.63513947 L 67.90291595,24.07541656 L 67.54846954,24.08041763 L 67.34069824,24.61013794 L 66.69180298,24.89374924 L 66.74986267,25.17541695 L 66.35597229,25.46069527 L 64.8493042,25.32624817 L 64.40097046,25.2365284 L 63.69208145,25.3856926 L 63.48847198,25.2056942 L 62.47902679,25.25985909 L 62.08763885,25.10152817 L 61.52097321,25.18541718 L 61.39847183,25.06708336 L 60.62652588,25.2970829 L 60.5320816,25.44319534 L 59.89597321,25.35097313 L 59.47652817,25.46847153 L 59.10874939,25.40291786 L 58.80152893,25.5723629 L 58.10874939,25.55958557 L 57.95013809,25.70013809 L 57.4070816,25.76180649 L 57.06152725,26.37430573 L 57.00902939,26.83541679 L 56.79735947,27.11874962 L 56.35319519,27.18930626 L 55.74847031,26.97236252 L 55.56458282,26.81374931 L 54.6245842,26.5004158 L 54.27791595,26.72847176 L 53.60930634,26.76985931 L 53.45958328,26.98125076 L 52.95847321,27.13875008 L 52.57708359,27.38236046 L 52.50597382,27.59874916 L 52.04347229,27.8409729 L 51.50680542,27.87652969 L 51.26347351,28.13791656 L 51.00097275,28.84736061 L 50.66458511,29.3884716 L 50.13819504,29.9454174 L 50.06124878,30.19791412 L 49.58763885,30.00597191 L 49.24013901,30.13236046 L 49.1942749,30.47013664 L 48.86152649,30.31041718 L 48.92458344,30.02958298 L 48.55347061,29.9015274 L 48.0106926,30.00124931 L 47.99013901,29.57125092 L 48.16485977,29.00013733 L 48.53874969,28.41486168 L 48.8156929,27.6973629 L 49.09624863,27.5434742 L 49.44292068,27.11624718 L 50.07847595,26.72014046 L 50.22125244,26.3651371 L 50.11375046,26.09263802 L 50.22958755,25.60625267 L 50.77041626,25.11236191 L 50.76514053,25.51180649 L 51.03902817,26.04013824 L 51.24986267,26.15819359 L 51.57930374,25.91430473 L 51.49347305,25.59902763 L 51.62930679,25.02096939 L 51.29208755,24.30013847 L 51.76427841,24.15982056 L 51.88285065,23.96858025 L 52.31692123,23.9976387 L 52.5617485,24.13129997 L 53.13990021,24.17161179 L 53.28667831,24.08070946 L 53.91257477,24.07070351 L 54.4159584,24.27206993 L 54.63431168,24.7264595 L 55.0406189,24.99388123 L 55.52370071,25.52358055 L 56.0184288,25.88640785 L 56.18402863,26.22541618 L 56.44708252,26.22263908 L 56.35636139,25.59332085 L 56.36220551,25.01652336 L 56.48263931,24.71291733 L 56.90569305,24.15180588 L 57.23236084,23.91374969 L 58.75402832,23.52291679 L 59.29236221,22.76347351 L 59.79375076,22.53874969 L 59.80875015,22.22458267 L 59.34819412,21.43430519 L 58.91652679,21.13458443 L 58.52819443,20.42625046 L 58.20041656,20.40374947 L 57.81541824,20.17097282 L 57.68347168,19.73819351 L 57.83347321,18.99152756 L 57.30958176,18.92430496 L 56.78791809,18.73958206 L 56.64041519,18.57958412 L 56.55208206,18.12763977 L 56.35514069,17.92097282 L 55.7504158,17.90263939 L 55.42514038,17.81652832 L 55.2243042,17.51680756 L 55.19180679,17.13986206 L 54.80597305,16.94458389 L 54.6301384,17.02791595 L 54.04458237,16.99041748 L 53.51235962,16.76180649 L 52.43680573,16.40791512 L 52.14652634,15.96513939 L 52.22458267,15.63541889 L 51.22013855,15.19236183 L 50.47513962,15.02347279 L 50.17736053,14.84458447 L 49.5593071,14.73375034 L 49.06069565,14.49236202 L 48.68569565,14.04652882 L 48.21347046,13.97486115 L 48.0518074,14.05180454 L 47.39014053,13.6534729 L 46.68847275,13.42486191 L 45.99236298,13.41625023 L 45.65486145,13.3479166 L 45.03652954,12.75268555 L 44.59986115,12.81708336 L 44.41902924,12.66930389 L 43.92736053,12.59764099 L 43.49458313,12.81736279 L 43.25402832,13.21541691 L 43.28652954,13.68764019 L 43.09736252,14.06402779 L 42.68264008,15.72236061 L 42.83402634,16.01791573 L 42.77402878,16.45652771 L 42.31652832,17.43847275 L 41.63680649,17.99930763 L 41.41208267,18.52319527 L 41.25485992,18.62236023 L 40.96069336,19.49541855 L 40.73652649,19.79847145 L 39.59680557,20.54624939 L 39.10625076,21.32708359 L 38.94791794,21.90875053 L 39.11063766,22.36462593 L 38.46541595,23.76930428 L 38.08152771,24.07652855 L 37.46180725,24.43541718 L 37.19985962,24.8101387 L 37.28486252,24.99402809 L 36.92541504,25.65625 L 36.66819382,25.84569359 L 36.20458221,26.65652847 L 35.80041504,27.11263847 L 35.42902756,27.77152824 L 35.05680466,28.11180305 L 34.66875076,28.24069405 L 34.99791718,29.53069687 L 34.74319458,29.31319237 L 34.62708282,28.73013878 L 34.40986252,28.31958389 L 34.43264008,27.98680496 L 34.25875092,27.79125023 L 33.82180405,27.97291756 L 33.2234726,28.58680534 L 33.18125153,29.00124741 L 32.88347244,29.23458481 L 32.55569458,29.93208313 L 32.34263992,29.58958244 L 32.59263992,29.34541512 L 32.62069321,28.98736191 L 33.3418045,28.05264091 L 33.49152756,27.9790287 L 33.5593071,27.52402687 L 33.98291779,26.90069389 L 33.9323616,26.67819405 L 34.54124832,25.74736023 L 35.13680649,24.51486206 L 35.58375168,24.08597183 L 35.49319458,23.46708298 L 35.6609726,22.95486069 L 35.9426384,22.6926384 L 36.1879158,22.66152763 L 36.44041824,22.35819435 L 36.89291763,22.06652832 L 36.91152954,21.61208344 L 37.10402679,21.16791725 L 37.23764038,20.5648613 L 37.23791504,19.6768055 L 37.4118042,18.87652779 L 38.10541534,18.4240284 L 38.11958313,18.26402855 L 38.56680679,17.99097252 L 38.93624878,17.37791634 L 39.14513779,16.69902802 L 39.24152756,16.07402611 L 39.7159729,15.24652767 L 39.87513733,15.49208355 L 40.1609726,14.98819542 L 40.63680649,14.94263935 L 40.77375031,14.71708202 L 41.18597031,14.62736225 L 41.69097137,13.93208408 L 42.23541641,13.62430477 L 42.38402939,13.21152878 L 43.08930588,12.80319405 L 43.35708237,12.37847233 L 43.41236115,12.07152653 L 43.05597305,11.81097221 L 43.47874832,11.32819366 L 43.67541504,10.96236134 L 44.28791809,10.43152809 L 44.94597244,10.40847206 L 45.80097198,10.8629179 L 46.6534729,10.74097347 L 47.41791534,11.17819309 L 47.66819382,11.09541702 L 48.15652847,11.13236237 L 48.65680695,11.32569408 L 48.95513916,11.24041557 L 49.55125046,11.4454174 L 50.07125092,11.50541782 L 50.45069504,11.68736076 L 50.79513931,11.98819256 L 51.28874969,11.82152653 L 51.12319565,11.49736118 L 51.12402725,10.56069469 L 50.89847183,10.31152916 L 50.90124893,9.99347115 L 50.64680481,9.08958435 L 50.42069626,8.85569477 L 50.1301384,8.19652843 L 49.84152603,7.95680618 L 49.69430542,7.48235989 L 49.21458435,6.74847221 L 49.06069565,6.22958279 L 48.64680481,5.49986076 L 47.98819351,4.51569414 L 46.66986084,3.06569409 L 45.87402725,2.33625007 L 44.59430695,1.58791602 L 43.67597198,0.81902701 L 42.61125183,-0.27291599 L 42.17763901,-0.80958402 L 41.43847275,-1.84180498 L 40.95041656,-2.08458304 L 40.82513809,-2.39236212 L 40.33847046,-2.5968051 L 40.17847061,-2.7751379 L 40.12236023,-3.28874993 L 39.97958374,-3.38625002 L 39.7784729,-3.93708205 L 39.40486145,-4.64624882 L 39.2168045,-4.8523612 L 38.7793045,-6.02402782 L 38.91069412,-6.4415288 L 39.07624817,-6.5034709 L 39.54902649,-7.10902786 L 39.27541733,-7.59625101 L 39.44902802,-8.00598526 L 39.26569366,-8.31791592 L 39.3754158,-8.72152805 L 39.61958313,-9.07986069 L 39.81986237,-9.98347187 L 40.29208374,-10.26902676 L 40.58375168,-10.59736156 L 40.43624878,-11.72541809 L 40.47902679,-12.49652672 L 40.61347198,-12.80013657 L 40.52458191,-13.50763798 L 40.58958435,-13.89375114 L 40.80791473,-14.41124916 L 40.83458328,-14.80652905 L 40.63375092,-15.0868063 L 40.56124878,-15.49930573 L 40.15402603,-15.94402695 L 39.86125183,-16.44013977 L 39.24124908,-16.78069687 L 39.09152603,-16.95624733 L 37.83736038,-17.41041946 L 37.29708481,-17.6973629 L 36.9295845,-18.04263878 L 36.2765274,-18.88347244 L 35.83652878,-19.00875092 L 35.13819504,-19.68625259 L 34.77430725,-19.85569382 L 34.65736008,-20.41347313 L 35.00208282,-20.72930527 L 35.14597321,-21.43569374 L 35.27236176,-21.63680649 L 35.33013916,-22.18319511 L 35.54319382,-22.32430649 L 35.42569351,-23.64875031 L 35.49736023,-24.11291695 L 35.15041733,-24.58097458 L 34.81041718,-24.74986076 L 33.33486176,-25.27986145 L 32.81236267,-25.60708427 L 32.60235977,-26.02625084 L 32.81180573,-26.27763939 L 32.86763763,-27.01291656 L 32.68125153,-27.49014091 L 32.54013824,-28.18180466 L 32.35985947,-28.57763863 L 31.7634716,-28.96541405 L 31.3390274,-29.38319588 L 30.50958061,-30.67847252 L 29.99013901,-31.31236076 L 29.40291405,-31.73513794 L 28.8801384,-32.2784729 L 27.91791725,-33.03069305 L 27.11236191,-33.52402878 L 26.46652794,-33.77319336 L 25.93180466,-33.71014023 L 25.63263893,-34.04652786 L 24.94291878,-34.00152588 L 24.83319664,-34.21458435 L 23.56930542,-33.98041534 L 23.3754158,-34.0984726 L 22.57958412,-33.99569321 L 22.23986053,-34.05652618 L 21.90597153,-34.34430695 L 21.2990284,-34.44041824 L 20.93069649,-34.36680603 L 20.53902817,-34.46875 L 20.05514145,-34.75958252 L 19.65069389,-34.78430557 L 19.33319473,-34.45013809 L 19.0443058,-34.34125137 L 18.48819351,-33.85124969 L 18.30763817,-33.48347092 L 17.87152863,-33.0004158 L 18.33430481,-32.47652817 L 18.2215271,-31.74291611 L 17.6040287,-30.91597176 L 17.1851387,-30.10291672 L 16.81791878,-29.0965271 L 16.56930542,-28.72763824 L 15.6795826,-27.95291519 L 15.29402924,-27.32208252 L 15.09458447,-26.40763855 L 14.82680607,-25.74875069 L 14.87652683,-25.0834713 L 14.45014,-24.00569534 L 14.53930569,-22.89847183 L 14.39236069,-22.28236389 L 14.04819584,-21.85069466 L 13.41375065,-20.87513924 L 13.19597244,-20.2131958 L 13.05486202,-20.07263947 L 12.5690279,-19.08791733 L 12.03374958,-18.50069237 L 11.83236122,-18.09402847 L 11.7359724,-17.58486176 L 11.82263756,-16.70819473 L 11.73069572,-15.88486099 L 12.02013874,-15.56624889 L 12.0573616,-15.22847176 L 12.28402901,-14.76180458 L 12.41958332,-13.88097191 L 12.5443058,-13.42236233 L 12.98013783,-12.97652912 L 13.18736172,-12.61013889 L 13.38208199,-12.59097195 L 13.65208435,-12.24430561 L 13.79791737,-11.77736187 L 13.86513805,-11.02041721 L 13.76930523,-10.65958214 L 13.19569397,-9.68764019 L 12.99985981,-9.10458279 L 13.39763927,-8.74847221 L 13.39263916,-8.38764 L 12.85236073,-7.26597214 L 12.83152676,-6.99763823 L 12.28569508,-6.16402817 L 12.45319462,-6.08024311 L 12.14735985,-5.63319492 L 12.10708332,-5.16569424 L 11.68486214,-4.45069504 L 11.02208328,-3.85902905 L 10.94430542,-3.6904161 L 10.38624859,-3.06458402 L 9.90124893,-2.70569491 L 9.2881937,-1.910694 L 9.01708412,-1.343472 L 9.04791641,-0.73763901 L 9.28402805,-0.41263801 L 9.34763813,-0.004306 L 9.30763912,0.593472 L 9.61708355,0.73680502 L 9.39541626,1.27180505 L 9.81180477,1.94375098 L 9.82259941,2.57038212 L 9.97425938,3.09029794 L 9.47525597,3.90788579 L 8.98575783,4.09633017 L 8.83258438,4.54590273 L 7.98569489,4.54208422 L 7.60847282,4.47319508 L 6.9409709,4.79486084 L 6.83263922,4.40541601 L 6.06652784,4.28736115 L 5.66708279,4.55625105 L 5.37847281,5.11708307 L 5.71902895,5.38597298 L 5.29069519,5.91625023 L 5.05486107,5.77208281 L 4.49458313,6.32152796 L 3.8998611,6.43763924 L 2.0912509,6.32375002 L 1.39291704,6.18041611 L 1.023471,5.97013807 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 116.74389648,-35.03155899 L 116.03214264,-34.8371048 L 115.59140015,-34.42967606 L 115.02746582,-34.25670624 L 114.97496033,-33.70272827 L 115.44168091,-33.59508896 L 115.67962646,-33.28499222 L 115.60824585,-32.66671753 L 115.77513123,-32.18258667 L 115.68578339,-31.65370941 L 115.05639648,-30.50402641 L 114.9550705,-30.04824638 L 114.99609375,-29.48770905 L 114.87199402,-29.11655617 L 114.63426971,-28.87356377 L 114.59657288,-28.61156273 L 114.17471313,-28.11097145 L 114.10425568,-27.50318909 L 113.58435822,-26.67142677 L 113.88356018,-26.34100914 L 114.2172699,-26.36377525 L 114.23334503,-25.87566948 L 114.04518127,-25.66900444 L 113.61727142,-24.73634338 L 113.40695953,-24.48417664 L 113.47019196,-23.89935112 L 113.75533295,-23.52593613 L 113.81742859,-22.90929413 L 113.65401459,-22.5833931 L 113.99508667,-21.87546349 L 114.18236542,-22.34352303 L 114.40982056,-22.32484627 L 114.64360809,-21.84892654 L 115.40328217,-21.55303001 L 115.91815186,-21.07875061 L 116.46343994,-20.82169151 L 116.7706604,-20.58879662 L 117.3828125,-20.75071144 L 117.77429199,-20.6642189 L 118.16609955,-20.38519287 L 118.82151031,-20.28153801 L 119.09659576,-19.96056366 L 119.57460785,-20.075737 L 120.19593811,-19.913908 L 120.96150208,-19.6319828 L 121.51113892,-19.09387207 L 121.76475525,-18.55282784 L 122.31910706,-18.16545677 L 122.15001678,-17.35537148 L 122.36353302,-17.00086975 L 122.73738098,-16.77448273 L 122.90577698,-16.48569107 L 123.54544067,-17.47014046 L 123.67198181,-16.43475914 L 124.02117157,-16.25762177 L 124.23331451,-16.41932106 L 124.58903503,-16.11335754 L 124.39241791,-15.72938824 L 124.47664642,-15.47789669 L 125.05901337,-15.02827358 L 125.34450531,-14.55072117 L 126.04633331,-14.47222042 L 126.18868256,-14.04605865 L 126.48625946,-13.9950161 L 126.64532471,-14.18512535 L 126.88204193,-13.7492218 L 127.34739685,-13.90657902 L 127.8501358,-14.48447418 L 128.18421936,-14.7146492 L 129.47492981,-14.9366293 L 129.67971802,-14.7669878 L 129.35562134,-14.41876984 L 129.5141449,-14.07039928 L 129.71887207,-14.01489925 L 129.82691956,-13.51543045 L 130.28405762,-13.30575657 L 130.14111328,-12.93345833 L 130.52015686,-12.70358562 L 130.61735535,-12.38702297 L 131.47229004,-12.28371143 L 132.02116394,-12.2967205 L 132.62928772,-12.08541489 L 132.65531921,-11.88981533 L 132.45715332,-11.45775509 L 132.10678101,-11.53153229 L 131.85975647,-11.29278278 L 132.34246826,-11.13552475 L 132.73287964,-11.5190773 L 133.00785828,-11.43282509 L 133.15892029,-11.71004677 L 133.73846436,-11.78258324 L 134.49307251,-12.072505 L 134.77000427,-11.9584322 L 135.05603027,-12.26360989 L 135.57000732,-12.10074615 L 135.8684845,-12.16981411 L 136.03170776,-12.47404194 L 136.30479431,-12.39906979 L 136.26708984,-12.06501007 L 136.53108215,-11.99143696 L 136.90359497,-12.38905239 L 136.48670959,-12.7998867 L 136.47558594,-13.23431492 L 135.91842651,-13.27045059 L 135.83973694,-13.56635952 L 136.01504517,-13.83094788 L 135.78894043,-14.23193741 L 135.38208008,-14.72573757 L 135.47045898,-14.97022629 L 136.23971558,-15.4160881 L 136.29000854,-15.57198906 L 136.72949219,-15.93239784 L 137.0480957,-15.92225266 L 137.72967529,-16.23225212 L 138.11672974,-16.64801979 L 139.03868103,-16.91244316 L 139.24757385,-17.32729149 L 140.09342957,-17.72254562 L 140.63043213,-17.57476234 L 140.87969971,-17.38531113 L 140.97358704,-16.969841 L 141.1844635,-16.72066116 L 141.42175293,-16.10515022 L 141.48017883,-15.49820232 L 141.6676178,-15.01979256 L 141.52560425,-14.4870863 L 141.59881592,-14.10979843 L 141.4671936,-13.86424923 L 141.69607544,-13.26453781 L 141.59176636,-12.56393147 L 141.94216919,-11.94551182 L 142.12582397,-11.31177521 L 142.12593079,-10.98137474 L 142.4256134,-10.73874283 L 142.74560547,-10.99353123 L 142.85635376,-11.84551811 L 143.18557739,-11.99081802 L 143.2665863,-12.39480591 L 143.54411316,-12.84277344 L 143.53208923,-13.75669765 L 143.7983551,-14.42280388 L 144.06083679,-14.465312 L 144.19606018,-14.26097298 L 144.51620483,-14.16664219 L 144.68440247,-14.55283928 L 145.35406494,-14.97880459 L 145.24729919,-15.41621208 L 145.47483826,-16.08071136 L 145.4132843,-16.46607018 L 145.77487183,-16.8700161 L 146.14904785,-17.64855194 L 146.02626038,-18.26251984 L 146.33752441,-18.52582741 L 146.29066467,-18.89302635 L 146.56330872,-19.14295387 L 147.54634094,-19.52713394 L 147.67642212,-19.83058357 L 148.08320618,-19.88681412 L 148.81513977,-20.3207531 L 148.68606567,-20.5997982 L 148.81118774,-20.81417847 L 149.15914917,-21.00144386 L 149.44015503,-21.63209152 L 149.57302856,-22.23106766 L 149.81106567,-22.38206863 L 150.5330658,-22.45002174 L 150.83108521,-22.6846199 L 150.75082397,-23.13555336 L 150.82466125,-23.53068161 L 151.17289734,-23.81567764 L 151.94107056,-24.23630714 L 152.15460205,-24.63182449 L 152.45594788,-24.80263519 L 152.66793823,-25.24580574 L 152.890625,-25.2804985 L 152.96476746,-25.80096436 L 153.1743927,-25.96056366 L 153.0652771,-26.27878952 L 153.1390686,-26.78209686 L 153.08319092,-27.33366203 L 153.39126587,-27.70701218 L 153.58625793,-28.2584095 L 153.60699463,-28.84284401 L 153.34025574,-29.32041359 L 153.20072937,-30.15777969 L 152.99163818,-30.69790077 L 153.07745361,-30.88004684 L 152.93502808,-31.47578812 L 152.55479431,-32.01876831 L 152.53334045,-32.44303894 L 151.90995789,-32.82807922 L 151.5085907,-33.22266006 L 151.30174255,-33.57330322 L 151.28538513,-33.89210129 L 150.92797852,-34.31668472 L 150.78471375,-34.98657227 L 150.47966003,-35.28982925 L 150.15028381,-35.89093781 L 150.14865112,-36.26601028 L 149.9105835,-36.9418869 L 149.97729492,-37.50458908 L 149.4697113,-37.76953125 L 148.36619568,-37.80394745 L 147.78839111,-37.95524597 L 146.93182373,-38.59613419 L 145.97917175,-38.89514923 L 145.4236908,-38.53647995 L 144.96379089,-37.85576248 L 144.65164185,-38.00163651 L 144.62428284,-38.25695419 L 144.03649902,-38.47577667 L 143.51133728,-38.85769272 L 142.37220764,-38.34941864 L 141.74201965,-38.25310898 L 141.51876831,-38.38993835 L 140.99079895,-38.05979919 L 140.66029358,-38.05675888 L 139.88941956,-37.37451172 L 139.67004395,-36.95821762 L 139.86146545,-36.68874741 L 139.59078979,-36.12860107 L 139.21195984,-35.75455856 L 138.44035339,-35.35106277 L 138.54122925,-34.75263214 L 138.08963013,-34.13235474 L 137.63749695,-35.16820145 L 137.42434692,-35.0978775 L 136.82966614,-35.25012589 L 137.02012634,-34.90002441 L 137.45707703,-34.8895874 L 137.47209167,-34.39735794 L 137.60102844,-33.87744522 L 137.87902832,-33.59678268 L 137.81721497,-33.28641129 L 138.04804993,-33.13583755 L 137.912323,-32.85348511 L 137.44226074,-33.1521759 L 137.16789246,-33.69044113 L 136.36312866,-34.06934738 L 135.6240387,-34.90636063 L 135.40223694,-34.51760483 L 135.25354004,-33.9838295 L 134.84515381,-33.63233948 L 134.69966125,-33.17271805 L 134.31735229,-33.1870842 L 134.11988831,-32.78495407 L 134.29431152,-32.66195679 L 133.67160034,-32.10705185 L 133.25776672,-32.20647049 L 132.77877808,-31.95943642 L 132.27113342,-32.03239822 L 131.80278015,-31.74486923 L 131.12956238,-31.4643631 L 130.79136658,-31.60700035 L 130.27507019,-31.5736618 L 129.04988098,-31.6751194 L 128.05413818,-32.06468964 L 127.21337128,-32.27638626 L 126.67279053,-32.30836868 L 126.20314026,-32.23227692 L 124.74862671,-32.89860535 L 124.23557281,-33.01985168 L 123.98018646,-33.54970551 L 123.54675293,-33.93499374 L 123.16672516,-34.01641464 L 123.01675415,-33.85783386 L 122.35919189,-33.91474915 L 122.11357117,-34.01720047 L 121.53160095,-33.82572937 L 120.04570007,-33.92326736 L 119.63928223,-34.09572601 L 119.34638977,-34.44622421 L 119.00334167,-34.45240021 L 118.2206192,-34.92147446 L 117.60659027,-35.11620331 L 116.74389648,-35.03155899 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 55.58816147,-21.3745842 L 55.22041702,-21.07708359 L 55.45319366,-20.87236023 L 55.83736038,-21.18375015 L 55.58816147,-21.3745842 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 166.97775269,-22.34615517 L 166.15388489,-22.08277702 L 166.14752197,-21.96240234 L 165.28744507,-21.57355881 L 164.46255493,-20.848629 L 164.17803955,-20.34522438 L 164.35664368,-20.23566246 L 164.85523987,-20.62378311 L 165.23916626,-20.7733326 L 165.63305664,-21.27222252 L 165.89639282,-21.37232018 L 166.86860657,-22.03277779 L 166.97775269,-22.34615517 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 57.47208405,-20.51680565 L 57.40124893,-20.20041656 L 57.59986115,-19.98458481 L 57.80625153,-20.23208237 L 57.47208405,-20.51680565 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 48.44597244,-13.55875015 L 48.76124954,-13.40569496 L 48.93819427,-12.88763809 L 48.85958481,-12.54791737 L 49.13819504,-12.27235985 L 49.5359726,-12.39097309 L 49.54402924,-12.63152695 L 49.92902756,-13.04569435 L 50.13986206,-13.79625034 L 50.14263916,-14.2229166 L 50.26374817,-14.87069321 L 50.48652649,-15.2662487 L 50.22124863,-15.98902893 L 50.02402878,-15.88541698 L 49.9043045,-15.44541645 L 49.61597061,-15.55263805 L 49.67458344,-16.03874969 L 49.85902786,-16.2234726 L 49.73402786,-16.77402687 L 49.42069626,-17.31402779 L 49.52041626,-17.69763947 L 49.33791733,-18.40847206 L 49.00847244,-19.19763947 L 48.82347107,-19.90819359 L 48.5629158,-20.50430489 L 48.44235992,-20.99374962 L 47.89541626,-22.47652817 L 47.5918045,-23.78819466 L 47.20097351,-24.77541733 L 46.95877075,-25.05263138 L 46.33458328,-25.18597221 L 45.60013962,-25.54513931 L 45.14014053,-25.59708214 L 44.78486252,-25.33291435 L 44.4323616,-25.26958275 L 44.05069351,-25.00819206 L 43.91736221,-24.60486031 L 43.68319321,-24.37569427 L 43.6581955,-23.61347008 L 43.76680374,-23.46180534 L 43.37014008,-22.84541512 L 43.23263931,-22.14458275 L 43.47097397,-21.61680412 L 43.7140274,-21.28930473 L 44.48764038,-19.9509716 L 44.46736145,-19.45902824 L 44.25097275,-19.10736084 L 44.25013733,-18.79263878 L 44.04319382,-18.39708328 L 44.03652954,-17.80819511 L 43.92874908,-17.50958061 L 44.42458344,-16.7159729 L 44.45236206,-16.18652725 L 44.8381958,-16.25124931 L 45.24930573,-15.93652916 L 46.32541656,-15.66291618 L 46.87125015,-15.22930622 L 47.1981926,-15.05263901 L 47.47097397,-15.08986187 L 47.64097214,-14.81458282 L 47.7195816,-14.34041595 L 48.00152969,-14.2145834 L 47.89708328,-13.59041595 L 48.44597244,-13.55875015 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -72.90472412,-53.07680511 L -72.17804718,-52.67374802 L -71.39527893,-52.81236267 L -72.42194366,-53.25680542 L -72.55083466,-53.53985977 L -73.21639252,-53.18763733 L -72.90472412,-53.07680511 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -68.77416992,-52.54574585 L -68.28694153,-52.95291519 L -67.95639038,-53.61791611 L -67.33638763,-54.03736115 L -66.48194122,-54.47013855 L -65.80361176,-54.65208435 L -65.98750305,-54.90402603 L -66.52305603,-55.05708313 L -67.34750366,-54.86819458 L -68.24749756,-54.79513931 L -69.07917023,-54.96374893 L -69.6902771,-54.83763885 L -70.17138672,-54.87485886 L -71.40305328,-54.65375137 L -70.9458313,-54.4695816 L -70.82861328,-54.14292145 L -70.26750183,-54.34763718 L -70.0341568,-54.09819031 L -70.13194275,-53.74430084 L -69.35138702,-53.52069473 L -69.37249756,-53.35707855 L -70.21194458,-53.47708511 L -70.44361115,-53.37985992 L -69.99973297,-52.83985901 L -69.3786087,-52.47319031 L -68.77416992,-52.54574585 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -72.64861298,-53.57902908 L -72.16027832,-53.7756958 L -72.70916748,-54.08986282 L -73.22416687,-53.50374985 L -72.64861298,-53.57902908 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -75.26264191,-49.99985886 L -74.77027893,-50.14652634 L -75.14971924,-50.47624969 L -75.46694183,-50.36680603 L -75.26264191,-49.99985886 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -74.8786087,-50.00014114 L -75.12847137,-49.85180664 L -75.45263672,-49.27180099 L -74.79264069,-49.06624985 L -74.9909668,-48.7634697 L -74.45513916,-48.75013733 L -74.38957977,-49.67707825 L -74.46569824,-49.95957947 L -74.8786087,-50.00014114 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 69.42816162,-49.26985168 L 70.09568024,-49.3453331 L 70.11138916,-49.72444534 L 69.21694183,-49.56777954 L 68.89888763,-49.42388916 L 68.72944641,-49.07777786 L 69.09738922,-48.99108887 L 69.42816162,-49.26985168 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -75.06903076,-48.63404083 L -75.52735901,-48.08680725 L -75.30458069,-47.99736023 L -75.03320312,-48.43819046 L -75.06903076,-48.63404083 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -60.608612060546875,-51.75458145141596 L -60.21472167968744,-51.66070556640625 L -60.04861068725586,-51.38597106933588 L -59.40250015258789,-51.43652725219721 L -59.85861206054682,-51.96486282348627 L -60.61416244506836,-52.25959777832031 L -60.85748291015619,-51.96429443359369 L -60.608612060546875,-51.75458145141596 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -58.26194381713867,-51.6220817565918 L -57.803054809570256,-51.704029083251896 L -59.44416809082031,-52.167362213134766 L -59.61529541015625,-51.95068359375 L -59.000831604003906,-51.3823623657226 L -58.47308349609375,-51.297607421875 L -58.26194381713867,-51.6220817565918 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 172.66278076,-40.67406082 L 173.05162048,-40.85500717 L 173.00953674,-41.14377975 L 173.20930481,-41.32618332 L 173.83206177,-41.05256653 L 174.12338257,-41.21695709 L 174.02905273,-41.45355225 L 174.27497864,-41.74298096 L 173.59474182,-42.42835617 L 173.23953247,-42.95428467 L 172.81690979,-43.13325882 L 172.71739197,-43.82761383 L 172.29112244,-43.87378693 L 171.42332458,-44.23241806 L 171.24487305,-44.38171768 L 171.10166931,-45.00186157 L 170.5962677,-45.72097778 L 169.7816925,-46.46512985 L 169.00588989,-46.67385864 L 168.37432861,-46.56925201 L 168.10647583,-46.3418808 L 167.78300476,-46.38886642 L 167.53321838,-46.16238785 L 167.21685791,-46.2625618 L 166.6577301,-46.20274734 L 166.45251465,-45.82271957 L 166.84194946,-45.27724457 L 167.27259827,-44.86968613 L 167.77468872,-44.57514191 L 168.38954163,-44.00250626 L 168.83607483,-43.95606995 L 169.69920349,-43.53533936 L 170.25730896,-43.11881638 L 170.8686676,-42.82183838 L 171.30455017,-42.26725388 L 171.46232605,-41.74977875 L 171.68182373,-41.7341423 L 172.06330872,-41.38421631 L 172.17330933,-40.81137848 L 172.66278076,-40.67406082 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -72.95417023,-52.19874954 L -72.4597168,-51.91902924 L -72.81138611,-51.76263809 L -73.55473328,-52.03012848 L -74.1241684,-51.1823616 L -74.27305603,-50.47847366 L -74.67805481,-50.1590271 L -74.35791779,-49.99403 L -74.40875244,-49.07236099 L -74.35902405,-48.58652878 L -73.97569275,-48.40680695 L -74.59513855,-47.98236084 L -73.59208679,-48.0001297 L -73.57902527,-47.78458405 L -74.4651413,-47.77763748 L -74.68680573,-47.69291687 L -74.12430573,-46.99291611 L -74.31931305,-46.75597 L -75.25402832,-46.85347366 L -75.60458374,-46.59680557 L -74.99819183,-46.21569061 L -75.08708191,-45.90375137 L -74.07291412,-45.81624985 L -73.60346985,-46.0573616 L -73.36429596,-45.06541824 L -73.45181274,-44.6384697 L -73.07681274,-44.31652832 L -73.25514221,-44.19319534 L -72.91708374,-43.60652924 L -73.05513763,-43.31958008 L -72.83847046,-42.82818985 L -72.81153107,-41.97263718 L -73.14068604,-41.77069092 L -73.73542023,-41.74514008 L -73.9465332,-40.98513794 L -73.67041779,-40.03874969 L -73.39041901,-39.79180527 L -73.2048645,-39.36152649 L -73.48874664,-38.65597153 L -73.4751358,-37.99069595 L -73.67847443,-37.6226387 L -73.67652893,-37.32791519 L -73.18875122,-37.16569519 L -72.80986023,-36.27180099 L -72.63625336,-35.60458374 L -72.20735931,-35.11291885 L -72.04207611,-34.63708115 L -72.00375366,-34.17763901 L -71.6054306,-33.52735901 L -71.74569702,-33.09930038 L -71.55042267,-33.00402832 L -71.41041565,-32.39152908 L -71.66819763,-31.16402817 L -71.71763611,-30.65041924 L -71.65374756,-30.27236176 L -71.28320312,-29.93541908 L -71.32930756,-29.34986115 L -71.51819611,-28.90541649 L -71.16430664,-28.36207962 L -71.0873642,-27.78902817 L -70.90125275,-27.61819458 L -70.9723587,-27.16736031 L -70.80764008,-27.05097008 L -70.63014221,-25.98791695 L -70.7206955,-25.77958107 L -70.44708252,-25.36819458 L -70.57736206,-24.53430557 L -70.50569153,-23.79846954 L -70.58291626,-23.10625076 L -70.2904129,-22.91542053 L -70.26763916,-22.46069527 L -70.05764008,-21.4426403 L -70.20153046,-20.53791618 L -70.12264252,-20.08736038 L -70.35819244,-18.79569435 L -70.30680847,-18.43958282 L -71.34430695,-17.63430405 L -71.47264099,-17.29819489 L -71.80625153,-17.18874931 L -72.45680237,-16.70013618 L -72.76430511,-16.63319588 L -73.31319427,-16.34041786 L -73.86791992,-16.13791656 L -75.13874817,-15.40847111 L -75.49903107,-14.92652798 L -75.91764069,-14.66069412 L -76.12708282,-14.36069584 L -76.25069427,-13.81374931 L -76.19013977,-13.43458271 L -76.86152649,-12.29625034 L -77.13569641,-12.06986141 L -77.17124939,-11.73347187 L -77.60458374,-11.21486187 L -77.74874878,-10.78597164 L -78.16430664,-10.14708233 L -78.42375183,-9.34541702 L -78.76125336,-8.77597237 L -78.98847198,-8.20819378 L -79.46624756,-7.71680593 L -79.68985748,-7.12013912 L -79.97458649,-6.76041603 L -81.09874725,-6.07986021 L -80.85202026,-5.63545084 L -81.19625092,-5.2098608 L -81.0965271,-4.95236015 L -81.32930756,-4.6812501 L -81.24013519,-4.25013781 L -80.75541687,-3.71986008 L -80.27232361,-3.32930326 L -80.11960602,-3.33341146 L -79.8459549,-2.99967527 L -79.98952484,-2.65146065 L -80.4354248,-2.64144254 L -80.89655304,-2.31327415 L -80.72647095,-1.92535162 L -80.84366608,-1.62698185 L -80.75480652,-1.32258582 L -80.91254425,-1.05867946 L -80.54382324,-0.87778479 L -80.49317169,-0.39895451 L -80.14160919,-0.04878741 L -80.03048706,0.20516002 L -80.06021881,0.81571394 L -79.41595459,1.07640588 L -79.1603241,1.09878814 L -78.88600922,1.38310742 L -79.00763702,1.65708303 L -78.60430908,1.79514003 L -78.71180725,2.16958308 L -78.3401413,2.65125108 L -77.93930817,2.62236094 L -77.19736481,3.74430704 L -77.51069641,4.12125111 L -77.32485962,4.5690279 L -77.38957977,5.44375086 L -77.25597382,5.79291677 L -77.40958405,6.22819519 L -77.32569122,6.54402924 L -77.66041565,6.99597216 L -78.26957703,7.66485977 L -78.44569397,8.07625103 L -78.10263824,8.44763756 L -78.49569702,8.44624996 L -78.52735901,8.63681984 L -78.91124725,8.9254179 L -79.49208069,9.00430965 L -79.77236176,8.78041935 L -79.76040649,8.59291935 L -80.24124908,8.30124855 L -80.44430542,8.0223608 L -79.99764252,7.47347212 L -80.43069458,7.24458313 L -80.88819122,7.20430613 L -80.92208099,7.45263815 L -81.50791931,7.70485878 L -81.70375061,8.11097336 L -82.33598328,8.32263947 L -82.9743042,8.24180698 L -83.5890274,8.4590292 L -83.65569305,9.06902885 L -84.19125366,9.45736122 L -84.6645813,9.63208199 L -84.92152405,9.92569447 L -85.27874756,9.79152775 L -85.62347412,9.88819313 L -85.86736298,10.36347294 L -85.62791443,10.6245842 L -85.67287445,11.06598377 L -86.52041626,11.78013802 L -86.76791382,12.20041656 L -87.69097137,12.91236019 L -87.38180542,12.9459734 L -87.44374847,13.40708256 L -87.64958191,13.41625023 L -87.94180298,13.1609726 L -88.76069641,13.23291588 L -89.2923584,13.48347282 L -89.82208252,13.53236008 L -90.42541504,13.87041759 L -91.30458069,13.95069313 L -91.79291534,14.19541454 L -92.19208527,14.50486088 L -93.31764221,15.58569527 L -93.87430573,16.0573616 L -94.70263672,16.21180534 L -94.86208344,16.43208313 L -95.36902618,16.01902771 L -96.23625183,15.68347168 L -96.56041718,15.6618042 L -97.27430725,15.93902683 L -97.77236176,15.97708416 L -98.85597229,16.52708244 L -99.75763702,16.74347305 L -99.87819672,16.85986137 L -101.05541992,17.2709713 L -101.45987701,17.53149796 L -101.93624878,17.9556942 L -102.78736115,18.08236122 L -103.51069641,18.34402847 L -103.80263519,18.75013733 L -104.95680237,19.32458305 L -105.49208069,19.98902512 L -105.69486237,20.40958405 L -105.2326355,20.63180542 L -105.45319366,20.8745842 L -105.24291992,21.0490284 L -105.18875122,21.44652748 L -105.44763947,21.62652779 L -105.65458679,22.0518055 L -105.64125061,22.4529171 L -106.43096924,23.20041656 L -106.89097595,23.84041786 L -107.64180756,24.45930481 L -107.87847137,24.61263847 L -108.04569244,25.05680466 L -109.05347443,25.47125053 L -109.42930603,25.79291725 L -109.23666382,26.45472145 L -109.48305511,26.74389076 L -109.85333252,26.7947216 L -109.92008209,27.06760216 L -110.47858429,27.28593445 L -110.62233734,27.60022736 L -111.71130371,28.45870209 L -111.90083313,28.78694534 L -112.15995026,28.96229935 L -112.25884247,29.32816696 L -112.74777985,29.91583252 L -112.75317383,30.17262459 L -113.12708282,30.8095932 L -113.07722473,31.15833473 L -113.54528046,31.29583359 L -113.88194275,31.6044445 L -114.17472076,31.49888992 L -114.76611328,31.81999969 L -114.89083099,31.25777626 L -114.71889496,30.93471909 L -114.66821289,30.19848633 L -114.21972656,29.74591064 L -113.63722992,29.2831974 L -113.10418701,28.50610352 L -112.90023041,28.4746418 L -112.77138519,27.86277771 L -112.30166626,27.38361168 L -111.8743515,26.83305359 L -111.56943512,26.57130432 L -111.31866455,26.07668495 L -111.30596924,25.77347183 L -111.02625275,25.45736122 L -110.65958405,24.80069351 L -110.73930359,24.62569427 L -110.54985809,24.20736122 L -110.33652496,24.30597305 L -109.82680511,24.06125069 L -109.69541931,23.66041756 L -109.47264099,23.55902863 L -109.43541718,23.24180603 L -109.85680389,22.89763832 L -110.0854187,22.98847008 L -110.37152863,23.59291649 L -111.04680634,24.11097145 L -111.79541779,24.54597282 L -112.17569733,24.85708427 L -112.07847595,25.24708366 L -112.19097137,25.9845829 L -113.06752777,26.60455894 L -113.20291138,26.85412407 L -113.48434448,26.81926155 L -114.00067139,26.97247314 L -114.48797607,27.22808647 L -114.50860596,27.41088867 L -114.91583252,27.83694458 L -114.1847229,27.75138855 L -114.04111481,28.02194595 L -114.04833221,28.47055626 L -114.96833038,29.37555504 L -115.50531006,29.61608887 L -115.80500031,29.9738884 L -115.80284882,30.27915382 L -116.04833221,30.47305489 L -116.0513916,30.77893066 L -116.69277954,31.5708313 L -116.61120605,31.83892822 L -116.8557663,31.99059486 L -117.49776459,33.32558441 L -118.54199219,34.03869629 L -118.9375,34.04305649 L -119.55721283,34.41251755 L -120.47166443,34.44777679 L -120.64638519,34.57888794 L -120.6387558,35.13344193 L -120.88716888,35.43402863 L -121.28508759,35.66916656 L -121.94727325,36.49034119 L -121.78805542,36.80500031 L -122.41972351,37.24139023 L -122.53451538,37.82288742 L -122.94055176,38.03722382 L -122.99694824,38.2891655 L -123.64778137,38.84555435 L -123.82705688,39.34871674 L -123.85280609,39.8330574 L -124.36372375,40.26184845 L -124.40927887,40.4432373 L -124.14916992,40.86555481 L -124.0616684,41.44194412 L -124.20471954,41.98138809 L -124.35741425,42.11807632 L -124.3898468,42.57326889 L -124.55583191,42.83833313 L -124.17536926,43.77697372 L -123.97068024,45.17373657 L -123.87333679,46.24055481 L -123.95883179,46.61199188 L -124.42527771,47.73805618 L -124.73388672,48.16249847 L -124.56459808,48.36764908 L -124.04953766,48.1775856 L -122.36196136,48.12036896 L -122.50112915,48.75416183 L -122.81999969,48.93916702 L -122.88350677,49.21255493 L -122.12632751,49.17847824 L -122.88096619,49.22399139 L -123.90262604,49.48040771 L -124.13113403,49.78139496 L -124.7520752,49.9633522 L -124.6333313,50.29416656 L -125.26934052,50.46056747 L -126.18632507,50.53854752 L -126.21630096,50.83217239 L -126.79850769,50.94607162 L -127.04777527,50.82138824 L -127.78804779,51.16329193 L -127.63944244,51.29111099 L -127.88944244,51.69250107 L -127.89863586,52.22465134 L -128.15110779,52.40972137 L -128.1361084,52.71252441 L -128.43055725,52.81416702 L -128.6055603,53.16166687 L -129.33764648,53.38175583 L -130.07318115,53.89111328 L -130.05603027,54.13628006 L -130.4822998,54.36907959 L -130.37023926,54.68000793 L -130.85995483,54.76807404 L -131.09397888,55.19140244 L -130.87826538,55.33163452 L -130.90408325,55.71165466 L -131.22900391,56.00549316 L -131.95611572,56.00030518 L -131.99050903,56.34255219 L -132.57032776,56.63418198 L -132.87368774,57.03002548 L -133.52645874,57.19579315 L -133.51554871,57.54555511 L -134.21968079,58.20512772 L -134.75900269,58.38423538 L -135.14889526,58.20972061 L -136.03999329,58.38499832 L -136.60667419,58.30027771 L -137.67999268,58.62333298 L -137.93763733,58.87668228 L -139.63000488,59.45694351 L -139.63192749,59.89827728 L -140.34411621,59.69392014 L -141.46311951,59.88531876 L -141.31459045,60.05416489 L -141.75021362,59.95151901 L -142.7583313,60.11041641 L -143.88989258,59.98931885 L -144.78541565,60.28333282 L -145.2958374,60.33750153 L -145.70884705,60.57968521 L -146.38697815,60.71614838 L -146.7359314,60.9369812 L -148.18592834,60.99010468 L -148.44010925,60.75468826 L -147.9453125,60.43906021 L -148.55331421,59.96971893 L -149.33331299,59.97042084 L -150.17961121,59.53812027 L -150.89491272,59.27172089 L -151.62991333,59.16582108 L -151.99411011,59.31472015 L -151.64511108,59.64731979 L -151.87391663,59.77602005 L -151.4130249,60.21510696 L -151.05259705,60.78802109 L -150.39582825,61.03541565 L -150.7020874,61.77291489 L -150.59791565,61.36041641 L -151.1630249,61.0463562 L -151.71458435,60.89583206 L -151.8265686,60.72343445 L -152.7354126,60.18958282 L -152.5708313,60.07500076 L -153.05921936,59.69042206 L -153.56581116,59.62491989 L -154.1131134,59.30522156 L -153.33612061,58.90011978 L -153.88812256,58.60671997 L -154.17800903,58.19171906 L -155.59011841,57.78802109 L -155.73161316,57.54341888 L -156.45231628,57.34542084 L -156.37249756,57.14349365 L -157.3928833,56.86352539 L -157.86660767,56.47111893 L -158.33111572,56.48212051 L -158.46801758,56.02392197 L -159.83261108,55.84822083 L -160.53063965,55.47567749 L -161.23907471,55.35467529 L -161.68151855,55.40761948 L -162.41381836,55.0324707 L -163.04779053,54.96972656 L -162.25561523,55.68912125 L -161.35070801,55.96774292 L -160.76751709,55.85951996 L -160.38452148,56.25482178 L -159.83381653,56.54452133 L -158.94750977,56.83982086 L -157.71311951,57.63632202 L -157.48997498,58.46648407 L -158.7822113,58.88241959 L -158.73631287,58.49151993 L -159.05891418,58.42121887 L -159.59062195,58.9041214 L -160.34391785,59.05382156 L -161.2902832,58.77191162 L -161.99601746,59.16321945 L -161.70806885,59.50004196 L -162.18891907,59.9989624 L -163.1472168,59.84782028 L -164.09281921,59.83072662 L -164.66822815,60.29010391 L -165.29167175,60.57291794 L -164.86198425,60.85260391 L -165.05989075,61.10364914 L -165.65885925,61.27447891 L -166.18489075,61.59739304 L -165.7411499,62.11405945 L -165.0229187,62.53958511 L -164.33073425,63.23698044 L -163.2973938,63.02447891 L -161.9598999,63.4453125 L -161.13749695,63.5 L -160.78593445,63.74427414 L -161.03334045,64.49583435 L -160.89634705,64.8203125 L -161.69792175,64.77500153 L -162.5453186,64.5307312 L -163.18959045,64.64583588 L -165.01042175,64.43333435 L -166.23750305,64.5854187 L -166.6942749,64.99323273 L -166.37709045,65.25416565 L -168.0458374,65.56874847 L -166.6244812,66.08281708 L -165.43959045,66.40208435 L -164.10624695,66.59166718 L -163.73176575,66.52031708 L -163.77864075,66.08177185 L -161.82447815,66.00364685 L -161.06666565,66.48542023 L -161.87864685,66.71302032 L -161.8354187,67.05000305 L -162.5541687,66.98332977 L -163.5395813,67.08958435 L -164.14375305,67.63957977 L -166.37083435,68.40208435 L -166.2244873,68.87135315 L -164.1395874,68.94166565 L -163.1015625,69.39531708 L -163.02864075,69.72864532 L -162.01249695,70.23332977 L -160.70677185,70.38176727 L -159.5458374,70.81666565 L -158.0249939,70.82917023 L -156.75209045,71.30625153 L -155.16615295,71.1015625 L -154.7437439,70.85832977 L -153.2020874,70.92082977 L -151.88749695,70.43125153 L -150.47917175,70.39167023 L -149.84791565,70.50208282 L -147.18281555,70.15468597 L -145.79374695,70.13749695 L -145.26249695,69.98958588 L -143.18959045,70.10416412 L -142.23957825,69.84583282 L -140.82292175,69.61250305 L -139.15208435,69.50208282 L -138.3833313,69.23750305 L -138.3687439,69.2895813 L -138.1619873,69.15052032 L -136.80833435,68.85832977 L -135.97291565,68.83125305 L -135.62290955,68.73332977 L -135.2333374,68.51457977 L -135.16667175,68.48542023 L -135.0479126,68.60416412 L -135.50209045,69.01667023 L -135.53125,69.0854187 L -135.30207825,69.27500153 L -135.1000061,69.33125305 L -134.25416565,69.57499695 L -134.08332825,69.30625153 L -133.70832825,69.33333588 L -131.9833374,69.70417023 L -130.47917175,70.09999847 L -129.5249939,70.01667023 L -131.2354126,69.5229187 L -128.23124695,69.91249847 L -127.5083313,70.15833282 L -128.1937561,70.3666687 L -127.16041565,70.2270813 L -126.69947815,69.73593903 L -126.04948425,69.43177032 L -125.31874847,69.375 L -125.01041412,70.03333282 L -124.47083282,69.99791718 L -124.34375,69.3354187 L -123.84583282,69.36250305 L -123.1651001,69.49635315 L -122.98542023,69.82499695 L -121.41041565,69.77500153 L -120.33958435,69.42082977 L -118.65416718,69.22499847 L -117.9770813,69.01457977 L -116.19999695,68.83333588 L -115.77083588,69.0 L -114.18385315,68.56822968 L -113.99843597,68.2421875 L -115.14583588,68.18541718 L -115.19166565,67.97916412 L -113.8520813,67.6958313 L -112.6333313,67.67082977 L -110.97083282,67.77083588 L -110.02916718,68.0083313 L -109.05000305,67.72916412 L -107.36250305,67.02708435 L -107.56718445,67.50364685 L -108.02864838,67.74635315 L -106.77500153,68.22083282 L -106.95207977,68.31041718 L -107.8661499,68.16822815 L -108.7270813,68.23542023 L -108.35781097,68.6015625 L -107.27448273,68.70365143 L -106.15208435,68.94166565 L -105.4296875,68.71718597 L -105.44374847,68.45833588 L -104.6796875,68.23593903 L -104.5848999,68.01615143 L -103.33958435,68.00416565 L -102.2109375,67.71614838 L -100.57499695,67.84375 L -98.94218445,67.72031403 L -98.36823273,67.81718445 L -97.64375305,67.65208435 L -97.08802032,67.81406403 L -98.28801727,68.18281555 L -97.32917023,68.51667023 L -96.8979187,68.24791718 L -95.9994812,68.09531403 L -96.41249847,67.56041718 L -96.0942688,67.22135162 L -95.29843903,67.54948425 L -95.6645813,67.69999695 L -95.31666565,68.07499695 L -94.79948425,68.01301575 L -93.65000153,68.51875305 L -93.56093597,68.83906555 L -94.59531403,68.7734375 L -94.25,69.44374847 L -95.69166565,69.79166412 L -96.4770813,70.08958435 L -96.25624847,70.64375305 L -96.45365143,71.27656555 L -95.8828125,71.61406708 L -94.5932312,72.00156403 L -94.38489532,71.75572968 L -92.92292023,71.2895813 L -92.93541718,70.82707977 L -92.19010162,70.61093903 L -91.53749847,70.1479187 L -92.4916687,69.69791412 L -91.3979187,69.6645813 L -90.59947968,69.41926575 L -91.00572968,69.22031403 L -90.4463501,68.89323425 L -90.5390625,68.42134857 L -90.00260162,68.36302185 L -89.75989532,68.96302032 L -89.07499695,69.19791412 L -88.07343292,68.84531403 L -87.86875153,68.23542023 L -88.39115143,67.98593903 L -87.42708588,67.30000305 L -86.52864838,67.4296875 L -86.51197815,67.67760468 L -85.86302185,68.05677032 L -85.62968445,68.72551727 L -84.89375305,68.81666565 L -85.44166565,69.26249695 L -85.45573425,69.6869812 L -84.5395813,69.86250305 L -83.61250305,69.69166565 L -82.54374695,69.70207977 L -82.1171875,69.2890625 L -81.3041687,69.10624695 L -81.81874847,68.8979187 L -81.23593903,68.64009857 L -82.21718597,68.25156403 L -82.0223999,67.87343597 L -81.19010162,67.45259857 L -81.45677185,66.99843597 L -81.87864685,66.98072815 L -82.57707977,66.56458282 L -83.34166718,66.34583282 L -85.23332977,66.26667023 L -85.44426727,66.58177185 L -86.60832977,66.3125 L -85.86093903,66.15989685 L -86.52500153,65.70833588 L -87.19947815,65.3526001 L -88.17708588,65.38957977 L -88.66614532,65.66093445 L -89.6880188,65.71614838 L -89.0229187,65.32291412 L -87.03125,65.23542023 L -87.1875,64.91249847 L -87.89218903,64.33698273 L -88.75416565,63.98333359 L -89.80625153,64.0541687 L -90.23698425,63.6171875 L -91.31458282,63.5625 L -90.8520813,63.41875076 L -90.6255188,63.07239914 L -91.40468597,62.79010391 L -92.0625,62.85208511 L -93.61458588,61.88124847 L -93.55260468,61.65468979 L -94.15000153,61.39791489 L -94.23958588,60.88124847 L -94.69739532,60.45051956 L -94.8447113,59.97151947 L -94.71444702,59.36916733 L -94.80055237,59.05722046 L -94.40612793,58.70532227 L -93.21999359,58.76613998 L -92.71722412,57.7833252 L -92.42500305,57.35777664 L -92.45721436,57.04327393 L -91.87666321,57.07277679 L -91.14944458,57.24694443 L -90.63500214,57.23805618 L -89.97055817,57.00944519 L -89.02941895,56.8560791 L -87.98444366,56.47499847 L -87.62390137,56.10229492 L -85.33831024,55.37726212 L -84.69773865,55.23329163 L -83.88777924,55.29388428 L -82.27722168,55.11861038 L -82.19390869,54.84139633 L -82.43636322,54.2874527 L -82.11444092,53.77527618 L -82.10220337,53.26747513 L -82.2677002,52.96972656 L -81.5333252,52.44416809 L -81.41500092,52.14110947 L -80.99333191,52.01416779 L -80.56277466,51.6883316 L -80.44444275,51.38111115 L -79.89555359,51.16777802 L -79.35944366,51.65499878 L -78.90332031,51.7824707 L -78.58283234,52.10002518 L -78.49499512,52.47027588 L -78.90611267,52.91638947 L -79.07170105,53.68316269 L -79.02160645,54.01583481 L -79.47835541,54.31199265 L -79.56222534,54.72305679 L -78.3167572,55.04230118 L -77.25219727,55.57788086 L -76.62000275,56.15916824 L -76.52001953,56.46139908 L -76.57897949,57.18927002 L -77.09222412,57.94030762 L -77.5144043,58.22638702 L -78.4262085,58.54150391 L -78.49230957,58.77130127 L -77.79498291,59.32830811 L -77.3950119,59.86806107 L -77.47129822,59.91902924 L -77.86042023,60.76458359 L -77.67500305,61.51458359 L -77.95833588,61.68333435 L -78.14583588,62.28749847 L -77.41718292,62.57656479 L -75.65000153,62.29375076 L -74.39375305,62.24583435 L -73.6651001,62.4765625 L -72.58750153,61.95000076 L -71.5229187,61.60416794 L -71.72916412,61.28125 L -70.41249847,61.02916718 L -69.65416718,60.87291718 L -69.82343292,60.06718445 L -69.26165771,59.29670334 L -69.44695282,58.88432693 L -68.60221863,58.90083313 L -68.33222198,58.58805466 L -67.51970673,58.26281738 L -66.6822052,58.48252487 L -66.35791016,58.8525238 L -65.65270996,59.11169434 L -65.38166809,59.4972229 L -65.53333282,59.73888779 L -65.09166718,60.06041718 L -64.62291718,60.34375 L -63.18521118,59.05051422 L -62.42375565,57.98777771 L -62.07936096,57.88770676 L -61.65999985,56.87138748 L -61.78112793,56.19390869 L -61.41277695,55.9580574 L -60.727211,55.83328629 L -60.20887756,55.47115326 L -60.45838928,55.22613907 L -59.43731689,55.14315033 L -59.1527977,55.2336731 L -58.84166718,54.81499863 L -57.84517288,54.80929565 L -57.41131973,54.46250534 L -57.13328552,53.73223495 L -56.70266724,53.76045609 L -56.02050781,53.57470703 L -55.7388916,53.25000381 L -56.00221634,52.51223755 L -55.69752884,52.0941658 L -56.82941437,51.51811218 L -58.42913818,51.31390762 L -58.96888733,51.0008316 L -58.9709549,50.81479645 L -60.10833359,50.23222351 L -60.75111008,50.23777771 L -61.75026321,50.08623123 L -61.8736496,50.22325897 L -63.81682968,50.302845 L -65.34915924,50.30376053 L -66.70388794,50.10722351 L -67.1736145,49.7761116 L -67.3841629,49.31611252 L -68.12636566,49.27077484 L -68.19055176,49.09944534 L -69.06168365,48.75009918 L -69.90542603,47.76985168 L -70.45277405,47.42605591 L -70.55388641,46.99000168 L -69.48342896,47.95166779 L -68.95388794,48.29000092 L -68.18055725,48.63472366 L -66.74555206,49.08833313 L -66.0569458,49.2211113 L -65.03916931,49.22333145 L -64.60074615,49.10899734 L -64.22735596,48.50139618 L -64.77361298,48.20563889 L -65.45639038,48.00611115 L -64.80116272,47.80385208 L -64.95944214,47.29972076 L -64.91903687,46.83307648 L -64.56847382,46.25242996 L -64.08946228,46.17008209 L -63.36611176,45.74055481 L -62.70583344,45.76250076 L -62.4972229,45.61027908 L -61.96880722,45.87849808 L -61.48686218,45.69255829 L -61.34749985,45.24166489 L -62.87295151,44.73295212 L -63.34292984,44.65704727 L -63.61991501,44.4485321 L -64.28360748,44.38000107 L -64.78194427,43.86444473 L -65.38905334,43.54614258 L -66.1258316,43.74055481 L -66.12750244,44.33277893 L -65.64138794,44.76889038 L -64.17722321,45.4011116 L -65.34289551,45.44787598 L -65.87528229,45.20393372 L -66.89054871,45.04181671 L -67.20657349,44.63934326 L -67.89385986,44.41310883 L -68.11444092,44.48083496 L -68.82611084,44.33444595 L -69.07296753,44.04657364 L -69.52416992,43.8769455 L -70.01880646,43.85994339 L -70.80999756,42.91110992 L -70.77083588,42.70388794 L -71.03277588,42.32833481 L -70.76527405,42.24499893 L -70.53666687,41.92166519 L -70.98809052,41.50828171 L -71.21850586,41.54615021 L -71.85247803,41.30932236 L -72.78666687,41.26472092 L -73.60032654,41.01859283 L -74.08568573,40.65489197 L -73.98690796,40.25672913 L -74.17394257,39.70261383 L -74.71097565,39.12057114 L -75.17186737,39.23682022 L -75.39083099,39.05222321 L -75.08361053,38.77527618 L -75.0954361,38.32993698 L -75.60861206,37.70694351 L -75.83860779,38.12461853 L -76.33194733,38.47416687 L -76.2614975,37.45211029 L -76.33103943,36.96060944 L -75.99517822,36.92188263 L -75.71691895,35.69423294 L -76.15552521,35.3363533 L -76.39176941,35.42996216 L -76.60124207,35.07135773 L -76.50666809,34.72555542 L -77.08666992,34.70777893 L -77.72154236,34.32484055 L -78.01934052,33.8872261 L -78.53916931,33.8769455 L -78.93722534,33.63972092 L -79.2472229,33.12472153 L -79.85861206,32.76639175 L -80.10262299,32.78831482 L -80.75971985,32.27666855 L -81.129776,31.63079262 L -81.3706665,31.42959976 L -81.50853729,30.97750092 L -81.25722504,29.78583336 L -80.81666565,28.83277702 L -80.57555389,28.58638954 L -80.74888611,28.40888977 L -80.07958221,26.95791626 L -80.03652954,26.59124947 L -80.12180328,25.80763817 L -80.45257568,25.20727539 L -81.06764221,25.25930595 L -81.34680176,25.82125092 L -81.80124664,26.08986282 L -82.01152802,26.48347282 L -82.06041718,26.95125008 L -82.32624817,26.87819481 L -82.6883316,27.49083328 L -82.40252686,27.88205719 L -82.84897614,27.87553787 L -82.64644623,28.56288719 L -82.70926666,28.93571663 L -83.39756775,29.51854706 L -83.68118286,29.92229462 L -84.27500153,30.0933342 L -84.8655777,29.74404716 L -85.31315613,29.68771553 L -85.36694336,29.90222168 L -85.70083618,30.16527748 L -86.42222595,30.4522419 L -87.76721954,30.26333237 L -88.35921478,30.4046154 L -89.00444794,30.38750076 L -89.81555176,30.04583359 L -89.60944366,29.87111092 L -89.73000336,29.60250092 L -90.07055664,29.4477787 L -90.08388519,29.16722488 L -90.61027527,29.31277847 L -90.72888947,29.14333344 L -91.12909698,29.21945763 L -91.26527405,29.47805786 L -91.87947845,29.83436966 L -92.31583405,29.53194427 L -93.20891571,29.77521515 L -93.70471954,29.74265099 L -94.50577545,29.50543404 L -94.94355774,29.69849014 L -94.90744019,29.33987808 L -95.38639069,28.86694527 L -96.20610809,28.61471939 L -97.24913788,27.87533188 L -97.48958588,26.84680557 L -97.2820816,26.09375 L -97.14402771,25.88819504 L -97.36125183,25.35902786 L -97.72458649,25.33541679 L -97.69180298,24.93985939 L -97.7756958,23.95430565 L -97.76569366,22.90402794 L -97.89180756,22.64513969 L -97.68041992,21.66208267 L -97.14736176,20.61347389 L -96.44708252,19.84541893 L -96.28930664,19.30986023 L -95.969841,19.0501442 L -95.81263733,18.74484634 L -95.20874786,18.70236206 L -94.81735992,18.53847313 L -94.6076355,18.20458412 L -94.32624817,18.16902733 L -93.39847565,18.43291664 L -92.88930511,18.44402695 L -92.68374634,18.61180687 L -92.00736237,18.69958115 L -91.52625275,18.44708061 L -91.30902863,18.55791664 L -91.38041687,18.90069389 L -90.7223587,19.35902786 L -90.70708466,19.67569351 L -90.45207977,19.95819473 L -90.50263977,20.49791527 L -90.36597443,20.96152687 L -89.86208344,21.24319267 L -88.8409729,21.39819527 L -88.13957977,21.62430573 L -87.23402405,21.41902733 L -87.00958252,21.55652809 L -86.75180817,21.12513924 L -86.87264252,20.8512516 L -87.42319489,20.22652817 L -87.45930481,19.85986137 L -87.74791718,19.5993042 L -87.44374847,19.46930695 L -87.81958008,18.33180428 L -88.10569763,18.09902763 L -88.28847504,17.56402779 L -88.23014069,16.93597031 L -88.49180603,16.34319496 L -88.93514252,15.96347332 L -88.56402588,15.91125107 L -88.1526413,15.68152809 L -87.86985779,15.88902664 L -86.92485809,15.75625038 L -86.28874969,15.81097221 L -85.81652832,15.98263836 L -85.48902893,15.86069584 L -85.00096893,15.98208237 L -84.53569794,15.78013897 L -84.30541992,15.81569386 L -83.76819611,15.26513863 L -83.38319397,15.24902821 L -83.21847534,14.95208359 L -83.30374908,14.78236103 L -83.20569611,14.30319309 L -83.45687103,13.92180538 L -83.57125092,13.34041595 L -83.49124908,12.39319324 L -83.76652527,11.95097256 L -83.6543045,11.62652874 L -83.86486053,11.39847183 L -83.79624939,11.04152679 L -83.63597107,10.90458298 L -83.39763641,10.365695 L -82.78847504,9.67180538 L -82.35624695,9.38263988 L -82.24819183,9.00903034 L -81.77319336,8.96152878 L -81.20236206,8.78680992 L -80.82402802,8.89513969 L -80.53180695,9.1034708 L -80.09680176,9.22680569 L -79.62152863,9.6170826 L -79.06069183,9.44069386 L -78.57597351,9.44347191 L -78.04431152,9.24548435 L -77.65319824,8.83152866 L -77.12902832,8.40958309 L -76.74958038,7.92013884 L -76.75846863,8.39263821 L -76.64569092,8.67513943 L -76.34597015,8.91569519 L -75.94763947,9.4440279 L -75.67680359,9.40319538 L -75.52402496,10.17430687 L -75.50291443,10.57625103 L -74.85458374,11.1054163 L -74.49153137,10.96708393 L -74.11096954,11.34513664 L -73.7868042,11.25569534 L -73.27458191,11.28652668 L -72.72374725,11.69902802 L -72.24124908,11.89235973 L -72.14013672,12.24041557 L -71.92791748,12.15736008 L -71.54208374,12.44041729 L -71.11708069,12.09152889 L -71.43930817,11.71874905 L -71.94152832,11.60125065 L -71.9604187,11.4254179 L -71.58597565,10.70514011 L -72.12735748,9.83319473 L -71.76958466,9.3615284 L -71.69347382,9.05708408 L -71.46930695,9.05152702 L -71.06319427,9.31319523 L -71.0304184,9.72597122 L -71.53291321,10.58125114 L -71.43624878,10.96819592 L -70.84319305,11.1954174 L -70.52874756,11.23180485 L -70.04819489,11.43624973 L -70.29096985,11.90180683 L -70.02319336,12.19569492 L -69.82347107,12.00458336 L -69.60736084,11.45874786 L -69.28236389,11.53402996 L -68.82819366,11.44291878 L -68.38903046,11.14791679 L -68.16513824,10.50097084 L -67.92624664,10.45458317 L -67.0284729,10.61291695 L -66.22875214,10.64624977 L -65.87291718,10.30430603 L -65.17736053,10.09180355 L -64.70236206,10.2043047 L -64.39458466,10.37763977 L -63.79708481,10.44097233 L -63.53125,10.62736034 L -62.59236145,10.74125099 L -62.77387238,10.50069523 L -62.38847351,9.89819431 L -62.19430542,10.02069473 L -61.86458206,9.80791664 L -61.43652725,9.81736183 L -60.81874847,9.40652657 L -60.8493042,8.89902782 L -60.5918045,8.53930473 L -60.15763855,8.62069511 L -59.12625122,8.03124905 L -58.48347092,7.34236002 L -58.48541641,7.01736212 L -58.02791595,6.80208397 L -57.17625046,6.10847187 L -56.96263885,6.0151391 L -55.9351387,5.80791616 L -55.85208511,5.97902918 L -55.17326355,5.90403414 L -54.68152618,5.97847319 L -54.03486252,5.84041595 L -53.46347046,5.56097221 L -52.93097305,5.41680479 L -52.36541748,4.92124987 L -51.33263779,4.30319405 L -51.07569504,3.89180493 L -51.01791763,3.03930593 L -50.58958435,1.99236 L -50.46097183,1.81624901 L -49.9118042,1.66486204 L -49.86819458,1.18236196 L -50.05902863,0.80458403 L -50.01041794,0.31764001 L -49.57152939,0.386805 L -49.32458496,-0.161806 L -48.40513992,-0.25180399 L -47.98764038,-0.69569302 L -47.67458344,-0.57875103 L -47.32069397,-0.591528 L -47.06652832,-0.80347198 L -45.98014069,-1.04819405 L -45.63958359,-1.34152806 L -44.67652893,-1.56847298 L -44.30236053,-2.48763895 L -43.93069458,-2.56124997 L -43.48319626,-2.52652788 L -43.24097061,-2.35819507 L -42.23014069,-2.81152701 L -41.83791733,-2.72485995 L -41.57930374,-2.906528 L -40.4398613,-2.80902696 L -39.90402603,-2.87402797 L -39.22986221,-3.23875093 L -38.65319443,-3.68236208 L -38.44013977,-3.76152706 L -38.04486084,-4.21930599 L -37.5909729,-4.62652779 L -37.32374954,-4.70152712 L -37.15736008,-4.94624996 L -36.7206955,-5.08874989 L -35.94874954,-5.04374886 L -35.4893074,-5.15763903 L -35.22652817,-5.58041716 L -34.99097061,-6.3743062 L -34.79513931,-7.3348608 L -34.82013702,-7.92541695 L -35.18152618,-8.97736073 L -35.81513977,-9.7331934 L -36.38458252,-10.49985981 L -36.8101387,-10.70680428 L -37.03180695,-10.94847202 L -37.4323616,-11.58124924 L -38.00152588,-12.5779171 L -38.31708145,-12.92736053 L -38.69763947,-12.62902737 L -38.98152924,-13.83430672 L -39.06236267,-14.62402725 L -38.93736267,-15.65541553 L -38.85569382,-15.85652733 L -39.02125168,-16.26013947 L -39.21208191,-17.15875053 L -39.13708496,-17.69097137 L -39.4920845,-17.99819374 L -39.72263718,-18.48736382 L -39.68902588,-19.29513741 L -39.81041718,-19.64930534 L -40.01625061,-19.76902771 L -40.42652893,-20.63513947 L -40.73541641,-20.84430695 L -41.06680679,-21.49319458 L -40.97652817,-21.93014145 L -41.23430634,-22.14402771 L -41.67708206,-22.29236031 L -41.95930481,-22.53236008 L -42.05541611,-22.9584713 L -42.58069611,-22.93263817 L -43.53374863,-23.05041885 L -43.79430771,-22.90386391 L -44.24819565,-23.04930687 L -44.36847305,-22.93680573 L -45.55625153,-23.79375076 L -45.8176384,-23.75569534 L -46.42930603,-23.9370842 L -47.0031929,-24.41013908 L -47.52958298,-24.69375038 L -48.04041672,-25.0629158 L -48.10374832,-25.30013847 L -48.43041611,-25.63902855 L -48.61041641,-26.06430626 L -48.50958252,-26.24347305 L -48.67736053,-26.60458374 L -48.58180618,-27.02541733 L -48.66041565,-28.23041725 L -48.83235931,-28.6068058 L -49.38263702,-28.96013832 L -49.70652771,-29.31125069 L -50.05791855,-29.84736061 L -50.35208511,-30.52958488 L -50.53771591,-30.27384758 L -51.02319336,-30.28208351 L -51.20041656,-30.40819168 L -51.63347244,-31.25875092 L -51.91736221,-31.31152725 L -52.23764038,-31.98347282 L -52.10069275,-32.1618042 L -52.38208389,-32.51319504 L -52.76985931,-33.2756958 L -53.38347244,-33.75402832 L -53.78180695,-34.39458466 L -54.15569305,-34.64097214 L -54.93680573,-34.95624924 L -55.70069504,-34.76208496 L -56.16069412,-34.93125153 L -56.82125092,-34.68819427 L -57.1329155,-34.44985962 L -57.84541702,-34.4743042 L -58.35458374,-34.03902817 L -58.4679184,-34.52291489 L -58.16875076,-34.7468071 L -57.50958252,-35.02347183 L -57.1281929,-35.42291641 L -57.36347198,-35.74541855 L -57.27791595,-36.13319397 L -56.73152924,-36.32875061 L -56.66736221,-36.8781929 L -57.13541794,-37.50374985 L -57.51458359,-37.8698616 L -57.54097366,-38.09486008 L -58.13708496,-38.4118042 L -59.01097107,-38.67874908 L -60.8465271,-38.97902679 L -61.81458282,-38.98652649 L -62.30208206,-38.78486252 L -62.30236053,-39.24986267 L -62.0106926,-39.35791779 L -62.11680603,-39.87291718 L -62.48513794,-40.30097198 L -62.2179184,-40.66013718 L -62.31124878,-40.87097168 L -63.14347076,-41.15763855 L -63.79097366,-41.15874863 L -64.53847504,-40.86569595 L -65.02069092,-40.76486206 L -65.14736176,-40.91263962 L -64.98819733,-41.51847076 L -65.06708527,-42.01847076 L -64.12902832,-42.42736053 L -63.75847244,-42.07624817 L -63.59736252,-42.32986069 L -63.63263702,-42.76514053 L -64.10430908,-42.87902832 L -64.33791351,-42.53430557 L -64.68402863,-42.51263809 L -65.02375031,-42.77597046 L -64.31291962,-42.98652649 L -64.98347473,-43.26041794 L -65.33763885,-43.66819382 L -65.23513794,-44.38791656 L -65.69013977,-44.72013855 L -65.65374756,-45.04735947 L -66.19430542,-44.98347092 L -67.01513672,-45.30791855 L -67.62319183,-46.04819489 L -67.44208527,-46.54513931 L -66.78874969,-47.00180435 L -65.93763733,-47.07986069 L -65.73989868,-47.51122284 L -65.97208405,-48.04819489 L -66.49375153,-48.41819382 L -67.12569427,-48.6823616 L -67.66374969,-49.20291519 L -67.72902679,-49.77624893 L -68.15027618,-50.10736084 L -68.85694122,-50.32180405 L -69.07861328,-50.56541824 L -69.15472412,-50.99514008 L -68.7519455,-51.9268074 L -68.35194397,-52.32263947 L -69.21083069,-52.19596863 L -69.84527588,-52.48791504 L -70.71750641,-52.74930954 L -70.98805237,-53.39597321 L -70.97583008,-53.78513718 L -71.31027985,-53.89735794 L -72.10861206,-53.68458176 L -72.47805786,-53.40013885 L -72.30527496,-53.25402832 L -71.35805511,-53.12319565 L -71.11750031,-52.91041565 L -71.55916595,-52.56319046 L -72.31972504,-52.53263855 L -73.3758316,-53.07014084 L -73.54916382,-52.23069382 L -72.95417023,-52.19874954 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 178.16000366,-18.2341671 L 177.88694763,-18.27499962 L 177.3387146,-18.1246624 L 177.40306091,-17.64416695 L 177.76502991,-17.39696503 L 178.1875,-17.32083321 L 178.58250427,-17.64361382 L 178.52944946,-18.14027786 L 178.16000366,-18.2341671 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 178.59747314,-16.81227493 L 178.91070557,-16.48402023 L 179.32351685,-16.4020195 L 179.68965149,-16.20159912 L 180.0,-16.13944435 L 180.0,-16.15459633 L 180.0,-16.16833305 L 179.86488342,-16.67341423 L 179.58964539,-16.80235863 L 179.19726563,-16.69954491 L 178.87004089,-16.86306763 L 178.59747314,-16.81227493 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 167.73913574,-16.54181862 L 167.42056274,-16.52833366 L 167.4254303,-16.10393715 L 167.777771,-16.35284615 L 167.73913574,-16.54181862 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -171.43215942,-14.03215599 L -171.91749573,-14.00471973 L -171.83055115,-13.79277611 L -171.43215942,-14.03215599 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 167.03147888,-15.58101177 L 166.64860535,-15.39916801 L 166.54144287,-14.84546566 L 167.07722473,-15.0191679 L 167.18916321,-15.35805511 L 167.03147888,-15.58101177 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -172.49382019,-13.79796982 L -172.78691101,-13.54439831 L -172.35696411,-13.43980885 L -172.21888733,-13.73769379 L -172.49382019,-13.79796982 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 130.69508362,-11.46682644 L 131.27975464,-11.1917944 L 131.53788757,-11.41491985 L 130.97644043,-11.93314934 L 130.49263,-11.65492821 L 130.69508362,-11.46682644 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 162.29083252,-10.81361103 L 161.78030396,-10.73829365 L 161.82174683,-10.44981956 L 162.10360718,-10.49388885 L 162.29083252,-10.81361103 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 120.21839142,-10.25401783 L 119.62169647,-9.79050446 L 119.02618408,-9.67508411 L 119.15361023,-9.38385677 L 119.80700684,-9.39388466 L 119.93518066,-9.27616024 L 120.25474548,-9.64352131 L 120.46808624,-9.61663055 L 120.83851624,-10.09695053 L 120.4381485,-10.30737019 L 120.21839142,-10.25401783 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 124.47613525,-9.17436504 L 124.97734833,-8.93982601 L 125.12219238,-8.64184761 L 125.8527832,-8.47496033 L 126.55397034,-8.4814558 L 126.96055603,-8.32666588 L 127.30110931,-8.43111229 L 127.01277924,-8.68638897 L 126.4963913,-8.93083286 L 125.36975861,-9.2746973 L 124.40896606,-10.16454697 L 124.17072296,-10.15552235 L 123.79768372,-10.35523796 L 123.53479004,-10.17400265 L 123.6741333,-9.62847042 L 123.99521637,-9.34207535 L 124.47613525,-9.17436504 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 160.74427795,-9.90444469 L 160.06498718,-9.82744026 L 159.7361145,-9.72083378 L 159.58721924,-9.36388874 L 160.38360596,-9.42138863 L 160.81280518,-9.77453232 L 160.74427795,-9.90444469 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 161.36238098,-9.46803474 L 161.03973389,-9.30524921 L 160.75166321,-8.9649992 L 160.57722473,-8.3908329 L 160.96777344,-8.59277821 L 161.36238098,-9.46803474 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 116.29982758,-8.91036797 L 116.00426483,-8.90298653 L 116.03205109,-8.44681072 L 116.43016052,-8.22100258 L 116.7181015,-8.34828949 L 116.51010895,-8.77902317 L 116.29982758,-8.91036797 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 118.58840179,-8.84138012 L 118.38059235,-8.62602901 L 118.18495178,-8.85405254 L 117.67645264,-8.92464924 L 117.01190948,-9.1088829 L 116.73918915,-8.99685192 L 116.75894928,-8.67446804 L 117.15505981,-8.36428738 L 117.56700897,-8.40927696 L 117.80651855,-8.72698212 L 118.27133942,-8.58652306 L 117.83023071,-8.37260818 L 118.14667511,-8.14087486 L 119.00054932,-8.31033707 L 119.03199768,-8.63423824 L 118.58840179,-8.84138012 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 115.55763245,-8.50603771 L 115.26196289,-8.66357708 L 114.73353577,-8.39582443 L 115.15646362,-8.06493855 L 115.55818939,-8.23131752 L 115.55763245,-8.50603771 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 121.76282501,-8.87994385 L 121.3870163,-8.78948307 L 121.01508331,-8.95639706 L 120.5958252,-8.81503201 L 119.79966736,-8.75975704 L 119.80518341,-8.57058525 L 120.26061249,-8.28297234 L 120.59080505,-8.29711437 L 121.5745163,-8.57618332 L 121.92321777,-8.49030113 L 122.46160126,-8.60310555 L 122.45194244,-8.73670864 L 121.76282501,-8.87994385 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 122.72692871,-5.67424107 L 122.56518555,-5.48126984 L 122.99378204,-4.82697344 L 122.97177124,-5.39523411 L 122.72692871,-5.67424107 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 157.8553772,-8.56454182 L 157.28971863,-8.33833313 L 157.36721802,-8.02888775 L 157.61222839,-8.05416775 L 157.8553772,-8.56454182 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 124.44944,-8.44505501 L 124.40018463,-8.2147646 L 125.09913635,-8.14991665 L 125.1259079,-8.33709812 L 124.44944,-8.44505501 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 159.77166748,-8.42249107 L 159.19749451,-8.1861124 L 159.43777466,-8.04249859 L 159.77166748,-8.42249107 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 138.88233948,-8.01661491 L 138.34103394,-8.41969109 L 137.87998962,-8.38121128 L 137.684021,-8.23600197 L 137.90689087,-7.7868371 L 138.22683716,-7.46650314 L 138.77891541,-7.37769079 L 139.08148193,-7.56896067 L 138.88233948,-8.01661491 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 125.81230927,-7.99163103 L 125.97489166,-7.65352154 L 126.19437408,-7.72475147 L 126.5998764,-7.57339001 L 126.72406769,-7.74187279 L 126.46812439,-7.9742527 L 126.06239319,-7.8885498 L 125.81230927,-7.99163103 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 131.33450317,-7.94620514 L 131.10810852,-7.70135546 L 131.51748657,-7.16208315 L 131.61909485,-7.64490414 L 131.33450317,-7.94620514 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 113.54766083,-8.43340778 L 113.20638275,-8.28028965 L 112.92825317,-8.38871956 L 111.68963623,-8.33747959 L 110.71813202,-8.19950962 L 109.96933746,-7.87400532 L 109.08854675,-7.68770981 L 108.71008301,-7.67670107 L 108.44290924,-7.82321596 L 107.86437988,-7.73937988 L 107.39972687,-7.49581003 L 106.40371704,-7.35750771 L 106.31109619,-6.99502993 L 105.96082306,-6.81201982 L 105.48838806,-6.86693001 L 105.76872253,-6.51772022 L 105.88497162,-6.07025003 L 106.04057312,-5.87838984 L 106.73990631,-6.10183001 L 107.03122711,-5.9137702 L 107.34073639,-5.96958017 L 107.65609741,-6.2409687 L 108.1074295,-6.33397007 L 108.33886719,-6.27270985 L 108.59677124,-6.75698471 L 109.3033371,-6.87259722 L 109.53520203,-6.79562998 L 109.86766815,-6.91468 L 110.47914886,-6.91731024 L 110.72660065,-6.44614983 L 110.99672699,-6.40647984 L 111.13156891,-6.64299297 L 111.49268341,-6.62066984 L 112.05275726,-6.88674021 L 112.59812927,-6.90749216 L 112.84644318,-7.30620003 L 112.88941193,-7.61710978 L 113.34559631,-7.77104998 L 114.23683929,-7.69808006 L 114.44786072,-7.79571009 L 114.34004211,-8.4232502 L 114.22058105,-8.64542007 L 113.54766083,-8.43340778 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 157.55030823,-7.32562399 L 157.397995,-7.41829395 L 156.93106079,-7.2190609 L 156.40834045,-6.73472118 L 156.50361633,-6.59444523 L 157.09832764,-6.95694399 L 157.13853455,-7.12442017 L 157.55030823,-7.32562399 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 113.55815125,-7.21536922 L 113.09983063,-7.22854233 L 112.67342377,-7.0734663 L 112.86763763,-6.89185095 L 113.967453,-6.87302923 L 113.87971497,-7.07484436 L 113.55815125,-7.21536922 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 141.00001526,-4.77699089 L 141.00016785,-2.60630012 L 141.20478821,-2.63243008 L 141.8860321,-2.97347307 L 142.86166382,-3.3277781 L 143.52082825,-3.44555497 L 143.97471619,-3.78972292 L 144.51971436,-3.80977702 L 145.04255676,-4.35271883 L 145.31828308,-4.38306618 L 145.78001404,-4.92793417 L 145.73194885,-5.42250013 L 146.37832642,-5.61499977 L 146.99763489,-5.93791485 L 147.44465637,-5.96623802 L 147.85295105,-6.43232107 L 147.8104248,-6.69286489 L 146.96278381,-6.7475009 L 147.14505005,-7.38021803 L 147.8631897,-7.93946791 L 148.12028503,-8.07805538 L 148.24417114,-8.58722115 L 148.43722534,-8.68027782 L 148.59750366,-9.0797224 L 149.24667358,-8.99805641 L 149.18222046,-9.40166569 L 149.71366882,-9.80901814 L 149.92892456,-10.05958176 L 150.51768494,-10.23136044 L 150.1728363,-10.6790123 L 149.73167419,-10.34360981 L 149.16522217,-10.24670982 L 147.97171021,-10.16141796 L 147.50921631,-9.86057663 L 147.28443909,-9.50777817 L 147.07666016,-9.46833324 L 146.91111755,-9.15416527 L 146.63806152,-9.02999973 L 146.52313232,-8.71549606 L 146.07278442,-8.09500122 L 145.75750732,-7.94833422 L 144.87667847,-7.752841 L 144.61277771,-7.43611193 L 143.90979004,-7.71441889 L 143.86332703,-8.04722118 L 143.6268158,-7.99311209 L 143.35083008,-8.24333382 L 142.98583984,-8.33638859 L 143.40138245,-8.75333405 L 143.41972351,-8.96388912 L 142.63891602,-9.33308697 L 142.21354675,-9.14517593 L 141.18804932,-9.23305511 L 140.89979553,-9.08965206 L 140.46115112,-8.58795929 L 139.99382019,-8.20013046 L 139.71156311,-8.09883595 L 139.33984375,-8.20590687 L 138.84317017,-8.10159397 L 139.10003662,-7.53994274 L 138.59637451,-6.99564123 L 138.69471741,-6.62633419 L 138.43115234,-6.36150742 L 138.25559998,-5.92422819 L 137.87387085,-5.35710573 L 137.30648804,-5.01277494 L 136.83135986,-4.91359901 L 135.90498352,-4.48699999 L 135.20747375,-4.46570921 L 134.64654541,-4.13410616 L 133.95875549,-3.85600805 L 133.62832642,-3.48215079 L 133.32080078,-4.01021099 L 132.89501953,-4.11157894 L 132.73095703,-3.64248991 L 132.91259766,-3.55349493 L 132.14303589,-2.66640091 L 132.73484802,-2.80767202 L 133.21611023,-2.41382289 L 133.59178162,-2.56795406 L 133.63560486,-2.23245406 L 133.15440369,-2.1995101 L 132.71257019,-2.298666 L 132.31600952,-2.2800591 L 131.97914124,-1.97685504 L 131.81149292,-1.61455202 L 131.1736908,-1.22945774 L 131.24305725,-0.81998038 L 131.82731628,-0.71114916 L 132.25746155,-0.37949687 L 132.64733887,-0.35708013 L 133.14468384,-0.54363698 L 133.38948059,-0.73969102 L 133.97341919,-0.71978527 L 134.01034546,-0.957241 L 134.25587463,-1.31807303 L 134.07539368,-1.64915597 L 134.17642212,-2.35539508 L 134.64250183,-2.50490975 L 134.68852234,-2.96481562 L 134.86381531,-3.25204873 L 135.10353088,-3.37664413 L 135.5052948,-3.35498238 L 136.21473694,-2.62057066 L 136.39361572,-2.21895194 L 136.74134827,-2.24712014 L 137.22671509,-2.05570006 L 137.09481812,-1.80721712 L 137.68144226,-1.50488138 L 138.68180847,-1.80301917 L 139.80354309,-2.37654757 L 140.69395447,-2.47823739 L 140.99996948,-2.60434413 L 141.00001526,-4.77699089 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 134.25091553,-6.88921118 L 134.05108643,-6.77437067 L 134.13374329,-6.31260777 L 134.50431824,-6.52292776 L 134.25091553,-6.88921118 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 155.89079285,-6.48800707 L 155.96499634,-6.6875 L 155.71105957,-6.87805223 L 155.33999634,-6.72851801 L 155.22357178,-6.34082317 L 154.73194885,-5.91055584 L 154.77194214,-5.46999884 L 155.03320313,-5.53297901 L 155.45249939,-6.14333391 L 155.89079285,-6.48800707 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 134.63806152,-6.35031176 L 134.34124756,-6.21851873 L 134.53659058,-5.91852236 L 134.78279114,-6.09475279 L 134.63806152,-6.35031176 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 134.37150574,-6.00967026 L 134.4515686,-5.551157 L 134.71324158,-5.8158288 L 134.37150574,-6.00967026 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 150.62666321,-6.1408329 L 150.46417236,-6.2472229 L 149.61027527,-6.29111099 L 149.4732666,-6.10395193 L 149.06124878,-6.13277388 L 148.74598694,-5.86254597 L 148.36534119,-5.74929619 L 148.41444397,-5.44315815 L 148.84658813,-5.52077007 L 150.67582703,-5.54555511 L 151.00889587,-5.3691659 L 151.08639526,-5.14277697 L 151.37698364,-4.91366911 L 151.65159607,-4.92546177 L 151.62582397,-4.49526596 L 151.49040222,-4.21017981 L 152.05722046,-4.20499897 L 152.27807617,-4.34277105 L 152.36538696,-4.76881886 L 151.94944763,-5.14089489 L 152.13485718,-5.33770895 L 151.81500244,-5.5869441 L 151.47305298,-5.52138901 L 151.38569641,-5.79694414 L 151.0430603,-6.01583385 L 150.62666321,-6.1408329 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 122.51821899,-5.42805719 L 122.31803894,-4.83254814 L 122.68225098,-4.61124086 L 122.75402832,-4.96644926 L 122.51821899,-5.42805719 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 152.22727966,-3.54094791 L 151.93333435,-3.44333506 L 151.58943176,-3.16020703 L 150.78778076,-2.72277689 L 150.84788513,-2.60737991 L 152.02664185,-3.24735403 L 152.94360352,-4.03749895 L 153.11547852,-4.26938009 L 153.05990601,-4.59890223 L 152.87515259,-4.81327105 L 152.65048218,-4.45947886 L 152.68556213,-4.18143797 L 152.22727966,-3.54094791 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 116.10150909,-4.06265545 L 116.00254059,-3.63845301 L 116.25319672,-3.3887949 L 116.30715179,-3.87558889 L 116.10150909,-4.06265545 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 126.76808167,-3.83154273 L 126.23538208,-3.62068868 L 126.02243805,-3.17274284 L 126.78098297,-3.05743742 L 126.9906311,-3.14267182 L 127.25152588,-3.59230494 L 126.76808167,-3.83154273 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 128.44044495,-3.44884467 L 128.16003418,-3.06749201 L 128.18621826,-2.8661921 L 128.83638,-2.86700344 L 129.13273621,-2.96834493 L 129.4347229,-2.78251123 L 130.03494263,-3.00369906 L 130.38571167,-2.9892416 L 130.8812561,-3.59560943 L 130.82458496,-3.85474706 L 129.52455139,-3.29789734 L 129.28851318,-3.41420078 L 128.85890198,-3.21166348 L 128.44044495,-3.44884467 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 108.0149765,-3.24362302 L 107.70865631,-3.1925602 L 107.56073761,-2.99660921 L 107.66737366,-2.555866 L 108.08361053,-2.60255599 L 108.2980957,-2.84899044 L 108.0149765,-3.24362302 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 106.51393127,-3.11541462 L 106.41696167,-2.96836066 L 105.97768402,-2.81548977 L 105.78913116,-2.172405 L 105.27484894,-2.14543128 L 105.35404968,-1.6476177 L 105.92099762,-1.50914752 L 106.18600464,-1.90280581 L 106.35586548,-2.46563292 L 106.74681091,-2.60837173 L 106.51393127,-3.11541462 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 119.40337372,-5.13388777 L 119.59613037,-4.56105566 L 119.61989594,-4.01483011 L 119.44967651,-3.47673941 L 118.92782593,-3.55854702 L 118.76249695,-2.74889588 L 119.14039612,-2.47399426 L 119.33797455,-1.18504024 L 119.76213074,-0.68521816 L 119.88568878,-0.00115656 L 119.88211823,0.45837572 L 120.07659912,0.74216086 L 120.5976181,0.79378355 L 120.94215393,1.35035586 L 121.35380554,1.24838328 L 121.60553741,1.05481136 L 121.93212891,1.10199273 L 122.48748016,0.99087471 L 122.88006592,0.83118272 L 123.02068329,0.9336825 L 123.91069794,0.8460058 L 124.29743195,1.0096668 L 124.55097198,1.37560368 L 124.99219513,1.75156748 L 125.24137878,1.51134574 L 125.01216125,1.12490988 L 124.62594604,0.76865178 L 124.48096466,0.46714807 L 123.67351532,0.30002117 L 123.28259277,0.31729239 L 123.05888367,0.50739294 L 122.38993835,0.51986653 L 121.83421326,0.42331266 L 121.61888885,0.54823822 L 120.89669037,0.39610916 L 120.68793488,0.51110512 L 120.36289215,0.45932552 L 120.15933228,0.22910149 L 120.00870514,-0.28593853 L 120.05968475,-0.62991035 L 120.30891418,-0.96294087 L 120.58639526,-1.11376262 L 120.67525482,-1.41487479 L 121.10134125,-1.43718493 L 121.47389984,-0.90977156 L 122.09533691,-0.95480692 L 122.19493866,-0.79480553 L 122.6856308,-0.81033963 L 123.06017303,-0.56426072 L 123.41119385,-0.65412688 L 123.37380981,-1.00912607 L 122.98200989,-0.9009316 L 122.79842377,-1.00347281 L 122.39215088,-1.49298573 L 121.80303192,-1.73821974 L 121.55619812,-1.95249629 L 121.96602631,-2.52450013 L 122.01014709,-2.71840692 L 122.32065582,-2.92101765 L 122.26939392,-3.55382824 L 122.88210297,-4.12218332 L 122.90100098,-4.37956333 L 122.08953857,-4.54255533 L 122.02013397,-4.89302111 L 121.46936798,-4.69164228 L 121.6087265,-4.0672164 L 121.3710022,-4.00367355 L 120.94374847,-3.61958694 L 120.86568451,-3.42819619 L 121.06098938,-3.14469719 L 121.09420013,-2.72322893 L 120.68585968,-2.64295411 L 120.19902802,-2.95768642 L 120.37926483,-3.20244908 L 120.44083405,-3.74236774 L 120.34518433,-3.89101458 L 120.40923309,-4.69521618 L 120.27775574,-5.17149639 L 120.34477997,-5.51363802 L 119.92678833,-5.54906797 L 119.79430389,-5.70070648 L 119.36063385,-5.41086388 L 119.40337372,-5.13388777 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 130.26403809,-1.70052099 L 130.25372314,-2.05353498 L 129.94264221,-2.00927711 L 129.900177,-1.77613997 L 130.26403809,-1.70052099 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 124.44381714,-2.02436233 L 124.5570755,-1.63841808 L 125.12713623,-1.87751651 L 124.44381714,-2.02436233 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 128.16674805,-1.64407778 L 127.50518036,-1.72593963 L 127.43961334,-1.44537878 L 127.64138794,-1.33020508 L 128.16674805,-1.64407778 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 123.25946045,-1.62634563 L 123.19364166,-1.15371883 L 123.55934143,-1.28135395 L 123.25946045,-1.62634563 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 99.24757385,-1.77787817 L 98.87955475,-1.6804018 L 98.60455322,-1.22767675 L 98.66453552,-0.980398 L 98.90976715,-0.90885866 L 99.24757385,-1.77787817 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 130.99519348,-1.31828332 L 130.74987793,-1.24362218 L 130.63598633,-0.96017498 L 131.08239746,-1.00737596 L 130.99519348,-1.31828332 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 136.13182068,-1.19883323 L 135.85783386,-1.16657627 L 135.81118774,-0.68533152 L 136.17253113,-1.04424763 L 136.13182068,-1.19883323 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -90.95847321,-0.96201009 L -91.18418884,-1.0457828 L -91.48583984,-0.84542686 L -91.07276917,-0.61115038 L -90.95847321,-0.96201009 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 127.73999786,-0.86211151 L 127.47439575,-0.82351202 L 127.29114532,-0.47076544 L 127.56887054,-0.31550831 L 127.73999786,-0.86211151 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 104.5662384,-5.92690086 L 103.70973206,-4.96115208 L 103.41052246,-4.86224604 L 103.14712524,-4.59724665 L 102.27675629,-3.95498776 L 102.2226181,-3.6672914 L 101.6257019,-3.24863625 L 101.32285309,-2.74067855 L 100.89179993,-2.32811856 L 100.8667984,-1.93573606 L 100.38579559,-1.18336856 L 100.33135223,-0.8605957 L 99.81958008,-0.30058646 L 99.75569916,-0.04922604 L 99.22090149,0.21033071 L 98.78038025,1.42890966 L 98.83805847,1.64773238 L 98.4469986,1.99965668 L 97.66391754,2.39443159 L 97.61122131,2.84133697 L 97.42512512,2.93429351 L 96.99974823,3.54526949 L 96.53653717,3.72982192 L 95.54360199,4.6592803 L 95.23925781,5.28231192 L 95.43063354,5.65618229 L 95.88527679,5.50460291 L 96.08604431,5.28985977 L 96.53462219,5.19926071 L 96.84471893,5.27687979 L 97.2100296,5.14433098 L 97.49771118,5.25009871 L 97.90593719,4.88920832 L 97.99386597,4.62994719 L 98.28592682,4.41692781 L 98.24915314,4.13044834 L 98.67254639,3.90834904 L 99.99343109,2.95189309 L 99.99087524,2.75462985 L 100.32723999,2.54245186 L 100.43505096,2.25666308 L 100.7843399,2.07768941 L 101.07299042,2.22312379 L 101.32314301,1.99790299 L 101.38742828,1.72033799 L 101.76185608,1.65935338 L 102.15919495,1.36056149 L 102.22593689,1.00010753 L 102.5076828,0.74865347 L 102.91090393,0.71662408 L 103.12143707,0.46303433 L 103.41513062,0.5231865 L 103.71512604,0.29670882 L 103.81015015,-0.0109755 L 103.48821259,-0.09345394 L 103.3188858,-0.34485337 L 103.34437561,-0.62609231 L 103.67589569,-0.95171082 L 104.37007141,-1.02666974 L 104.57389832,-1.99878621 L 104.83809662,-2.0015471 L 104.91829681,-2.29152513 L 105.63372803,-2.43413401 L 105.88061523,-2.96707273 L 106.09809875,-3.22822142 L 105.82374573,-3.69272614 L 105.9603653,-3.83951855 L 105.82701111,-4.18676758 L 105.91636658,-4.64269924 L 105.77780914,-5.83790541 L 105.42006683,-5.62714767 L 105.02875519,-5.75261593 L 104.61679077,-5.49787855 L 104.5662384,-5.92690086 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 117.49828339,4.17165279 L 117.42427826,3.11263895 L 117.32351685,2.89675212 L 117.78482056,2.74339962 L 118.09770203,2.28510737 L 117.74134064,2.19183302 L 117.92916107,1.80483902 L 118.98875427,1.02134252 L 118.7631073,0.80585188 L 118.06378937,0.90297616 L 117.75109863,0.75631756 L 117.56710052,0.39302835 L 117.41506195,-0.22949401 L 117.41095734,-0.53979403 L 117.0072937,-1.1949333 L 116.5925293,-1.42327881 L 116.45250702,-1.76719618 L 116.58045197,-2.31930161 L 116.41666412,-2.49886656 L 116.35930634,-2.86384988 L 115.99417114,-3.57275558 L 114.6830368,-4.1791749 L 114.61171722,-3.64089298 L 114.07778931,-3.34586525 L 113.79016876,-3.45988917 L 113.01953888,-3.0171597 L 112.92189789,-3.2387135 L 112.53512573,-3.44186473 L 112.33740234,-3.31594133 L 111.89741516,-3.54206252 L 111.81227112,-2.99652648 L 111.3391037,-2.90932488 L 111.03882599,-3.05457163 L 110.30367279,-2.99426103 L 110.02671814,-1.68271363 L 110.07398987,-1.38730884 L 109.82554626,-1.09439111 L 109.66638184,-0.68198061 L 109.14252472,-0.5627079 L 109.1832962,-0.19998609 L 109.07941437,0.25556976 L 108.91942596,0.32310402 L 108.84254456,0.81660163 L 109.06031799,1.52554834 L 109.3385849,1.94190562 L 109.95939636,1.70167506 L 110.19499969,1.70694399 L 110.99277496,1.48777795 L 111.20748901,2.0912199 L 111.38309479,2.20874596 L 111.42888641,2.69472098 L 111.63065338,2.84576702 L 111.99861145,2.8905561 L 112.94126129,3.12217999 L 113.94083405,4.27583313 L 113.96780396,4.58087301 L 114.51527405,4.70499897 L 115.0595932,5.04575491 L 115.39679718,4.92686987 L 115.54888916,5.07694483 L 115.37559509,5.404778 L 115.87328339,5.58279419 L 116.14111328,6.143888 L 116.4777298,6.47430611 L 116.62666321,6.78222084 L 116.85072327,6.57752991 L 117.15305328,7.01278114 L 117.29175568,6.61590576 L 117.74222565,6.42611122 L 117.65628815,6.07402086 L 118.12361145,5.8397212 L 118.34708405,5.82762623 L 118.70944214,5.56416702 L 119.25673676,5.35921288 L 119.08986664,5.07660007 L 118.66881561,4.93292379 L 118.33444214,5.021945 L 118.22338104,4.71269083 L 118.57332611,4.52028179 L 118.54442596,4.34980011 L 117.99656677,4.22189999 L 117.63346863,4.42293119 L 117.49828339,4.17165279 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 128.45623779,-0.91124892 L 128.00238037,-0.66759586 L 127.66107941,-0.20850062 L 127.73429871,0.31112987 L 127.52729034,0.55282831 L 127.62776184,0.86106837 L 127.40567017,1.22868514 L 127.57591248,1.75986743 L 127.85336304,1.92685652 L 128.02198792,1.70357466 L 127.99942017,1.30759752 L 127.63140869,0.9421804 L 127.93094635,0.87678784 L 128.16836548,1.12660098 L 128.16670227,1.36643732 L 128.66714478,1.58938038 L 128.68339539,1.06788409 L 128.19900513,0.78822553 L 128.68937683,0.52536446 L 128.675354,0.33871621 L 127.92145538,0.45898768 L 127.88965607,0.00072114 L 128.20974731,-0.69175774 L 128.45623779,-0.91124892 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 103.05033875,0.75616175 L 102.54767609,0.77220637 L 102.7278595,1.02154958 L 103.05033875,0.75616175 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 97.82065582,0.56168479 L 97.37663269,1.0649128 L 97.24291992,1.40887451 L 97.42227173,1.51784384 L 97.91919708,1.02568996 L 97.82065582,0.56168479 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 101.68763733,1.73553753 L 101.4580307,1.72387731 L 101.39782715,2.00512958 L 101.65523529,2.12487674 L 101.68763733,1.73553753 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 128.2467041,2.16941547 L 128.29747009,2.44285631 L 128.67332458,2.498559 L 128.52192688,2.06884098 L 128.2467041,2.16941547 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 96.44438171,2.33202291 L 95.69213867,2.77261758 L 95.86910248,2.91440177 L 96.44438171,2.33202291 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 8.67735958,3.20939016 L 8.43902874,3.28180599 L 8.61375046,3.6718049 L 8.93208313,3.63625097 L 8.67735958,3.20939016 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 108.15497589,3.63036084 L 107.97373199,4.01432323 L 108.22723389,4.21704197 L 108.40267181,3.96578598 L 108.15497589,3.63036084 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 124.1984787,7.42096996 L 124.03305817,7.62943983 L 123.46151733,7.81138992 L 123.38089752,7.49013996 L 123.07906342,7.67955017 L 122.98665619,7.45833015 L 122.54698944,7.73432016 L 122.35582733,7.46555996 L 122.15944672,6.91666985 L 121.8972168,7.08194017 L 122.29611206,8.01416969 L 122.91333008,8.14721966 L 123.07698059,8.51749992 L 123.68974304,8.64023018 L 123.86453247,8.15742016 L 124.23055267,8.21860981 L 124.44167328,8.62110996 L 124.74500275,8.49639034 L 124.77166748,8.96555996 L 125.09555817,8.82833004 L 125.53500366,9.0802803 L 125.39138794,9.65694046 L 125.86055756,9.53472042 L 126.30754089,8.95654964 L 126.3897171,8.51082993 L 126.35959625,7.9089098 L 126.55214691,7.69882011 L 126.60083008,7.27406979 L 126.3347168,7.00333023 L 126.21980286,6.63383007 L 125.88407898,7.12622023 L 125.64836121,7.23767996 L 125.38407135,6.80145979 L 125.71266174,6.171 L 125.41443634,5.57337999 L 125.17445374,5.79778004 L 124.8236084,5.88917017 L 124.18527985,6.21000004 L 124.04708099,6.39938021 L 123.96943665,6.96200991 L 124.1984787,7.42096996 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 79.92041779,8.80541706 L 80.35069275,9.55513859 L 80.81319427,9.28930473 L 80.9006958,9.04819489 L 81.35263824,8.49736214 L 81.48513794,8.02013779 L 81.86541748,7.32902718 L 81.87847137,7.02208424 L 81.69319153,6.48736 L 81.32541656,6.19986105 L 80.46930695,5.93847179 L 80.06319427,6.1907649 L 79.84124756,6.93124914 L 79.87124634,7.13235998 L 79.74069214,7.94986105 L 79.92041779,8.80541706 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 117.22215271,8.35813999 L 117.34529114,8.72414017 L 117.90666962,9.26138973 L 118.01358032,9.24228001 L 119.57536316,10.83806038 L 119.66101074,10.56616974 L 119.31935883,10.30488968 L 119.14733887,10.02598 L 118.75195313,9.92222023 L 118.76222229,9.68278027 L 118.51637268,9.33110046 L 118.12419891,9.14470005 L 118.0031662,8.88010025 L 117.22215271,8.35813999 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 124.12042236,9.59659004 L 123.79821777,9.82586002 L 124.31416321,10.16543961 L 124.5566864,10.02593994 L 124.39704132,9.65153027 L 124.12042236,9.59659004 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 123.06201172,9.05510998 L 122.86464691,9.32888985 L 122.5533371,9.47332954 L 122.37999725,9.71138954 L 122.45054626,9.97611046 L 122.86229706,10.10165024 L 122.95361328,10.89583015 L 123.19499969,11.00360966 L 123.56803131,10.79294014 L 123.14723969,9.89179993 L 123.12304688,9.55167007 L 123.31316376,9.31884956 L 123.06201172,9.05510998 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 123.35236359,9.4235096 L 123.37486267,9.99730015 L 123.66764832,10.41425991 L 123.93015289,10.99477005 L 124.02075958,10.38239002 L 123.76802063,10.22694016 L 123.35236359,9.4235096 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -61.49736023,10.63937187 L -61.34402847,10.80569553 L -61.03791809,10.6851387 L -61.00902939,10.15430546 L -61.45597076,10.29986858 L -61.49736023,10.63937187 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 125.26741028,9.90970039 L 124.75338745,10.18750954 L 124.79322052,10.73235035 L 124.40218353,11.24081993 L 124.81671143,11.42942047 L 125.02459717,11.19353008 L 125.01416779,10.74666977 L 125.1838913,10.59500027 L 125.26741028,9.90970039 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 121.97155762,10.41985035 L 121.92433929,10.75971031 L 122.05388641,11.03221989 L 122.09443665,11.71582985 L 123.15139008,11.38360977 L 122.73444366,10.78528023 L 122.20691681,10.63823986 L 121.97155762,10.41985035 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 125.30084991,11.13768959 L 125.00026703,11.2694397 L 124.99388885,11.62388992 L 124.6922226,12.00638962 L 124.3896637,12.19589996 L 124.28453064,12.46780968 L 124.99194336,12.61118031 L 125.29165649,12.46833038 L 125.51611328,12.06056023 L 125.43972015,11.61972046 L 125.58305359,11.17998028 L 125.30084991,11.13768959 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 123.18612671,11.9258604 L 123.2841568,12.41611004 L 123.54000092,12.21249962 L 123.18612671,11.9258604 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 53.73914719,12.63624954 L 54.11047363,12.70068264 L 54.14291763,12.35208225 L 53.54735947,12.33930588 L 53.73914719,12.63624954 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 120.6048584,13.20569992 L 120.41455841,13.53118992 L 120.95610809,13.49444962 L 121.30323029,13.34601021 L 121.5069809,13.05628014 L 121.54888916,12.66889 L 121.38722229,12.31083012 L 120.97409821,12.43083 L 120.6048584,13.20569992 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -154.99610901,19.33694458 L -155.88194275,19.0363884 L -155.88471985,19.33222389 L -156.05027771,19.77444649 L -155.83305359,19.97777939 L -155.83641052,20.26715469 L -155.2792511,20.01882172 L -154.81111145,19.5261116 L -154.99610901,19.33694458 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 120.90812683,13.69433022 L 120.61723328,13.88222027 L 120.61136627,14.50872993 L 120.09497833,14.78127003 L 119.77889252,16.30888939 L 120.10334015,16.06228065 L 120.42523193,16.17167091 L 120.30361176,16.50342941 L 120.44889069,17.03750038 L 120.35138702,17.54888916 L 120.58889008,18.30666924 L 120.5625,18.49250031 L 121.09683228,18.62638092 L 121.60829163,18.37081909 L 122.00444794,18.28499985 L 122.1654129,18.07089043 L 122.16443634,17.60471916 L 122.37738037,17.34819031 L 122.4641571,16.88555908 L 122.19953156,16.43497086 L 122.20555878,16.24082947 L 121.75952148,16.07691956 L 121.55480957,15.89836025 L 121.59780884,15.64293957 L 121.37336731,15.33693027 L 121.68663788,14.70098972 L 121.75639343,14.13556004 L 122.16832733,14.1311903 L 122.51014709,14.34455967 L 122.86469269,14.2676897 L 123.08394623,13.98169994 L 123.04794312,13.77398968 L 123.58262634,13.72756004 L 123.79538727,13.04605007 L 124.09443665,13.01111031 L 124.13388824,12.66250038 L 123.32569885,13.00687981 L 123.15769196,13.45524025 L 122.52855682,13.92753029 L 122.32132721,13.59008026 L 121.81654358,13.9409399 L 121.493927,13.85221004 L 121.28595734,13.59689999 L 120.90812683,13.69433022 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -76.72610474,17.95458221 L -77.72097015,17.86041641 L -78.2123642,18.45652771 L -77.8456955,18.52485847 L -76.95402527,18.40180588 L -76.36152649,18.16986084 L -76.53514099,17.85097313 L -76.72610474,17.95458221 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -66.01982117,17.97819519 L -67.21541595,17.98597145 L -67.13652802,18.50847244 L -65.83347321,18.43041611 L -65.60930634,18.25263977 L -66.01982117,17.97819519 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -71.75880432,19.7020874 L -71.66069794,19.89097214 L -71.24903107,19.82902527 L -70.98986053,19.93069458 L -70.15652466,19.62013817 L -69.83847046,19.36847305 L -69.25485992,19.29402733 L -69.02541351,18.98513794 L -68.77513885,18.97430611 L -68.34625244,18.64430618 L -68.48958588,18.33708382 L -69.20819092,18.45263863 L -69.88735962,18.4679184 L -70.15402985,18.23041725 L -70.84236145,18.34819412 L -71.3298645,17.79597282 L -71.50736237,17.7393055 L -71.91791534,18.18347168 L -72.38652802,18.23236275 L -72.85319519,18.14291573 L -73.44849396,18.26666451 L -73.95136261,18.13263893 L -74.36962891,18.29634666 L -74.40715027,18.62983894 L -74.14125061,18.66374969 L -73.66285706,18.49986267 L -72.72875214,18.42652512 L -72.35180664,18.54221153 L -72.80958557,19.07902718 L -72.84950256,19.53152847 L -73.36458588,19.6226387 L -73.40875244,19.84347153 L -72.78013611,19.95152855 L -72.33876801,19.77131462 L -71.75880432,19.7020874 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 109.72819519,18.31430626 L 109.15515137,18.29375076 L 108.68624878,18.50681114 L 108.63458252,19.29153061 L 109.18125153,19.65347099 L 109.25818634,19.86403275 L 109.57681274,19.97764015 L 109.98929596,19.93375015 L 110.57485962,20.09542084 L 110.93902588,20.00430107 L 110.9826355,19.6431942 L 110.67124939,19.38208389 L 110.53151703,18.79458046 L 109.72819519,18.31430626 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -157.69213867,21.26520157 L -158.10313416,21.29495621 L -158.23167419,21.48250008 L -157.96678162,21.71009254 L -157.69213867,21.26520157 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -78.64180756,22.52238083 L -78.34347534,22.53264046 L -77.64847565,22.05958366 L -77.67069244,21.77263832 L -77.32347107,21.74958229 L -77.14680481,21.49263954 L -76.00930786,21.07902718 L -75.57319641,21.01041603 L -75.7820816,20.76791573 L -74.98041534,20.69597244 L -74.38764191,20.29847145 L -74.36125183,20.08124924 L -74.9826355,19.92097282 L -75.49680328,19.88263893 L -76.14930725,19.9893055 L -77.34986115,19.85375023 L -77.60097504,20.04819489 L -77.18152618,20.28652954 L -77.07707977,20.4762516 L -77.35680389,20.71569443 L -78.03930664,20.70069504 L -78.48625183,21.02791405 L -78.62426758,21.50820541 L -78.8456955,21.62375069 L -79.2140274,21.54319382 L -79.84347534,21.69819641 L -80.44875336,22.03819466 L -80.9706955,22.04402733 L -81.5229187,22.19847298 L -81.88180542,22.67930603 L -82.73347473,22.70652771 L -83.37097168,22.20069504 L -83.90597534,22.17180634 L -84.08652496,21.93097305 L -84.42708588,22.20930481 L -84.20569611,22.55597305 L -83.24346924,22.98791695 L -82.73625183,23.01986122 L -82.27263641,23.17625046 L -81.27597046,23.13375092 L -81.18763733,23.03680611 L -80.62403107,23.08097267 L -80.28458405,22.90680504 L -79.64847565,22.76097107 L -79.24986267,22.37264061 L -78.77874756,22.38902855 L -78.05708313,22.07374954 L -78.10069275,22.2990284 L -78.64180756,22.52238083 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -82.97402954,21.56458473 L -82.95180511,21.92069435 L -82.69125366,21.88236046 L -82.6029129,21.52458572 L -82.97402954,21.56458473 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 120.14597321,23.52514267 L 120.18486023,23.80986214 L 121.04985809,25.03680611 L 121.57653046,25.2990284 L 121.89902496,25.12013817 L 121.87486267,24.53458405 L 121.61597443,24.0620842 L 121.39624786,23.11625099 L 121.0284729,22.66124916 L 120.71736145,22.09263992 L 120.35680389,22.51013947 L 120.05735779,23.04708481 L 120.14597321,23.52514267 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -77.95124817,24.32069397 L -78.46180725,24.60069466 L -78.18458557,24.90541649 L -77.9154129,24.86569595 L -77.71541595,24.48958206 L -77.95124817,24.32069397 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -16.63037682,28.01375008 L -16.92319489,28.35541534 L -16.5106945,28.42041588 L -16.63037682,28.01375008 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 130.37072754,32.73576355 L 129.8473053,32.7249527 L 129.62666321,32.95000076 L 129.75061035,33.36713409 L 130.39578247,33.60926437 L 130.68745422,33.93451309 L 131.09877014,33.61987686 L 131.73355103,33.57991409 L 131.70204163,33.40593719 L 132.01020813,32.93298721 L 131.68083191,32.54222107 L 131.45776367,31.9094696 L 131.37179565,31.42852974 L 130.9624939,31.1380558 L 130.5652771,31.32222176 L 130.16667175,31.7947216 L 130.61727905,32.61729813 L 130.37072754,32.73576355 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 134.23428345,33.43594742 L 133.60224915,33.51955032 L 133.25694275,33.22527695 L 132.9392395,32.77484894 L 132.51325989,32.94980621 L 132.42245483,33.54747009 L 132.78173828,34.00612259 L 133.49110413,33.9691658 L 133.89430237,34.38264084 L 134.63981628,34.17514801 L 134.62272644,33.78570557 L 134.23428345,33.43594742 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 25.54867363,34.98875046 L 24.92235947,34.92681122 L 24.3801403,35.19403076 L 23.51403046,35.30653 L 23.64458084,35.50180054 L 24.16791725,35.59041977 L 24.2820797,35.3548584 L 24.70070076,35.42652893 L 25.04707909,35.34486008 L 25.72846985,35.33985901 L 26.27207947,35.08903122 L 25.54867363,34.98875046 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 33.00930405,34.63442612 L 32.40208435,34.75374985 L 32.30847168,35.00485992 L 32.9920845,35.36875153 L 33.90458298,35.25374985 L 33.60374832,34.81680679 L 33.00930405,34.63442612 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 138.21659851,34.61870193 L 137.44029236,34.66796875 L 136.65583801,34.9980545 L 136.54916382,34.60833359 L 136.91278076,34.45444489 L 136.28089905,34.1520195 L 135.91186523,33.54909515 L 135.51835632,33.52155304 L 135.08322144,33.91145706 L 135.42080688,34.68700027 L 135.06027222,34.62527847 L 134.75610352,34.76527786 L 134.29388428,34.73638916 L 133.95892334,34.52312469 L 132.80477905,34.31004715 L 132.36759949,34.36135864 L 132.21292114,34.00149155 L 131.09112549,34.03740692 L 130.90646362,34.36223221 L 131.3972168,34.42054749 L 131.8717041,34.73297119 L 132.6968689,35.44990921 L 133.1517334,35.55923843 L 134.22138977,35.54388809 L 134.92056274,35.64500046 L 135.22975159,35.77349472 L 135.73538208,35.49283981 L 136.10028076,35.77694321 L 135.96240234,35.97092819 L 136.44169617,36.44415665 L 136.75753784,36.86151886 L 137.06777954,36.79305649 L 138.21578979,37.16918564 L 138.53762817,37.36573029 L 138.81996155,37.79429626 L 139.22238159,37.98797226 L 139.74620056,38.77495956 L 140.0166626,39.38916779 L 140.07377625,40.04020309 L 139.92443848,40.64472198 L 140.24264526,40.78506088 L 140.34527588,41.26083374 L 140.68824768,40.87640762 L 141.27861023,41.15935898 L 141.48500061,40.56083298 L 141.76972961,40.34777832 L 141.95361328,39.98670578 L 141.93835449,39.22324753 L 141.59158325,38.83423615 L 141.53700256,38.49110031 L 141.08752441,38.38125229 L 140.92527771,38.07860947 L 141.03671265,37.36112213 L 140.80082703,36.89472198 L 140.57194519,36.18361282 L 140.82687378,35.75724792 L 140.40638733,35.45416641 L 140.39399719,35.20286179 L 139.84361267,34.90194702 L 139.85169983,35.35746384 L 139.14416504,35.23284531 L 139.14833069,34.93611145 L 138.55934143,35.10171509 L 138.21659851,34.61870193 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 12.47349739,37.73656082 L 12.56097126,38.06542206 L 12.89486027,38.02402878 L 13.19319153,38.16958237 L 13.74513912,37.97013855 L 14.37402821,38.01625061 L 14.74568939,38.16403198 L 15.47680569,38.05374908 L 15.20457935,37.74069977 L 15.10431099,37.31042099 L 15.30263901,37.01514053 L 15.09430599,36.79763794 L 14.49374866,36.78596878 L 14.29791927,37.03514099 L 13.90347099,37.09486008 L 12.94763756,37.57097244 L 12.47349739,37.73656082 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 24.24430084,38.09542084 L 24.04347038,38.39485931 L 23.64624977,38.39957809 L 23.47013855,38.83625031 L 24.04791641,38.68736267 L 24.22957993,38.52791977 L 24.24430084,38.09542084 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 3.03069496,39.28866577 L 2.66430497,39.5620842 L 2.73819494,39.83124924 L 3.05513811,39.92152786 L 3.4534719,39.66930389 L 3.03069496,39.28866577 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 8.78418255,38.89791489 L 8.3665266,39.22847366 L 8.55652714,39.84736252 L 8.48319435,40.2859726 L 8.13735962,40.72735977 L 8.7909708,40.92208481 L 9.0118103,41.12513733 L 9.51902676,41.15680695 L 9.82374954,40.50263977 L 9.63124943,40.27486038 L 9.68680573,39.98374939 L 9.55764008,39.13486099 L 9.09569073,39.21430969 L 8.78418255,38.89791489 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -73.85055542,40.58166504 L -73.56573486,40.9155159 L -72.40325165,40.86311722 L -73.85055542,40.58166504 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 9.21958256,41.41319275 L 8.78569508,41.56430435 L 8.64124966,41.90986252 L 8.66458416,42.51263809 L 9.12347221,42.73263931 L 9.52763844,42.5648613 L 9.55486202,42.12430573 L 9.21958256,41.41319275 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 144.73445129,43.0066185 L 144.03721619,42.9366684 L 143.61981201,42.66297531 L 143.32373047,42.30925369 L 143.24032593,41.94834137 L 141.71472168,42.6277771 L 140.94786072,42.31666946 L 140.46871948,42.58631897 L 140.27508545,42.28735733 L 140.70837402,42.13838959 L 140.43702698,41.54756546 L 140.04075623,41.4497261 L 140.11943054,42.00379944 L 139.77444458,42.25916672 L 139.82472229,42.61639023 L 140.2522583,42.76676559 L 140.64111328,43.26574326 L 141.16137695,43.14390945 L 141.42370605,43.32810974 L 141.32949829,43.7250061 L 141.66113281,44.01261139 L 141.78443909,44.72360992 L 141.57206726,45.23791885 L 141.95539856,45.51557922 L 142.98991394,44.5603447 L 143.94444275,44.08587646 L 145.05931091,43.78622818 L 145.47471619,43.18805695 L 144.73445129,43.0066185 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -60.23332596,45.72589493 L -61.33111191,45.56472397 L -61.55166626,46.04138947 L -60.68723297,46.92065048 L -60.30410385,46.85138702 L -60.52243423,46.37388992 L -59.92638397,46.17281342 L -59.83086777,45.95615768 L -60.23332596,45.72589493 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -64.12120056,46.59948349 L -62.96944427,46.40972137 L -62.19499969,46.48305511 L -62.82194519,45.9636116 L -62.97761154,46.19648361 L -63.61972046,46.21500015 L -64.12120056,46.59948349 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -56.7442627,50.13370514 L -56.16677094,50.15550232 L -55.77172852,49.93050766 L -55.93051147,49.74642181 L -55.7125473,49.4242897 L -55.16556549,49.54552841 L -54.84422302,49.27949905 L -54.55638885,49.53972244 L -54.07749939,49.47611237 L -53.47992706,49.2453804 L -53.99452972,48.90098953 L -53.69524384,48.6394577 L -53.29611206,48.53305435 L -53.77166748,47.79166794 L -53.10743713,47.44396973 L -52.63496399,47.49256897 L -53.09114456,46.64553833 L -53.78159714,47.03148651 L -53.90050507,47.60712051 L -54.16888809,47.86083221 L -54.51388931,47.39444351 L -54.83111191,47.39527893 L -55.38166809,46.87472153 L -55.97888947,46.98749924 L -55.33735275,47.24545288 L -55.92893982,47.67722321 L -56.65501022,47.60665512 L -57.63611221,47.60472107 L -58.10760117,47.69858551 L -59.17055511,47.56638718 L -59.4094429,47.88916779 L -58.67388916,48.3741684 L -58.50003052,49.0071907 L -58.02527618,49.20639038 L -58.22055435,49.41749954 L -57.96694565,49.66749954 L -57.47555923,50.47632217 L -57.07590103,50.79654694 L -56.66277695,51.35388947 L -55.91110992,51.62805557 L -55.49581528,51.3719635 L -55.86222076,50.89389038 L -56.7442627,50.13370514 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -62.17722321,49.39666748 L -62.2442894,49.0625267 L -63.56916809,49.38999939 L -63.92084885,49.88623047 L -63.08141708,49.76710129 L -62.17722321,49.39666748 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -125.777565,49.07194519 L -126.56780243,49.57127762 L -126.80024719,49.9066658 L -127.15389252,49.85944366 L -128.22332764,50.53972244 L -128.06277466,50.8730545 L -127.11833191,50.58944321 L -125.44166565,50.32055664 L -124.79722595,49.47861099 L -123.98110962,49.23916626 L -123.44638824,48.65416718 L -123.66638947,48.31999969 L -125.11742401,48.72990799 L -125.0083313,48.89972305 L -125.777565,49.07194519 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 142.12382507,46.00304794 L 141.93193054,46.09770966 L 141.81011963,46.59952164 L 142.05166626,47.18901062 L 141.96130371,47.6190033 L 142.20251465,47.9861145 L 142.1421814,48.32613754 L 141.84693909,48.76638794 L 142.0944519,49.22338486 L 142.16748047,49.8033905 L 142.08586121,50.82124329 L 142.25332642,51.14305496 L 142.06611633,51.48500061 L 141.62652588,51.8866272 L 141.65777588,52.3775177 L 141.91833496,53.06888962 L 141.7645874,53.37751389 L 142.62786865,53.54665375 L 143.05787659,53.21683121 L 143.31666565,52.58194351 L 143.08265686,52.11288071 L 143.44888306,51.45333481 L 143.83222961,50.23749924 L 144.23883057,49.4994278 L 144.15336609,49.20938873 L 143.47610474,49.35889053 L 143.05082703,49.18722153 L 142.97972107,48.8983345 L 142.54364014,48.06078339 L 142.55133057,47.70288849 L 142.94056702,47.35283661 L 143.19528198,46.70527649 L 142.44937134,46.64575958 L 142.12382507,46.00304794 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -167.16317749,53.61526871 L -167.02278137,53.95388794 L -166.62388611,54.00500107 L -166.26930237,53.69794846 L -166.65777588,53.48638916 L -167.16317749,53.61526871 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -131.7283783,52.79460907 L -132.06201172,52.6921463 L -132.57914734,53.08600998 L -131.64389038,53.10832596 L -131.7283783,52.79460907 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -129.11123657,52.89803314 L -129.04119873,53.30725861 L -128.57427979,53.09210205 L -128.5927124,52.60827637 L -129.11123657,52.89803314 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -81.16168213,53.18811035 L -80.82159424,53.00750732 L -81.05500031,52.74944305 L -81.94889069,52.96111298 L -81.82000732,53.17590332 L -81.16168213,53.18811035 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -132.02011108,53.24389267 L -132.93611145,53.51555634 L -133.15887451,53.91467285 L -133.02278137,54.18000031 L -131.76377869,54.08505249 L -132.02011108,53.24389267 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 62.08750153,80.65000153 L 61.12083435,80.37083435 L 59.38124847,80.46875 L 59.47708511,80.69791412 L 61.73541641,80.86875153 L 62.08750153,80.65000153 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 63.46666718,80.67292023 L 62.51250076,80.79792023 L 64.37291718,81.2104187 L 64.96198273,80.7817688 L 63.46666718,80.67292023 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -96.43333435,77.8979187 L -97.52500153,78.01041412 L -98.40260315,78.7723999 L -96.52083588,78.68333435 L -94.82291412,78.36875153 L -95.29582977,77.96666718 L -96.43333435,77.8979187 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -109.8312149,78.3041687 L -112.17292023,78.37916565 L -110.38541412,78.7583313 L -109.27708435,78.48958588 L -109.8312149,78.3041687 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 102.98542023,79.22499847 L 103.87916565,79.16666412 L 105.34531403,78.75156403 L 105.25989532,78.43593597 L 102.97499847,78.17708588 L 99.54792023,78.12291718 L 101.39375305,79.21250153 L 102.98542023,79.22499847 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -99.13697815,78.12343597 L -100.2578125,77.81614685 L -100.98593903,78.18906403 L -103.12916565,78.375 L -103.39583588,78.77083588 L -105.65989685,79.16197968 L -103.91249847,79.37291718 L -102.41197968,79.0005188 L -101.60416412,79.07707977 L -99.5083313,78.59583282 L -99.13697815,78.12343597 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 94.42708588,79.42500305 L 93.70625305,79.5541687 L 94.92760468,80.08802032 L 97.63749695,80.16041565 L 99.30000305,80.04374695 L 99.8208313,79.5708313 L 99.52916718,78.81666565 L 97.63124847,78.81666565 L 96.81666565,78.98958588 L 94.91874695,79.04166412 L 94.42708588,79.42500305 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -91.98750305,79.29374695 L -92.53749847,79.39167023 L -95.13124847,79.27500153 L -96.75,80.08750153 L -95.24531555,81.00156403 L -94.25624847,81.34166718 L -92.06458282,81.22916412 L -90.74375153,80.56458282 L -87.6020813,80.40833282 L -87.71875,80.08333588 L -84.8833313,79.26249695 L -86.49583435,79.06041718 L -88.80625153,78.15208435 L -92.14115143,78.2182312 L -94.32239532,78.98490143 L -91.98750305,79.29374695 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 21.55989647,80.23593903 L 26.76250076,80.15000153 L 27.17916679,79.84583282 L 25.17708397,79.3520813 L 22.86874962,79.25624847 L 20.02708244,79.46666718 L 21.13958359,79.70207977 L 18.29583359,79.81874847 L 17.94948006,80.17552185 L 20.30677032,80.40989685 L 21.55989647,80.23593903 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -17.90833282,79.72291565 L -20.01666641,79.6875 L -18.92916679,80.05208588 L -17.21302032,80.01197815 L -17.90833282,79.72291565 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 94.65833282,80.13957977 L 93.59166718,80.01041412 L 91.56458282,80.29582977 L 92.71458435,80.46666718 L 93.1651001,80.94843292 L 95.73958588,81.27500153 L 98.02916718,80.6791687 L 97.59999847,80.29582977 L 94.65833282,80.13957977 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 50.99678802,80.85624695 L 51.04375076,80.56041718 L 49.17708206,80.37083435 L 49.79375076,80.90833282 L 50.99678802,80.85624695 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -165.7098999,60.24843979 L -165.57991028,59.91271973 L -166.20040894,59.77582169 L -167.13490295,60.0 L -166.48176575,60.37343979 L -165.7098999,60.24843979 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -80.2583313,61.91458511 L -79.9375,62.37083435 L -79.2588501,62.23593521 L -79.44843292,61.8755188 L -79.88072968,61.5942688 L -80.2583313,61.91458511 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -7.79750109,55.18819427 L -7.334167,55.36875153 L -6.73027802,55.17041779 L -6.14361,55.22819519 L -5.47750092,54.56430435 L -5.61138916,54.24625015 L -6.16583395,53.97680664 L -6.21361208,53.63430405 L -5.99916601,52.96014023 L -6.4463892,52.30764008 L -7.58639002,51.99097061 L -8.70638943,51.57069397 L -9.34972286,51.47041702 L -10.05249882,51.66902924 L -10.39472294,51.88263702 L -9.67916679,52.4968071 L -9.26305676,53.1543045 L -9.8763876,53.30263901 L -10.16805553,53.56319427 L -9.64190578,53.78991699 L -10.07194519,54.02375031 L -9.80750561,54.34402847 L -8.8241663,54.25347137 L -8.28250027,54.47735977 L -8.54972267,54.77152634 L -8.46411228,54.99932861 L -7.79750109,55.18819427 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 138.09307861,55.04927826 L 137.66615295,54.6423378 L 137.30467224,54.90751266 L 137.63230896,55.19589233 L 138.09307861,55.04927826 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -163.49777222,54.65222168 L -164.94778442,54.57555389 L -163.89611816,55.0363884 L -163.44219971,54.97167969 L -163.49777222,54.65222168 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -4.88527679,55.72986221 L -5.18972111,55.94597244 L -5.70805597,55.96569443 L -5.39416695,56.45513916 L -5.92860985,56.56347275 L -5.65638781,57.23430634 L -5.87083387,57.50152969 L -5.81416607,57.83041763 L -5.2147212,57.92013931 L -5.34305477,58.25125122 L -4.86805582,58.60902786 L -4.21527719,58.53291702 L -3.02416706,58.64430618 L -3.21972299,58.30541611 L -3.98361206,57.96902847 L -4.01083422,57.60069275 L -3.34694505,57.72486115 L -2.0775001,57.70097351 L -1.77305603,57.47402954 L -2.19749904,56.90680695 L -2.77805591,56.33291626 L -3.14472103,56.11930466 L -2.13583207,55.91652679 L -1.62416601,55.55208206 L -1.49694502,55.10319519 L -1.16861105,54.64569473 L -0.520832,54.44736099 L -0.223056,54.15874863 L 0.53139001,52.97569275 L 1.29916704,52.93402863 L 1.65861201,52.75597382 L 1.76249897,52.47652817 L 1.58194399,52.08763885 L 1.14027703,51.7793045 L 0.90083301,51.34182358 L 1.38083303,51.14236069 L 0.20416801,50.7393074 L -0.944722,50.81958389 L -1.88527799,50.7140274 L -1.959167,50.59069443 L -2.79249907,50.7179184 L -3.44416595,50.60458374 L -3.65416694,50.21763992 L -4.16305494,50.36069489 L -4.76583385,50.3231926 L -5.10027695,50.00402832 L -5.43694401,50.19374847 L -4.56250095,50.78125 L -4.2219429,51.1898613 L -3.05749893,51.20319366 L -3.84416795,51.61930466 L -4.37861109,51.73152924 L -5.05749989,51.61958313 L -5.12638903,51.85597229 L -4.73027706,52.11819458 L -4.20694399,52.26486206 L -4.06138992,52.72208405 L -4.35639,53.03180695 L -3.77916694,53.32875061 L -3.03861189,53.44124985 L -3.04638791,53.92319489 L -3.96472311,54.77069473 L -4.85083389,54.86597061 L -4.99361086,55.14374924 L -4.6569438,55.43958282 L -4.88527679,55.72986221 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 10.73305416,55.06680679 L 10.19805431,55.06930542 L 9.77527714,55.46930695 L 10.31249905,55.62236023 L 10.79305458,55.35708237 L 10.73305416,55.06680679 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 12.17027664,55.09902954 L 12.05360985,54.96263885 L 11.25861073,55.20013809 L 11.09361076,55.66597366 L 11.86361027,55.79569626 L 12.29083443,56.12930679 L 12.59583282,55.6795845 L 12.17027664,55.09902954 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -132.16000366,55.30110931 L -131.9755249,55.18361282 L -132.02888489,54.69694519 L -132.55752563,55.07648468 L -133.23722839,55.28499985 L -133.06188965,55.62157822 L -133.26693726,56.00157928 L -133.19891357,56.33630371 L -132.48327637,55.7902832 L -132.16000366,55.30110931 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -131.234375,55.39892578 L -131.83111572,55.44861221 L -131.71205139,55.83361053 L -131.26379395,55.97271729 L -130.93966675,55.61978149 L -131.234375,55.39892578 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -133.70941162,56.64331055 L -133.83111572,56.32361221 L -134.29444885,56.35333252 L -134.42053223,56.8250618 L -133.70941162,56.64331055 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -133.86151123,56.91557693 L -132.97727966,56.91999435 L -133.19166565,56.44666672 L -133.60296631,56.43507004 L -133.86151123,56.91557693 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -134.85388184,57.13105011 L -134.61779785,56.66607666 L -134.80657959,56.23468018 L -135.39222717,56.88555527 L -135.42555237,57.5625 L -134.89880371,57.4261055 L -134.85388184,57.13105011 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 8.54138947,56.58347321 L 8.22916603,56.79013824 L 8.61250114,57.12486267 L 9.52305603,57.21513748 L 9.93361092,57.58235931 L 10.42805576,57.59736252 L 10.54583454,57.22680664 L 10.0013876,57.08930588 L 8.67083263,56.95208359 L 8.54138947,56.58347321 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -153.02098083,57.47114944 L -153.97782898,56.74327469 L -154.52833557,56.99222183 L -154.63000488,57.50777817 L -152.93371582,57.94742203 L -152.51657104,57.90935516 L -152.16487122,57.61174011 L -152.33828735,57.42236328 L -153.02098083,57.47114944 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 18.89638901,57.44041824 L 18.19638824,57.07069397 L 18.10467529,57.53458405 L 18.75030518,57.92431641 L 18.89638901,57.44041824 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -134.57615662,57.34840775 L -134.82167053,58.14361191 L -134.53703308,58.18198776 L -133.93515015,57.61087799 L -133.86244202,57.36772919 L -134.57615662,57.34840775 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -136.10552979,57.63970947 L -136.35276794,58.04941177 L -135.82829285,58.28105164 L -134.95198059,58.03947067 L -134.8500061,57.57888794 L -135.54730225,57.47930908 L -136.10552979,57.63970947 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 163.5111084,58.50468063 L 163.92494202,59.02421188 L 164.58851624,59.23970795 L 164.64071655,58.8710289 L 164.18722534,58.81472397 L 163.5111084,58.50468063 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 23.38041115,58.53203201 L 22.21546936,58.15730286 L 21.88871574,58.47483826 L 22.36112595,58.57719421 L 23.38041115,58.53203201 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 146.2416687,75.18958282 L 147.3833313,75.42708588 L 150.1499939,75.20833588 L 150.6395874,74.86458588 L 149.17707825,74.7270813 L 148.16041565,74.78541565 L 146.2416687,75.18958282 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -94.68706512,74.6381073 L -96.59739685,75.06926727 L -95.77916718,75.51667023 L -94.29426575,75.5848999 L -93.47551727,75.25364685 L -93.48332977,74.67292023 L -94.68706512,74.6381073 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 113.39218903,74.34010315 L 112.83333588,74.07917023 L 111.67082977,74.23958588 L 112.01509857,74.54322815 L 113.39218903,74.34010315 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -93.1328125,77.6880188 L -93.73698425,77.45051575 L -95.89583588,77.47083282 L -95.93125153,77.76041412 L -93.1328125,77.6880188 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 22.43958282,78.22499847 L 23.1640625,78.16822815 L 24.19114685,77.73802185 L 20.84010315,77.44739532 L 22.43958282,78.22499847 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -110.90416718,77.8666687 L -110.06926727,77.56510162 L -111.94791412,77.33750153 L -112.98750305,77.52708435 L -113.1020813,77.92292023 L -111.27916718,78.09166718 L -110.90416718,77.8666687 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 137.83280945,74.9453125 L 137.14634705,75.72031403 L 138.2046814,76.10676575 L 139.02708435,76.17500305 L 140.44792175,75.79374695 L 141.8208313,76.10624695 L 142.5854187,75.85832977 L 143.61457825,75.8520813 L 145.25416565,75.5708313 L 144.73072815,75.15364838 L 142.4937439,74.7895813 L 141.57499695,74.93125153 L 139.0625,74.6333313 L 137.83280945,74.9453125 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -116.59999847,76.09583282 L -115.09791565,76.48542023 L -114.10624695,76.28333282 L -112.47916412,76.17708588 L -111.43958282,75.79166412 L -111.28281403,75.5307312 L -108.8666687,75.49375153 L -109.26509857,76.05260468 L -110.3041687,76.3041687 L -109.16041565,76.81874847 L -108.61927032,76.8203125 L -108.43177032,76.09843445 L -107.15625,75.91249847 L -105.85832977,76.00416565 L -105.35468292,75.68489838 L -105.99635315,75.07551575 L -107.26041412,74.91666412 L -108.81874847,75.07499695 L -110.3515625,74.84739685 L -111.64218903,74.50260162 L -112.7270813,74.40416718 L -114.20207977,74.56874847 L -112.16666412,75.1333313 L -114.41926575,75.07343292 L -115.04792023,74.96458435 L -117.52916718,75.2104187 L -116.59999847,76.09583282 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -96.5942688,76.69843292 L -96.35832977,77.04374695 L -93.61458588,76.90416718 L -93.09583282,76.62083435 L -91.46458435,76.69166565 L -90.34375,76.3979187 L -90.62083435,76.03125 L -89.30625153,75.8041687 L -89.17031097,75.49635315 L -87.38957977,75.61250305 L -86.4369812,75.42134857 L -84.06041718,75.75 L -82.2729187,75.82707977 L -81.1166687,75.76457977 L -79.65260315,75.4598999 L -79.35624695,74.88124847 L -80.27708435,74.58125305 L -81.74843597,74.4692688 L -87.73750305,74.45625305 L -89.1791687,74.58958435 L -89.98750305,74.53125 L -92.08281708,74.79634857 L -92.50364685,75.2182312 L -92.01667023,75.58958435 L -92.14323425,75.88176727 L -93.69791412,76.24791718 L -95.83281708,76.39635468 L -96.5942688,76.69843292 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -117.57917023,76.11250305 L -118.54792023,75.50624847 L -119.40156555,75.60884857 L -117.57917023,76.11250305 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -97.40989685,75.62343597 L -98.06874847,75.33125305 L -97.95833588,75.02708435 L -100.37239838,75.02968597 L -100.5625,75.42708588 L -99.76875305,75.68333435 L -102.66249847,75.5395813 L -101.77135468,75.88906097 L -102.10572815,76.30260468 L -100.19166565,76.64375305 L -99.26457977,76.49375153 L -97.68333435,76.4916687 L -97.49635315,76.20051575 L -97.88541412,75.73750305 L -97.40989685,75.62343597 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -20.09427071,76.24739838 L -20.27708244,75.98332977 L -21.89322853,76.0078125 L -20.99583244,76.3041687 L -20.09427071,76.24739838 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -120.4604187,75.90833282 L -122.5005188,76.05677032 L -122.61823273,76.3432312 L -121.45625305,76.44166565 L -119.16041565,77.31874847 L -117.23958588,77.2895813 L -116.61875153,77.53541565 L -115.8979187,76.69166565 L -117.04582977,76.56666565 L -116.96302032,76.3442688 L -118.63957977,76.2895813 L -119.71510315,75.89009857 L -120.4604187,75.90833282 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -20.11249924,77.40625 L -18.19843674,77.1953125 L -18.39218712,76.7588501 L -20.52552032,76.88906097 L -22.10625076,76.85624695 L -21.99739647,77.2901001 L -21.02499962,77.96875 L -19.82291603,77.75624847 L -20.11249924,77.40625 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 17.07291603,77.03333282 L 16.35208321,76.70833588 L 15.4958334,76.88124847 L 13.92135429,77.52864838 L 13.60624981,78.06041718 L 11.61093712,78.73281097 L 12.55364609,78.9776001 L 12.14791679,79.26875305 L 10.85624981,79.33750153 L 10.90885448,79.6244812 L 13.77083302,79.87708282 L 15.18958378,79.60624695 L 16.51874924,79.9458313 L 17.56041718,79.88957977 L 18.82864571,79.39009857 L 20.97500038,78.70625305 L 18.84583282,78.54166412 L 19.04323006,78.09843445 L 18.37083244,78.03541565 L 17.07291603,77.03333282 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -82.45323181,76.3979187 L -84.20207977,76.45207977 L -84.91666412,76.27916718 L -86.43906403,76.42656708 L -87.71198273,76.35051727 L -89.65625,76.56666565 L -89.51406097,76.83177185 L -88.29374695,77.13124847 L -87.45207977,77.125 L -88.16041565,77.79792023 L -86.19791412,77.79582977 L -85.80156708,77.51093292 L -84.77500153,77.5229187 L -86.2723999,78.0713501 L -87.52656555,78.13176727 L -87.48906708,78.44114685 L -86.4770813,78.80625153 L -84.30000305,78.96875 L -85.05000305,79.62291718 L -86.39167023,79.76041412 L -86.47916412,80.30833435 L -84.08750153,80.2729187 L -81.54582977,80.59999847 L -86.0708313,80.52708435 L -88.29582977,80.69374847 L -90.29531097,81.1640625 L -89.86458588,81.30000305 L -91.88072968,81.61198425 L -86.79582977,82.22083282 L -85.33958435,82.2270813 L -79.79582977,82.73958588 L -79.20573425,82.92552185 L -76.08125305,83.0541687 L -73.58698273,82.94010162 L -72.32291412,83.09375 L -63.4526062,82.79426575 L -61.52708435,82.47499847 L -61.21718979,82.21302032 L -64.44999695,81.70833588 L -64.68541718,81.37083435 L -66.15208435,81.19166565 L -70.0229187,80.28541565 L -71.09218597,79.78385162 L -74.93541718,79.37291718 L -74.55625153,79.01249695 L -75.10832977,78.36875153 L -75.85781097,77.97239685 L -76.85832977,77.86042023 L -79.09010315,77.15364838 L -77.99843597,76.99010468 L -77.82917023,76.63124847 L -78.5229187,76.45207977 L -80.93125153,76.14583588 L -81.22499847,76.5 L -82.45323181,76.3979187 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -83.6338501,62.62031555 L -83.54322815,62.82656479 L -82.24427032,62.99114609 L -81.94010162,62.72135162 L -83.03125,62.19791794 L -83.7276001,62.2651062 L -83.6338501,62.62031555 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -170.63749695,63.42291641 L -170.49583435,63.69374847 L -169.5562439,63.36041641 L -170.21665955,63.18333435 L -170.63749695,63.42291641 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -82.07291412,63.86875153 L -80.91041565,64.1166687 L -80.38749695,63.83958435 L -81.15000153,63.46250153 L -82.1338501,63.6953125 L -82.07291412,63.86875153 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -82.19947815,63.91093445 L -83.52916718,64.09999847 L -83.72083282,63.77083206 L -84.36458588,63.56041718 L -84.58125305,63.29166794 L -85.1958313,63.11041641 L -85.65989685,63.32551956 L -85.58802032,63.62968826 L -86.91874695,63.54583359 L -86.81666565,63.94166565 L -86.13801575,64.09739685 L -86.38072968,64.60781097 L -86.13906097,64.92134857 L -85.98490143,65.72239685 L -85.19166565,65.80833435 L -83.89375305,65.16041565 L -81.81093597,64.53801727 L -81.58958435,64.12916565 L -82.19947815,63.91093445 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -17.355093,63.7754364 L -17.97135353,63.5151062 L -18.67291641,63.39791489 L -20.16250038,63.53125 L -22.01874924,64.04582977 L -22.03125,64.30208588 L -22.53541756,64.77916718 L -23.20000076,65.01041412 L -21.90885353,65.40885162 L -23.20156288,65.54740143 L -23.95572853,65.4151001 L -24.11406326,65.78281403 L -23.25468826,66.16822815 L -22.86458397,66.4604187 L -22.39010429,66.43281555 L -21.27968788,65.9057312 L -21.43593788,65.6880188 L -21.1796875,65.32551575 L -20.51874924,65.4916687 L -20.26510429,65.72343445 L -19.65989685,65.76301575 L -18.94791603,66.1875 L -17.90677071,66.13906097 L -17.41666603,65.9916687 L -16.49166679,66.19166565 L -15.09635448,66.27760315 L -14.6796875,66.04322815 L -14.68124962,65.75208282 L -13.60677052,65.50468445 L -13.4963541,65.07343292 L -14.51875019,64.43333435 L -15.9416666,64.15000153 L -16.70208359,63.79166794 L -17.355093,63.7754364 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -176.41200256,65.50624847 L -178.4375,65.46875 L -178.84114075,65.89427185 L -178.44010925,66.2192688 L -179.7869873,66.07551575 L -179.4432373,65.55052185 L -179.54426575,65.23384857 L -179.99842834,65.04843903 L -180.0,66.0307312 L -180.0,67.49871826 L -180.0,67.99635315 L -179.99790955,68.97916412 L -178.8442688,68.7494812 L -178.7020874,68.5395813 L -176.7276001,68.04322815 L -176.31040955,67.72916412 L -175.7567749,67.7817688 L -174.7875061,67.34791565 L -174.70625305,66.76041412 L -173.9145813,66.68125153 L -174.14582825,67.08125305 L -173.3687439,67.07291412 L -172.61250305,66.89167023 L -171.66667175,66.9375 L -171.36405945,66.67552185 L -169.6734314,66.04634857 L -170.5369873,65.85990143 L -170.62290955,65.59999847 L -171.9208374,65.5229187 L -172.1171875,65.04843903 L -172.75416565,64.83333588 L -172.41874695,64.5395813 L -172.9375,64.26041412 L -173.6416626,64.32499695 L -174.63697815,64.70677185 L -175.32292175,64.77708435 L -175.86405945,64.9921875 L -175.93333435,65.42082977 L -176.41200256,65.50624847 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -73.39427185,67.97343445 L -73.40416718,67.77708435 L -74.48750305,67.7895813 L -74.73332977,68.08750153 L -73.39427185,67.97343445 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -76.41041565,67.29792023 L -77.0848999,67.3130188 L -77.30156708,67.7182312 L -76.66614532,68.25989532 L -75.92708588,68.34583282 L -75.11042023,68.22083282 L -75.07968903,67.53593445 L -75.76823425,67.26718903 L -76.41041565,67.29792023 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -68.41869354,63.72713852 L -68.87239838,63.66926956 L -68.0942688,63.17656326 L -67.61875153,63.09375 L -66.04582977,62.22083282 L -66.27916718,61.86458206 L -67.35364532,62.13385391 L -68.58958435,62.25624847 L -69.13541412,62.41666794 L -69.71666718,62.78958511 L -70.16041565,62.74375153 L -71.14375305,63.06041718 L -71.7729187,63.36458206 L -71.54218292,63.67760468 L -72.2416687,63.66458511 L -73.13697815,64.26509857 L -74.43125153,64.61875153 L -74.8666687,64.39375305 L -75.80156708,64.60051727 L -75.87031555,64.37968445 L -76.82291412,64.23542023 L -77.87343597,64.3661499 L -78.17708588,64.5708313 L -78.1473999,64.94947815 L -77.3125,65.20207977 L -77.4145813,65.4604187 L -75.19218445,65.25676727 L -74.51509857,65.33802032 L -73.70259857,65.74531555 L -74.42240143,66.20365143 L -73.04166412,66.72291565 L -71.3979187,66.55625153 L -71.11302185,66.22031403 L -69.34166718,66.3125 L -69.96406555,66.70156097 L -70.99375153,67.01875305 L -71.40416718,66.625 L -72.5854187,66.6875 L -73.02916718,66.8041687 L -72.24375153,67.27500153 L -73.0005188,68.23906708 L -73.86823273,68.34947968 L -74.81463623,68.78126526 L -75.75260162,69.3119812 L -76.34375,69.41666412 L -77.2890625,69.86823273 L -77.63801575,70.16718292 L -78.92343903,70.3119812 L -78.6567688,69.97343445 L -79.75572968,69.87760162 L -81.07499695,70.09583282 L -82.15625,69.79582977 L -83.08958435,70.01667023 L -83.63749695,69.95833588 L -85.31041718,70.10832977 L -86.11042023,70.07707977 L -86.9916687,70.2895813 L -88.62916565,70.4604187 L -89.41822815,70.91301727 L -86.5083313,70.97916412 L -84.84635162,71.16926575 L -84.6791687,71.68333435 L -85.55989838,71.79948425 L -85.3208313,72.26457977 L -85.64009857,72.92134857 L -84.98750305,73.3520813 L -82.72083282,73.72499847 L -81.55833435,73.72291565 L -81.16822815,73.25468445 L -79.75208282,72.49791718 L -78.51875305,72.35416412 L -78.42031097,72.58698273 L -77.36875153,72.7729187 L -75.25208282,72.51041412 L -75.05000305,72.11250305 L -74.2192688,72.06406403 L -74.16041565,71.73750305 L -73.56510162,71.55573273 L -71.54166412,71.48958588 L -71.15260315,71.24635315 L -72.08958435,71.08333588 L -72.15833282,70.76041412 L -70.54948425,70.91718292 L -68.43958282,70.6020813 L -68.44010162,70.40781403 L -67.40833282,70.10832977 L -67.13906097,69.74843597 L -68.05781555,69.77448273 L -68.54374695,69.57499695 L -67.21666718,69.46666718 L -67.00364685,69.1880188 L -68.26249695,69.15625 L -68.21458435,68.58750153 L -67.19791412,68.35832977 L -65.99010468,67.9380188 L -65.65208435,67.99791718 L -64.2901001,67.71718597 L -63.94635391,67.34010315 L -62.97552109,67.27656555 L -62.85364914,66.94739532 L -62.04948044,67.0088501 L -61.28697586,66.60781097 L -61.88541794,66.27708435 L -62.49166489,66.21666718 L -62.29791641,65.79374695 L -63.51666641,65.48542023 L -63.33385086,65.14323425 L -63.99531555,65.09114838 L -64.67134857,65.19947815 L -65.4598999,65.67760468 L -65.34583282,65.98332977 L -66.5390625,66.2421875 L -67.15625,66.2729187 L -67.84791565,65.63749695 L -66.45207977,64.9291687 L -65.66926575,64.83281708 L -65.09583282,64.50208282 L -64.2104187,63.58333206 L -64.69999695,63.27708435 L -64.75156403,62.95885468 L -65.1328125,62.8442688 L -66.34791565,62.99791718 L -67.13801575,63.27552414 L -67.65989685,63.6411438 L -68.41869354,63.72713852 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 14.92664528,68.3276825 L 15.89166641,68.96875 L 16.6015625,68.79114532 L 16.51458359,68.56458282 L 15.65625,68.30833435 L 14.92664528,68.3276825 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 179.375,71.3520813 L 179.99790955,70.97291565 L 178.8192749,70.79322815 L 178.62968445,71.0703125 L 179.375,71.3520813 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -178.25364685,71.46354675 L -177.46510315,71.20051575 L -177.91926575,71.02135468 L -179.08332825,70.90416718 L -179.99790955,70.97916412 L -180.0,71.11666107 L -180.0,71.39167023 L -179.99790955,71.52884674 L -178.7270813,71.57499695 L -178.25364685,71.46354675 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 49.3359375,68.79634857 L 48.23333359,68.87291718 L 48.37760162,69.30573273 L 49.34583282,69.48750305 L 50.16926956,69.17760468 L 49.3359375,68.79634857 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -95.87898254,68.66960907 L -96.56874847,68.45625305 L -97.48332977,68.55625153 L -98.26406097,68.77656555 L -99.39583588,68.89375305 L -98.71718597,69.18177032 L -98.5932312,69.44843292 L -97.87031555,69.87656403 L -95.91718292,69.1473999 L -95.87898254,68.66960907 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 169.27082825,69.75416565 L 169.18540955,69.5541687 L 167.79167175,69.80833435 L 168.56040955,70.01667023 L 169.27082825,69.75416565 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -53.46666718,69.54792023 L -54.51666641,69.55833435 L -54.83958435,70.1791687 L -53.50416565,70.2416687 L -52.52656555,69.86510468 L -52.1875,69.47083282 L -53.52447891,69.2494812 L -53.46666718,69.54792023 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 59.13333511,69.89167023 L 58.62916565,70.0625 L 58.76718521,70.40052032 L 60.45208359,69.9291687 L 59.99010086,69.65989685 L 59.13333511,69.89167023 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -26.17708397,70.57291412 L -27.98541641,70.4145813 L -27.99791718,70.57499695 L -27.04375076,70.85832977 L -25.76458359,71.04792023 L -25.28333282,70.6479187 L -26.17708397,70.57291412 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 52.81406021,71.44426727 L 51.6088562,71.54426575 L 51.5630188,72.0619812 L 52.71406555,72.29426575 L 52.41666794,72.71875 L 53.31458282,73.01457977 L 53.44791794,73.23542023 L 54.92499924,73.42082977 L 56.38333511,73.2270813 L 56.23541641,72.84583282 L 55.66926956,72.65364838 L 55.38801956,72.00260162 L 56.21718979,71.18385315 L 57.41041565,70.59166718 L 56.09999847,70.63957977 L 55.15833282,70.54582977 L 54.50468445,70.75260162 L 53.46041489,70.86875153 L 53.54426956,71.1963501 L 52.81406021,71.44426727 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -89.875,71.37083435 L -89.72551727,71.75260162 L -90.11406708,71.93177032 L -90.01457977,72.3354187 L -89.22291565,73.12916565 L -88.21250153,73.59583282 L -86.64375305,73.84999847 L -85.09166718,73.8125 L -86.68281555,72.85781097 L -86.26093292,72.44947815 L -86.1567688,71.83073425 L -85.12291718,71.30208588 L -86.19999695,71.06666565 L -87.20833588,71.0229187 L -88.10832977,71.21666718 L -89.875,71.37083435 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -23.83906174,72.44218445 L -24.46458244,72.83333588 L -23.16875076,72.8354187 L -21.94583321,72.3979187 L -22.72552109,72.1796875 L -23.83906174,72.44218445 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -98.98698425,71.3130188 L -99.76667023,71.84375 L -100.65208435,72.1958313 L -101.75468445,72.4057312 L -102.66041565,72.8520813 L -101.90208435,73.04582977 L -101.17082977,72.71458435 L -100.08750153,72.93125153 L -101.53281403,73.46718597 L -100.86823273,73.84114838 L -99.8354187,73.9458313 L -99.2807312,73.75468445 L -97.1958313,73.85832977 L -96.95259857,73.63593292 L -97.8515625,73.27135468 L -97.85416412,73.04582977 L -96.58802032,72.72239685 L -96.60364532,71.8213501 L -98.98698425,71.3130188 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -124.98649597,71.88541412 L -125.74583435,71.95625305 L -124.98384857,72.60051727 L -124.86250305,73.10624695 L -123.81510162,73.82239532 L -124.35364532,74.01718903 L -124.4145813,74.37708282 L -121.74583435,74.55000305 L -119.51615143,74.21198273 L -117.29792023,74.20417023 L -115.35051727,73.5536499 L -115.76823425,73.35364532 L -119.25364685,72.65468597 L -119.375,72.33750153 L -120.43489838,71.95781708 L -120.46718597,71.56510162 L -123.13124847,71.07917023 L -123.61927032,71.49323273 L -124.98649597,71.88541412 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -104.94400787,69.08750153 L -105.83958435,69.18541718 L -106.31666565,69.41041565 L -107.31041718,69.02500153 L -108.50260162,68.8984375 L -109.63541412,68.64375305 L -111.19999695,68.52500153 L -112.75624847,68.47083282 L -113.6640625,68.82865143 L -113.63749695,69.2104187 L -115.4770813,69.26041412 L -116.61406708,69.45885468 L -117.35416412,70.03541565 L -115.95833588,70.23124695 L -114.51667023,70.32291412 L -112.5229187,70.19791412 L -112.1026001,70.50156403 L -113.82707977,70.71666718 L -115.29166412,70.59583282 L -117.37291718,70.63124847 L -118.41197968,70.9776001 L -117.51667023,71.3833313 L -117.99791718,71.67292023 L -119.07447815,71.66718292 L -118.50572968,72.50364685 L -117.31874847,72.92500305 L -114.45625305,73.37291718 L -113.94218445,73.1640625 L -111.10416412,72.70625305 L -109.83281708,72.53281403 L -108.69374847,72.59375 L -108.2807312,71.79426575 L -107.3041687,71.88957977 L -108.1015625,72.83177185 L -108.22343445,73.1869812 L -106.875,73.3125 L -105.5,72.8979187 L -104.84739685,71.9140625 L -104.38541412,71.64583588 L -104.47447968,71.01093292 L -103.49791718,70.57917023 L -102.17134857,70.35884857 L -101.8348999,70.10468292 L -101.01927185,70.19218445 L -100.90468597,69.7098999 L -102.50260162,69.56093597 L -101.73958588,69.1875 L -101.79166412,68.99583435 L -103.00416565,68.80000305 L -104.33906555,68.9151001 L -104.94400787,69.08750153 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -48.17552185,60.76094055 L -47.81874847,60.94583511 L -48.62656021,61.23281479 L -50.1953125,62.42760086 L -50.48176956,62.99635696 L -50.87708282,63.05208206 L -51.16249847,63.47291565 L -51.56614304,63.69635391 L -50.76927185,64.57656097 L -51.4453125,64.58385468 L -52.04791641,64.1020813 L -52.22447586,64.90781403 L -52.78489304,65.50676727 L -52.76718521,65.6796875 L -53.64374924,66.1020813 L -53.47499847,66.64375305 L -53.80781555,66.98176575 L -53.70624924,67.80000305 L -53.4536438,68.16614532 L -52.25364304,68.63489532 L -51.27500153,68.73332977 L -50.83750153,69.70207977 L -50.38801956,69.88697815 L -52.38541794,70.07291412 L -52.77500153,70.26249695 L -53.91875076,70.38957977 L -54.57551956,70.66718292 L -54.21041489,70.8125 L -52.66041565,70.73958588 L -51.57291794,70.4145813 L -51.02239609,70.60468292 L -51.38750076,71.10416412 L -52.37708282,71.15000153 L -52.38750076,71.56041718 L -53.47135162,71.80260468 L -54.34166718,71.38124847 L -55.36822891,71.41301727 L -55.56874847,71.9916687 L -54.93177414,72.22968292 L -54.96614838,72.56614685 L -54.24635696,72.79740143 L -55.54375076,73.06874847 L -55.33280945,73.33385468 L -56.04114914,73.65052032 L -55.82083511,73.92500305 L -56.38801956,74.5536499 L -57.02916718,74.73332977 L -58.2494812,75.47135162 L -60.14427185,76.06822968 L -63.10833359,76.35832977 L -64.40364838,76.23281097 L -67.21666718,76.19166565 L -68.48332977,76.0854187 L -69.6166687,76.375 L -69.26875305,76.68333435 L -70.61875153,76.80000305 L -70.86875153,77.19166565 L -68.48750305,77.35416412 L -72.19791412,77.93541718 L -72.80625153,78.3208313 L -72.37708282,78.52708435 L -70.72031403,78.67134857 L -68.46250153,79.05000305 L -65.90833282,79.125 L -64.50208282,79.59375 L -65.31666565,80.1020813 L -67.04740143,80.0546875 L -67.51197815,80.33177185 L -65.32707977,80.76249695 L -64.99791718,80.97083282 L -62.77500153,81.17708588 L -61.03125,80.61250305 L -59.61875153,80.61250305 L -61.69322586,81.2276001 L -61.80208206,81.79374695 L -59.30625153,82.10416412 L -55.21250153,82.33750153 L -53.87916565,81.97083282 L -51.56406021,82.11093903 L -50.21666718,82.4291687 L -47.23958206,81.9770813 L -45.90468979,81.53593445 L -44.4213562,81.64218903 L -45.53749847,82.14167023 L -44.30833435,82.27500153 L -46.36458206,82.66249847 L -43.26041794,82.71875 L -42.11666489,82.3520813 L -40.28802109,82.55677032 L -45.45416641,82.9375 L -42.86041641,83.22291565 L -41.33541489,82.93541718 L -39.45000076,83.05833435 L -38.70833206,83.5395813 L -30.52708244,83.63749695 L -25.48125076,83.40416718 L -24.11927032,83.07447815 L -19.80260468,82.59531403 L -21.26250076,82.04792023 L -21.30885315,81.45365143 L -19.76874924,81.55833435 L -17.10885429,81.44947815 L -12.3083334,81.54166412 L -12.61250019,81.14375305 L -14.12708378,80.7729187 L -16.97083282,80.54166412 L -16.88750076,80.16666412 L -19.54791641,80.23332977 L -20.62916756,79.68958282 L -19.06718826,79.14948273 L -21.27083397,78.76667023 L -23.04739571,78.6026001 L -23.70781326,78.04740143 L -23.89114571,77.42343903 L -23.05416679,77.08125305 L -22.91093826,76.67134857 L -23.54791641,76.42292023 L -24.02291679,75.91041565 L -22.70468712,75.88906097 L -21.93958282,76.03125 L -19.78125,75.90000153 L -19.36093712,75.54218292 L -19.61249924,75.12708282 L -20.56666756,75.19791412 L -20.74843788,74.84947968 L -19.76458359,74.5708313 L -19.35781288,74.27031708 L -21.74166679,74.05208588 L -20.64166641,73.875 L -20.37760353,73.51093292 L -22.23749924,73.24791718 L -23.99739647,73.59010315 L -25.33958244,73.4604187 L -25.75833321,73.25416565 L -25.66041756,72.89375305 L -24.77499962,72.6875 L -24.50052071,72.39531708 L -23.25,72.09375 L -22.86041641,71.69374847 L -21.72500038,71.44374847 L -22.02916718,70.51457977 L -23.36458397,70.45625305 L -23.97708321,70.62708282 L -24.74791718,71.32499695 L -26.78333282,70.92292023 L -27.60260391,70.92343903 L -28.35833359,70.51667023 L -28.16510391,70.35468292 L -26.50416756,70.46458435 L -26.23125076,70.19791412 L -24.87968826,70.33385468 L -23.38750076,70.09583282 L -22.99166679,69.76249695 L -24.28125,69.4375 L -25.70833397,68.88957977 L -26.43958282,68.69166565 L -28.40781212,68.56614685 L -28.52083397,68.4291687 L -30.54010391,68.11093903 L -31.67499924,68.12708282 L -33.04017258,67.64582062 L -33.06673813,67.23280334 L -34.01517105,67.01248932 L -34.39225769,66.48332214 L -36.51569366,65.92758942 L -37.06933975,65.59165192 L -37.67975616,65.67498779 L -39.0651741,65.66665649 L -39.9485054,65.10623932 L -40.75475693,65.06040192 L -40.19225693,64.53331757 L -40.70423508,64.30155182 L -40.51882172,63.74946976 L -41.11257172,63.22342682 L -42.05892181,62.74998856 L -42.28548813,62.29946899 L -42.09902954,61.84113312 L -42.63444138,61.30258942 L -42.82551956,60.59739304 L -43.24322891,60.4526062 L -43.04843521,60.14947891 L -43.23495865,59.93585205 L -44.52760696,60.0234375 L -45.22083282,60.16875076 L -45.7348938,60.72864914 L -46.33697891,61.05052185 L -46.7026062,60.84218979 L -47.45208359,60.93541718 L -48.17552185,60.76094055 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -24.16250038,72.91041565 L -23.12708282,73.0625 L -22.25208282,72.97083282 L -21.87343788,72.7109375 L -24.16250038,72.91041565 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 139.7744751,73.40364838 L 140.37083435,73.44374847 L 140.9458313,73.78749847 L 142.0625,73.90833282 L 143.5619812,73.45156097 L 143.2979126,73.18125153 L 140.6958313,73.42708588 L 139.7744751,73.40364838 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -94.93958282,71.98542023 L -95.17292023,72.45625305 L -95.66874695,72.80208588 L -95.6953125,73.6567688 L -95.29531097,73.98906708 L -93.57499695,74.17708588 L -92.26093292,74.01615143 L -91.20417023,74.01875305 L -90.34635162,73.79218292 L -91.7895813,72.87708282 L -92.20833588,72.71458435 L -93.93541718,72.77916718 L -93.4380188,72.45573425 L -94.02135468,72.0942688 L -94.93958282,71.98542023 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -24.67656326,73.03697968 L -25.75416756,73.18958282 L -24.71666718,73.43125153 L -23.77916718,73.35624695 L -23.0,73.09999847 L -24.67656326,73.03697968 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 71.6333313,73.21250153 L 70.44791412,73.01457977 L 70.01093292,73.37656403 L 70.85624695,73.47499847 L 71.6333313,73.21250153 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -77.03749847,73.40208435 L -76.0713501,72.93281555 L -76.3520813,72.81666565 L -78.24583435,72.89583588 L -79.26041412,72.74375153 L -79.98332977,72.86458588 L -80.10468292,73.1796875 L -80.81666565,73.28749847 L -80.78125,73.77500153 L -79.59166718,73.65416718 L -78.125,73.66874695 L -77.03749847,73.40208435 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M -106.43541718,73.37916565 L -106.59114838,73.69947815 L -105.08333588,73.74791718 L -104.47135162,73.5223999 L -104.9380188,73.02760315 L -105.39375305,72.91041565 L -106.43541718,73.37916565 z\" /><path fill-rule=\"evenodd\" fill=\"#ff3333\" stroke=\"#555555\" stroke-width=\"2.592\" opacity=\"0.6\" d=\"M 60.33541489,74.98958588 L 60.52916718,74.83958435 L 59.07500076,74.45625305 L 57.87239838,73.90364838 L 57.57916641,73.59375 L 56.68333435,73.23124695 L 54.24583435,73.38749695 L 53.70051956,73.72135162 L 55.14583206,74.16041565 L 55.60052109,74.60990143 L 56.45208359,74.8979187 L 57.02916718,75.37916565 L 59.28333282,75.90000153 L 61.08958435,76.0395813 L 61.69166565,76.29792023 L 63.05833435,76.20417023 L 65.27916718,76.44791412 L 66.02708435,76.73750305 L 67.73124695,77.00208282 L 69.0,76.78541565 L 68.625,76.40208435 L 67.11250305,76.07499695 L 62.22708511,75.43125153 L 60.33541489,74.98958588 z\" /></g></g></svg>"
      ],
      "text/plain": [
       "<shapely.geometry.multipolygon.MultiPolygon at 0x7f42e6161d60>"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "geom_world = gdf_world.iloc[0]['geometry']\n",
    "geom_world"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "35e6d2e0",
   "metadata": {},
   "source": [
    "<a id='test_h3'></a>\n",
    "### 1.2. Test H3 resolution:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "2f097d36",
   "metadata": {},
   "outputs": [],
   "source": [
    "#rasters for testing calculations with different resolutions - need to be in epsg4326\n",
    "raster_path_30m = '../../datasets/processed/deforestation_indicators/deforestation_risk_ha_2018_new_extent_4326.tif'\n",
    "raster_path_10km = '../../datasets/processed/processed_data/risk_map/water_risk_cotton_4326_2000_v2.tif'\n",
    "\n",
    "\n",
    "raster_path_10km_3857 = '../../datasets/processed/processed_data/risk_map/water_risk_cotton_3857_2000_v2.tif'"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "50ba9d4d",
   "metadata": {},
   "source": [
    "### Test resolution 5 - weighted median - 10km raster:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "id": "02e9fc75",
   "metadata": {},
   "outputs": [],
   "source": [
    "#get h3 array for resolution 5 and raster of 10km resolution\n",
    "array_5_res = get_h3_array(geom, raster_path_10km, 5, 'median', 'wr_cotton_')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "id": "14650a61",
   "metadata": {},
   "outputs": [],
   "source": [
    "#export json\n",
    "with open('./water_risk_res5.json', 'w') as f:\n",
    "    json.dump(array_5_res, f)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d86ceb6c",
   "metadata": {},
   "source": [
    "### Test resolution 6 - weighted median - 10km raster:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "id": "c766b0ff",
   "metadata": {},
   "outputs": [],
   "source": [
    "#get h3 array for resolution 5 and raster of 10km resolution\n",
    "array_6_res = get_h3_array(geom, raster_path_10km, 6, 'median', 'wr_cotton_')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "id": "2a276646",
   "metadata": {},
   "outputs": [],
   "source": [
    "#export json\n",
    "with open('./water_risk_res6.json', 'w') as f:\n",
    "    json.dump(array_6_res, f)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3d987267",
   "metadata": {},
   "source": [
    "### Test resolution 6 - weighted mean - 10km raster:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "f68911d4",
   "metadata": {},
   "outputs": [],
   "source": [
    "#get h3 array for resolution 5 and raster of 10km resolution\n",
    "array_6_res_mean = get_h3_array(geom, raster_path_10km, 6, 'mean', 'wr_cotton_')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "570ce04f",
   "metadata": {},
   "outputs": [],
   "source": [
    "#export json\n",
    "with open('./water_risk_res6_mean.json', 'w') as f:\n",
    "    json.dump(array_6_res_mean, f)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "95df52f5",
   "metadata": {},
   "source": [
    "### Test resolution 6 - weighted sum - 10km raster:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "0591a491",
   "metadata": {},
   "outputs": [],
   "source": [
    "#get h3 array for resolution 5 and raster of 10km resolution\n",
    "array_6_res_sum = get_h3_array(geom, raster_path_10km, 6, 'sum', 'wr_cotton_')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "c82199fd",
   "metadata": {},
   "outputs": [],
   "source": [
    "#export json\n",
    "with open('./water_risk_res6_sum.json', 'w') as f:\n",
    "    json.dump(array_6_res_sum, f)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "269084bd",
   "metadata": {},
   "source": [
    "### Test resolution 6 - weighted sum - 30 m raster"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "id": "2601a6c7",
   "metadata": {},
   "outputs": [],
   "source": [
    "#get h3 array for resolution 5 and raster of 10km resolution\n",
    "array_6_res = get_h3_array(geom, raster_path_30m, 6, 'sum', 'wr_cotton_')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "id": "7e3a119b",
   "metadata": {},
   "outputs": [],
   "source": [
    "#export json\n",
    "with open('./df_cotton_res6.json', 'w') as f:\n",
    "    json.dump(array_6_res, f)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "aba3d38c",
   "metadata": {},
   "source": [
    "### Test resolution 8- weighted sum - 30 m raster"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "id": "9162a3aa",
   "metadata": {},
   "outputs": [],
   "source": [
    "#get h3 array for resolution 5 and raster of 10km resolution\n",
    "array_8_res = get_h3_array(geom, raster_path_30m, 8, 'sum', 'wr_cotton_')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 38,
   "id": "e219283d",
   "metadata": {},
   "outputs": [],
   "source": [
    "#export json\n",
    "with open('./df_cotton_res8.json', 'w') as f:\n",
    "    json.dump(array_8_res, f)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "92bf3551",
   "metadata": {},
   "source": [
    "### Test resolution 9 - weighted sum - 30 m raster"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 44,
   "id": "be6a73fb",
   "metadata": {},
   "outputs": [],
   "source": [
    "#get h3 array for resolution 5 and raster of 10km resolution\n",
    "array_9_res = get_h3_array(geom, raster_path_30m, 9, 'sum', 'wr_cotton_')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 45,
   "id": "898d1887",
   "metadata": {},
   "outputs": [],
   "source": [
    "#export json\n",
    "with open('./df_cotton_res9.json', 'w') as f:\n",
    "    json.dump(array_9_res, f)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "640d7ecc",
   "metadata": {},
   "source": [
    "### Test resolution 9 - weighted mean - 30 m raster"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 47,
   "id": "0a4c5d2c",
   "metadata": {},
   "outputs": [],
   "source": [
    "#explore the res 9 but with weighted mean - difference with weighted sum\n",
    "#get h3 array for resolution 5 and raster of 10km resolution\n",
    "array_9_res = get_h3_array(geom, raster_path_30m, 9, 'mean', 'wr_cotton_')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 48,
   "id": "62de1412",
   "metadata": {},
   "outputs": [],
   "source": [
    "#export json\n",
    "with open('./df_cotton_res9_mean.json', 'w') as f:\n",
    "    json.dump(array_9_res, f)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b88c83ee",
   "metadata": {},
   "source": [
    "### Test resolution 6 - weighted mean - 10km raster - global extent"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "b3eba501",
   "metadata": {},
   "outputs": [],
   "source": [
    "#get h3 array for resolution 5 and raster of 10km resolution\n",
    "array_6_res_world = get_h3_array(geom_world, raster_path_10km, 6, 'mean', 'wr_cotton_')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "id": "d08b8aa1",
   "metadata": {},
   "outputs": [],
   "source": [
    "#export json\n",
    "with open('./water_risk_cotton_res6_mean_global.json', 'w') as f:\n",
    "    json.dump(array_6_res_world_3857, f)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "id": "8d4ca079",
   "metadata": {},
   "outputs": [],
   "source": [
    "array_6_res_world_clean = [el for el in array_6_res_world if el['sumStats'] != None]\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "id": "29739c54",
   "metadata": {},
   "outputs": [],
   "source": [
    "with open('./water_risk_cotton_res6_mean_global_clean.json', 'w') as f:\n",
    "    json.dump(array_6_res_world_clean, f)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8479b409",
   "metadata": {},
   "source": [
    "### Test resolution 1 - weighted sum - 10km raster - global extent"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "id": "7efbd52d",
   "metadata": {},
   "outputs": [],
   "source": [
    "#get h3 array for resolution 5 and raster of 10km resolution\n",
    "array_1_res_world = get_h3_array(geom_world, raster_path_10km, 1, 'sum', 'wr_cotton_')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "id": "aa10e854",
   "metadata": {},
   "outputs": [],
   "source": [
    "#export json\n",
    "with open('./water_risk_cotton_res1_mean_global.json', 'w') as f:\n",
    "    json.dump(array_1_res_world, f)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3f03c20e",
   "metadata": {},
   "source": [
    "### Test resolution 3 - weighted sum - 10km raster - global extent"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "id": "3221fc9f",
   "metadata": {},
   "outputs": [],
   "source": [
    "#get h3 array for resolution 5 and raster of 10km resolution\n",
    "array_3_res_world = get_h3_array(geom_world, raster_path_10km, 3, 'sum', 'wr_cotton_')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "id": "13952fa0",
   "metadata": {},
   "outputs": [],
   "source": [
    "#export json\n",
    "with open('./water_risk_cotton_res3_mean_global.json', 'w') as f:\n",
    "    json.dump(array_3_res_world, f)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1948d365",
   "metadata": {},
   "source": [
    "### Test resolution 5 - weighted sum - 10km raster - global extent"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "id": "28277e33",
   "metadata": {},
   "outputs": [],
   "source": [
    "#get h3 array for resolution 5 and raster of 10km resolution\n",
    "array_5_res_world = get_h3_array(geom_world, raster_path_10km, 5, 'sum', 'wr_cotton_')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "d5ccf62c",
   "metadata": {},
   "outputs": [],
   "source": [
    "#export json\n",
    "with open('./water_risk_cotton_res5_sum_global.json', 'w') as f:\n",
    "    json.dump(array_5_res_world, f)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 80,
   "id": "e6826b78",
   "metadata": {},
   "outputs": [],
   "source": [
    "#clean none from res 5\n",
    "\n",
    "with open('./water_risk_cotton_res5_mean_global.json', 'r') as f:\n",
    "    array_5_res_world = json.load(f)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "e63c3b8a",
   "metadata": {},
   "outputs": [],
   "source": [
    "array_5_res_world = [el for el in array_5_res_world if el['sumStats'] != None]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "60cded51",
   "metadata": {},
   "source": [
    "### Test resolution 6 - weighted sum - 10km raster - global extent"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "id": "7d56475b",
   "metadata": {},
   "outputs": [],
   "source": [
    "#get h3 array for resolution 5 and raster of 10km resolution\n",
    "array_6_res_world = get_h3_array(geom_world, raster_path_10km, 6, 'sum', 'wr_cotton_')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "fccf8cce",
   "metadata": {},
   "outputs": [],
   "source": [
    "#export json\n",
    "with open('./water_risk_cotton_res6_sum_global.json', 'w') as f:\n",
    "    json.dump(array_6_res_world, f)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "f97b26d1",
   "metadata": {},
   "outputs": [],
   "source": [
    "with open('./water_risk_cotton_res6_sum_global.json', 'r') as f:\n",
    "    array_6_res_world = json.load(f)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "84dcd4fd",
   "metadata": {},
   "outputs": [],
   "source": [
    "array_6_res_world = [el for el in array_6_res_world if el['sumStats'] != None]\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "658642c7",
   "metadata": {},
   "source": [
    "### Test reprojection to EPSG3857 - GLOBAL EXTENT"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "4e50962e",
   "metadata": {},
   "outputs": [],
   "source": [
    "generator = generate_h3_features(geom_world, 6)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "b09c1b50",
   "metadata": {},
   "outputs": [],
   "source": [
    "_array = []\n",
    "for feature in generator:\n",
    "    element = {\n",
    "        'hexId':feature['properties']['hexid'],  \n",
    "        'geometry':feature['geometry']\n",
    "    }\n",
    "    _array.append(element)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "9b7a7b81",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>hexId</th>\n",
       "      <th>geometry</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>86df6c38fffffff</td>\n",
       "      <td>{'type': 'Polygon', 'coordinates': [[(-71.3949...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>86df6c72fffffff</td>\n",
       "      <td>{'type': 'Polygon', 'coordinates': [[(-71.1318...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>86df6c047ffffff</td>\n",
       "      <td>{'type': 'Polygon', 'coordinates': [[(-71.5087...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>86df6c3b7ffffff</td>\n",
       "      <td>{'type': 'Polygon', 'coordinates': [[(-71.3732...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>86df6c707ffffff</td>\n",
       "      <td>{'type': 'Polygon', 'coordinates': [[(-71.1318...</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "             hexId                                           geometry\n",
       "0  86df6c38fffffff  {'type': 'Polygon', 'coordinates': [[(-71.3949...\n",
       "1  86df6c72fffffff  {'type': 'Polygon', 'coordinates': [[(-71.1318...\n",
       "2  86df6c047ffffff  {'type': 'Polygon', 'coordinates': [[(-71.5087...\n",
       "3  86df6c3b7ffffff  {'type': 'Polygon', 'coordinates': [[(-71.3732...\n",
       "4  86df6c707ffffff  {'type': 'Polygon', 'coordinates': [[(-71.1318..."
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "gdf = gpd.GeoDataFrame(_array)\n",
    "gdf.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "id": "4dfe6411",
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "geometries = []\n",
    "for i,row in gdf.iterrows():\n",
    "    geom = shape(row['geometry'])\n",
    "    geometries.append(geom)\n",
    "gdf['geometry']=geometries"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "id": "dace6663",
   "metadata": {},
   "outputs": [],
   "source": [
    "gdf = gdf.set_geometry('geometry')\n",
    "gdf.crs"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "id": "82304525",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>hexId</th>\n",
       "      <th>geometry</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>86df6c38fffffff</td>\n",
       "      <td>POLYGON ((-7947646.733 -7183618.340, -7941963....</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>86df6c72fffffff</td>\n",
       "      <td>POLYGON ((-7918358.386 -7221977.474, -7920405....</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>86df6c047ffffff</td>\n",
       "      <td>POLYGON ((-7960318.979 -7209354.494, -7962339....</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>86df6c3b7ffffff</td>\n",
       "      <td>POLYGON ((-7945235.413 -7206327.750, -7941568....</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>86df6c707ffffff</td>\n",
       "      <td>POLYGON ((-7918358.386 -7221977.474, -7922013....</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "             hexId                                           geometry\n",
       "0  86df6c38fffffff  POLYGON ((-7947646.733 -7183618.340, -7941963....\n",
       "1  86df6c72fffffff  POLYGON ((-7918358.386 -7221977.474, -7920405....\n",
       "2  86df6c047ffffff  POLYGON ((-7960318.979 -7209354.494, -7962339....\n",
       "3  86df6c3b7ffffff  POLYGON ((-7945235.413 -7206327.750, -7941568....\n",
       "4  86df6c707ffffff  POLYGON ((-7918358.386 -7221977.474, -7922013...."
      ]
     },
     "execution_count": 29,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "gdf = gdf.set_crs('EPSG:4326')\n",
    "gdf = gdf.to_crs('EPSG:3857')\n",
    "gdf.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "id": "60378149",
   "metadata": {},
   "outputs": [],
   "source": [
    "gdf.to_file('./world_geom_3857.json',\n",
    "    driver='GeoJSON')"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "39339ddd",
   "metadata": {},
   "source": [
    "### Try to get the geoms from the already generated file:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "10e67434",
   "metadata": {},
   "outputs": [],
   "source": [
    "with open('./water_risk_cotton_res6_mean_global_clean.json', 'r') as f:\n",
    "    array_6_res_world_clean = json.load(f)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "4ce03107",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>sumStats</th>\n",
       "      <th>hexId</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0.406926</td>\n",
       "      <td>864010a77ffffff</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>0.449853</td>\n",
       "      <td>866a588a7ffffff</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>0.463098</td>\n",
       "      <td>86752341fffffff</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>3.238817</td>\n",
       "      <td>864032137ffffff</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>0.198091</td>\n",
       "      <td>862150517ffffff</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   sumStats            hexId\n",
       "0  0.406926  864010a77ffffff\n",
       "1  0.449853  866a588a7ffffff\n",
       "2  0.463098  86752341fffffff\n",
       "3  3.238817  864032137ffffff\n",
       "4  0.198091  862150517ffffff"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "gdf = gpd.GeoDataFrame(array_6_res_world_clean)\n",
    "gdf.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "id": "cf65f9ba",
   "metadata": {},
   "outputs": [],
   "source": [
    "geometries = []\n",
    "for i,row in gdf.iterrows():\n",
    "    hexid = row['hexId']\n",
    "    coords = h3.h3_set_to_multi_polygon([hexid], geo_json=True)\n",
    "    geom_feature = {\"type\": \"Polygon\", \"coordinates\": coords[0]}\n",
    "    geom = shape(geom_feature)\n",
    "    geometries.append(geom)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "id": "cbf9331f",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>sumStats</th>\n",
       "      <th>hexId</th>\n",
       "      <th>geometry</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0.406926</td>\n",
       "      <td>864010a77ffffff</td>\n",
       "      <td>POLYGON ((110.65986 28.55930, 110.68977 28.537...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>0.449853</td>\n",
       "      <td>866a588a7ffffff</td>\n",
       "      <td>POLYGON ((34.23232 4.65150, 34.25434 4.62513, ...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>0.463098</td>\n",
       "      <td>86752341fffffff</td>\n",
       "      <td>POLYGON ((-2.42951 8.59922, -2.40199 8.60573, ...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>3.238817</td>\n",
       "      <td>864032137ffffff</td>\n",
       "      <td>POLYGON ((112.83420 27.14084, 112.80058 27.130...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>0.198091</td>\n",
       "      <td>862150517ffffff</td>\n",
       "      <td>POLYGON ((69.85305 51.02079, 69.79852 51.03369...</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   sumStats            hexId  \\\n",
       "0  0.406926  864010a77ffffff   \n",
       "1  0.449853  866a588a7ffffff   \n",
       "2  0.463098  86752341fffffff   \n",
       "3  3.238817  864032137ffffff   \n",
       "4  0.198091  862150517ffffff   \n",
       "\n",
       "                                            geometry  \n",
       "0  POLYGON ((110.65986 28.55930, 110.68977 28.537...  \n",
       "1  POLYGON ((34.23232 4.65150, 34.25434 4.62513, ...  \n",
       "2  POLYGON ((-2.42951 8.59922, -2.40199 8.60573, ...  \n",
       "3  POLYGON ((112.83420 27.14084, 112.80058 27.130...  \n",
       "4  POLYGON ((69.85305 51.02079, 69.79852 51.03369...  "
      ]
     },
     "execution_count": 27,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#append geometry in epsg4326\n",
    "gdf['geometry']= geometries\n",
    "gdf.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "id": "0e403e12",
   "metadata": {},
   "outputs": [],
   "source": [
    "gdf = gdf.set_geometry('geometry')\n",
    "gdf.crs"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "id": "50ed75b7",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<Projected CRS: EPSG:3857>\n",
       "Name: WGS 84 / Pseudo-Mercator\n",
       "Axis Info [cartesian]:\n",
       "- X[east]: Easting (metre)\n",
       "- Y[north]: Northing (metre)\n",
       "Area of Use:\n",
       "- name: World between 85.06°S and 85.06°N.\n",
       "- bounds: (-180.0, -85.06, 180.0, 85.06)\n",
       "Coordinate Operation:\n",
       "- name: Popular Visualisation Pseudo-Mercator\n",
       "- method: Popular Visualisation Pseudo Mercator\n",
       "Datum: World Geodetic System 1984 ensemble\n",
       "- Ellipsoid: WGS 84\n",
       "- Prime Meridian: Greenwich"
      ]
     },
     "execution_count": 29,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#set crs to epsg4326 and reproject to epsg3857\n",
    "gdf = gdf.set_crs('EPSG:4326')\n",
    "gdf = gdf.to_crs('EPSG:3857')\n",
    "gdf.crs"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "id": "5300b036",
   "metadata": {},
   "outputs": [],
   "source": [
    "#save as json\n",
    "gdf.to_file('./water_risk_cotton_res6_mean_global_clean_3857.json',\n",
    "    driver='GeoJSON')"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "133d91c5",
   "metadata": {},
   "source": [
    "### Generate centroids layer -res 6 - global extent\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "f24840f4",
   "metadata": {},
   "outputs": [],
   "source": [
    "with open('./water_risk_cotton_res6_mean_global_clean.json', 'r') as f:\n",
    "    array_6_res_world_clean = json.load(f)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "id": "7991ed8f",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>sumStats</th>\n",
       "      <th>hexId</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0.406926</td>\n",
       "      <td>864010a77ffffff</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>0.449853</td>\n",
       "      <td>866a588a7ffffff</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>0.463098</td>\n",
       "      <td>86752341fffffff</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>3.238817</td>\n",
       "      <td>864032137ffffff</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>0.198091</td>\n",
       "      <td>862150517ffffff</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   sumStats            hexId\n",
       "0  0.406926  864010a77ffffff\n",
       "1  0.449853  866a588a7ffffff\n",
       "2  0.463098  86752341fffffff\n",
       "3  3.238817  864032137ffffff\n",
       "4  0.198091  862150517ffffff"
      ]
     },
     "execution_count": 20,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "gdf = gpd.GeoDataFrame(array_6_res_world_clean)\n",
    "gdf.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "id": "68ff9f2c",
   "metadata": {},
   "outputs": [],
   "source": [
    "geometries = []\n",
    "for i,row in gdf.iterrows():\n",
    "    hexid = row['hexId']\n",
    "    centroid = h3.h3_to_geo(hexid)\n",
    "    point = Point(centroid[1],centroid[0])\n",
    "    geometries.append(point)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "id": "14612ef7",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>sumStats</th>\n",
       "      <th>hexId</th>\n",
       "      <th>geometry</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0.406926</td>\n",
       "      <td>864010a77ffffff</td>\n",
       "      <td>POINT (110.69422 28.56953)</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>0.449853</td>\n",
       "      <td>866a588a7ffffff</td>\n",
       "      <td>POINT (34.26676 4.65582)</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>0.463098</td>\n",
       "      <td>86752341fffffff</td>\n",
       "      <td>POINT (-2.42511 8.62751)</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>3.238817</td>\n",
       "      <td>864032137ffffff</td>\n",
       "      <td>POINT (112.82961 27.10906)</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>0.198091</td>\n",
       "      <td>862150517ffffff</td>\n",
       "      <td>POINT (69.80788 50.99762)</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   sumStats            hexId                    geometry\n",
       "0  0.406926  864010a77ffffff  POINT (110.69422 28.56953)\n",
       "1  0.449853  866a588a7ffffff    POINT (34.26676 4.65582)\n",
       "2  0.463098  86752341fffffff    POINT (-2.42511 8.62751)\n",
       "3  3.238817  864032137ffffff  POINT (112.82961 27.10906)\n",
       "4  0.198091  862150517ffffff   POINT (69.80788 50.99762)"
      ]
     },
     "execution_count": 33,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "gdf['geometry'] = geometries\n",
    "gdf.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "id": "16bb0909",
   "metadata": {},
   "outputs": [],
   "source": [
    "gdf = gdf.set_geometry('geometry')\n",
    "gdf = gdf.set_crs('EPSG:4326')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "id": "3a391d46",
   "metadata": {},
   "outputs": [],
   "source": [
    "gdf.to_file('./water_risk_cotton_res6_mean_global_clean_point.json',\n",
    "    driver='GeoJSON')"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f0ef3f9a",
   "metadata": {},
   "source": [
    "<a id='crop_data'></a>\n",
    "## 2. H3 Calculations\n",
    "\n",
    "As part of the workflow we will have:\n",
    "\n",
    "1. Generation of script for generating the risk maps for each indicators - ones those risk maos are generated, we will need to translate them into h3 using the approach highlighted above\n",
    "2. get the admin areas into h3 indexes in the database using the pg plugging for translating geometries into h3 indexes\n",
    "3. Perform calculations for each area by aggregating step 1 and 2\n",
    "\n",
    "### 2.1 Get user data into h3 res 6:\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "8c8fe74a",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Material</th>\n",
       "      <th>Material d</th>\n",
       "      <th>Volume</th>\n",
       "      <th>Country</th>\n",
       "      <th>Address</th>\n",
       "      <th>Latitude</th>\n",
       "      <th>Longitude</th>\n",
       "      <th>Location t</th>\n",
       "      <th>Accuracy</th>\n",
       "      <th>geometry</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Rubber</td>\n",
       "      <td>None</td>\n",
       "      <td>2400</td>\n",
       "      <td>China</td>\n",
       "      <td>None</td>\n",
       "      <td>None</td>\n",
       "      <td>None</td>\n",
       "      <td>Unknown</td>\n",
       "      <td>Low</td>\n",
       "      <td>MULTIPOLYGON (((73.49973 39.38174, 73.50468 39...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Rubber</td>\n",
       "      <td>None</td>\n",
       "      <td>1300</td>\n",
       "      <td>Malaysia</td>\n",
       "      <td>None</td>\n",
       "      <td>None</td>\n",
       "      <td>None</td>\n",
       "      <td>Unknown</td>\n",
       "      <td>Low</td>\n",
       "      <td>MULTIPOLYGON (((98.93721 5.68384, 98.93771 5.6...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Rubber</td>\n",
       "      <td>None</td>\n",
       "      <td>1000</td>\n",
       "      <td>United States</td>\n",
       "      <td>None</td>\n",
       "      <td>None</td>\n",
       "      <td>None</td>\n",
       "      <td>Unknown</td>\n",
       "      <td>Low</td>\n",
       "      <td>MULTIPOLYGON (((-180.00000 51.79409, -180.0000...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Rubber</td>\n",
       "      <td>None</td>\n",
       "      <td>730</td>\n",
       "      <td>Japan</td>\n",
       "      <td>None</td>\n",
       "      <td>None</td>\n",
       "      <td>None</td>\n",
       "      <td>Unknown</td>\n",
       "      <td>Low</td>\n",
       "      <td>MULTIPOLYGON (((122.71418 24.44983, 122.71457 ...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>Rubber</td>\n",
       "      <td>None</td>\n",
       "      <td>490</td>\n",
       "      <td>India</td>\n",
       "      <td>None</td>\n",
       "      <td>None</td>\n",
       "      <td>None</td>\n",
       "      <td>Unknown</td>\n",
       "      <td>Low</td>\n",
       "      <td>MULTIPOLYGON (((68.11138 23.60145, 68.13528 23...</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "  Material Material d  Volume        Country Address Latitude Longitude  \\\n",
       "0   Rubber       None    2400          China    None     None      None   \n",
       "1   Rubber       None    1300       Malaysia    None     None      None   \n",
       "2   Rubber       None    1000  United States    None     None      None   \n",
       "3   Rubber       None     730          Japan    None     None      None   \n",
       "4   Rubber       None     490          India    None     None      None   \n",
       "\n",
       "  Location t Accuracy                                           geometry  \n",
       "0    Unknown      Low  MULTIPOLYGON (((73.49973 39.38174, 73.50468 39...  \n",
       "1    Unknown      Low  MULTIPOLYGON (((98.93721 5.68384, 98.93771 5.6...  \n",
       "2    Unknown      Low  MULTIPOLYGON (((-180.00000 51.79409, -180.0000...  \n",
       "3    Unknown      Low  MULTIPOLYGON (((122.71418 24.44983, 122.71457 ...  \n",
       "4    Unknown      Low  MULTIPOLYGON (((68.11138 23.60145, 68.13528 23...  "
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "## import user data\n",
    "user_data = gpd.read_file('../../datasets/processed/user_data/located_lg_data_polygon_v2.shp')\n",
    "user_data.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "b80f2b93",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Material                                                 Cotton\n",
       "Material d                                                 None\n",
       "Volume                                                     4000\n",
       "Country                                                   China\n",
       "Address                                                    None\n",
       "Latitude                                                   None\n",
       "Longitude                                                  None\n",
       "Location t                                              Unknown\n",
       "Accuracy                                                    Low\n",
       "geometry      (POLYGON ((73.4997347 39.3817402, 73.5046849 3...\n",
       "Name: 14, dtype: object"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "user_data[user_data['Material']=='Cotton'].iloc[0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "b6b8be95",
   "metadata": {},
   "outputs": [],
   "source": [
    "#check with one location\n",
    "geom = user_data[user_data['Material']=='Cotton'].iloc[0]['geometry']\n",
    "generator = generate_h3_features(geom, 6)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "850a3c9b",
   "metadata": {},
   "outputs": [],
   "source": [
    "test_china = [{'volume':2400,\n",
    "  'hexid':feature['properties']['hexid'],\n",
    "  'geometry':feature['geometry']} for feature in generator]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ab3ec21e",
   "metadata": {},
   "source": [
    "### 2.2. Caclulate the probability area distribution:\n",
    "\n",
    "We can calculate the probability area distribution using the following formula:\n",
    "\n",
    "    f' = (V * Af) / (AT * Yield)\n",
    "    \n",
    "to do this we will need the folloing datasets:\n",
    "\n",
    "- volume raster derived from user data\n",
    "- area fraction for a particular commodity\n",
    "- the total area fraction for the user location\n",
    "- yield information for a particular commodity"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "503e3d47",
   "metadata": {},
   "outputs": [],
   "source": [
    "harvest_area_fraction_raster = {\n",
    "    'Rubber': '../../datasets/raw/crop_data/rubber/rubber_HarvestedAreaFraction.tif',\n",
    "    'Cotton': '../../datasets/raw/crop_data/cotton/cotton_HarvestedAreaFraction.tif',\n",
    "    'Leather': '../../datasets/raw/crop_data/default_pasture/CroplandPastureArea2000_Geotiff/asture2000_5m_ext_v2.tif'\n",
    "}\n",
    "\n",
    "yield_raster = {\n",
    "    'Rubber': '../../datasets/raw/crop_data/rubber/rubber_YieldPerHectare.tif',\n",
    "    'Cotton': '../../datasets/raw/crop_data/cotton/cotton_YieldPerHectare.tif',\n",
    "    'Leather': '../../datasets/raw/crop_data/default_pasture/CroplandPastureArea2000_Geotiff/Pasture2000_5m_yield_v5_NoZeros.tif'\n",
    "}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "485c8598",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/opt/conda/lib/python3.8/site-packages/rasterstats/io.py:302: UserWarning: Setting nodata to -999; specify nodata explicitly\n",
      "  warnings.warn(\"Setting nodata to -999; specify nodata explicitly\")\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "--- 799.8059668540955 seconds ---\n"
     ]
    }
   ],
   "source": [
    "#zonal stats for harvest area\n",
    "start_time = time.time()\n",
    "material = user_data.iloc[0]['Material']\n",
    "raster_path_ha = harvest_area_fraction_raster[material]\n",
    "_array_ha = get_h3_array(geom, raster_path_ha, 6, 'mean', 'ha')\n",
    "print(\"--- %s seconds ---\" % (time.time() - start_time))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "bc71ab74",
   "metadata": {},
   "outputs": [],
   "source": [
    "#parse harvest area fraction to h3 index\n",
    "for el in test_china:\n",
    "    harvest_area_list = [ha['sumStats'] for ha in _array_ha if ha['hexId'] == el['hexid']]\n",
    "    harvest_area = harvest_area_list[0] if len(harvest_area_list)>0 else 0\n",
    "    el['ha']=harvest_area"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "275baeb2",
   "metadata": {},
   "outputs": [],
   "source": [
    "# export unique user data\n",
    "with open('../../datasets/processed/user_data/located_lg_data_polygon_v2_h3_unique_china_ha.json', 'w') as f:\n",
    "    json.dump(test_china,f)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "5328d97d",
   "metadata": {},
   "outputs": [],
   "source": [
    "with open('../../datasets/processed/user_data/located_lg_data_polygon_v2_h3_unique_china_ha.json','r') as f:\n",
    "    test_china = json.load(f)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "eddfac0e",
   "metadata": {},
   "outputs": [],
   "source": [
    "#get sum of haf to calculate probability area distribution\n",
    "\n",
    "total_ha = sum([el['ha'] for el in test_china])\n",
    "\n",
    "#calculate probability area\n",
    "\n",
    "for el in test_china:\n",
    "    p_dis = float((el['ha']*el['volume'])/total_ha) \n",
    "    el['p_dis']=p_dis"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "d8b4ce1d",
   "metadata": {},
   "outputs": [],
   "source": [
    "#remove 0\n",
    "test_china = [el for el in test_china if el['p_dis'] !=0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "id": "41a0a054",
   "metadata": {},
   "outputs": [],
   "source": [
    "# export unique user data\n",
    "with open('../../datasets/processed/user_data/located_lg_data_polygon_v2_h3_unique_china_ha_pdis.json', 'w') as f:\n",
    "    json.dump(test_china,f)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 40,
   "id": "5f01531d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# export unique user data\n",
    "with open('../../datasets/processed/user_data/located_lg_data_polygon_v2_h3_unique_china_ha_pdis.json', 'r') as f:\n",
    "    test_china = json.load(f)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c3e1a49f",
   "metadata": {},
   "source": [
    "### 2.3 Calculate impact metric:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 39,
   "id": "04576860",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>sumStats</th>\n",
       "      <th>hexId</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0.406926</td>\n",
       "      <td>864010a77ffffff</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>0.449853</td>\n",
       "      <td>866a588a7ffffff</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>0.463098</td>\n",
       "      <td>86752341fffffff</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>3.238817</td>\n",
       "      <td>864032137ffffff</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>0.198091</td>\n",
       "      <td>862150517ffffff</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   sumStats            hexId\n",
       "0  0.406926  864010a77ffffff\n",
       "1  0.449853  866a588a7ffffff\n",
       "2  0.463098  86752341fffffff\n",
       "3  3.238817  864032137ffffff\n",
       "4  0.198091  862150517ffffff"
      ]
     },
     "execution_count": 39,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#risk map in h3 - water risk cotton\n",
    "cotton_water_risk = pd.read_json('../../datasets/processed/water_indicators/water_risk_cotton_res6_mean_global_clean.json')\n",
    "cotton_water_risk.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 41,
   "id": "6c796c03",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>volume</th>\n",
       "      <th>hexid</th>\n",
       "      <th>geometry</th>\n",
       "      <th>ha</th>\n",
       "      <th>p_dis</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>2400</td>\n",
       "      <td>863c2aaefffffff</td>\n",
       "      <td>{'type': 'Polygon', 'coordinates': [[[87.89723...</td>\n",
       "      <td>0.000003</td>\n",
       "      <td>0.000050</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>2400</td>\n",
       "      <td>863c48537ffffff</td>\n",
       "      <td>{'type': 'Polygon', 'coordinates': [[[97.44161...</td>\n",
       "      <td>0.000019</td>\n",
       "      <td>0.000320</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>2400</td>\n",
       "      <td>863c59377ffffff</td>\n",
       "      <td>{'type': 'Polygon', 'coordinates': [[[97.72652...</td>\n",
       "      <td>0.000015</td>\n",
       "      <td>0.000252</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>2400</td>\n",
       "      <td>8640f24afffffff</td>\n",
       "      <td>{'type': 'Polygon', 'coordinates': [[[107.1846...</td>\n",
       "      <td>0.000771</td>\n",
       "      <td>0.013024</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>2400</td>\n",
       "      <td>86408602fffffff</td>\n",
       "      <td>{'type': 'Polygon', 'coordinates': [[[112.8473...</td>\n",
       "      <td>0.000885</td>\n",
       "      <td>0.014937</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   volume            hexid                                           geometry  \\\n",
       "0    2400  863c2aaefffffff  {'type': 'Polygon', 'coordinates': [[[87.89723...   \n",
       "1    2400  863c48537ffffff  {'type': 'Polygon', 'coordinates': [[[97.44161...   \n",
       "2    2400  863c59377ffffff  {'type': 'Polygon', 'coordinates': [[[97.72652...   \n",
       "3    2400  8640f24afffffff  {'type': 'Polygon', 'coordinates': [[[107.1846...   \n",
       "4    2400  86408602fffffff  {'type': 'Polygon', 'coordinates': [[[112.8473...   \n",
       "\n",
       "         ha     p_dis  \n",
       "0  0.000003  0.000050  \n",
       "1  0.000019  0.000320  \n",
       "2  0.000015  0.000252  \n",
       "3  0.000771  0.013024  \n",
       "4  0.000885  0.014937  "
      ]
     },
     "execution_count": 41,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "## user probability area distribution - calculate before for china\n",
    "\n",
    "user_data_china = pd.DataFrame(test_china)\n",
    "user_data_china.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 42,
   "id": "6304edd3",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>volume</th>\n",
       "      <th>hexid</th>\n",
       "      <th>geometry</th>\n",
       "      <th>ha</th>\n",
       "      <th>p_dis</th>\n",
       "      <th>sumStats</th>\n",
       "      <th>hexId</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>2400</td>\n",
       "      <td>8640f24afffffff</td>\n",
       "      <td>{'type': 'Polygon', 'coordinates': [[[107.1846...</td>\n",
       "      <td>0.000771</td>\n",
       "      <td>0.013024</td>\n",
       "      <td>0.693534</td>\n",
       "      <td>8640f24afffffff</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>2400</td>\n",
       "      <td>86408602fffffff</td>\n",
       "      <td>{'type': 'Polygon', 'coordinates': [[[112.8473...</td>\n",
       "      <td>0.000885</td>\n",
       "      <td>0.014937</td>\n",
       "      <td>19.138670</td>\n",
       "      <td>86408602fffffff</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>2400</td>\n",
       "      <td>86208b28fffffff</td>\n",
       "      <td>{'type': 'Polygon', 'coordinates': [[[76.67422...</td>\n",
       "      <td>0.000196</td>\n",
       "      <td>0.003304</td>\n",
       "      <td>0.244726</td>\n",
       "      <td>86208b28fffffff</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>2400</td>\n",
       "      <td>864b36b5fffffff</td>\n",
       "      <td>{'type': 'Polygon', 'coordinates': [[[121.0798...</td>\n",
       "      <td>0.000237</td>\n",
       "      <td>0.004004</td>\n",
       "      <td>0.224951</td>\n",
       "      <td>864b36b5fffffff</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>2400</td>\n",
       "      <td>8620d2247ffffff</td>\n",
       "      <td>{'type': 'Polygon', 'coordinates': [[[79.40063...</td>\n",
       "      <td>0.000060</td>\n",
       "      <td>0.001021</td>\n",
       "      <td>0.939304</td>\n",
       "      <td>8620d2247ffffff</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   volume            hexid                                           geometry  \\\n",
       "0    2400  8640f24afffffff  {'type': 'Polygon', 'coordinates': [[[107.1846...   \n",
       "1    2400  86408602fffffff  {'type': 'Polygon', 'coordinates': [[[112.8473...   \n",
       "2    2400  86208b28fffffff  {'type': 'Polygon', 'coordinates': [[[76.67422...   \n",
       "3    2400  864b36b5fffffff  {'type': 'Polygon', 'coordinates': [[[121.0798...   \n",
       "4    2400  8620d2247ffffff  {'type': 'Polygon', 'coordinates': [[[79.40063...   \n",
       "\n",
       "         ha     p_dis   sumStats            hexId  \n",
       "0  0.000771  0.013024   0.693534  8640f24afffffff  \n",
       "1  0.000885  0.014937  19.138670  86408602fffffff  \n",
       "2  0.000196  0.003304   0.244726  86208b28fffffff  \n",
       "3  0.000237  0.004004   0.224951  864b36b5fffffff  \n",
       "4  0.000060  0.001021   0.939304  8620d2247ffffff  "
      ]
     },
     "execution_count": 42,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#calculation of metric\n",
    "merge_df = pd.merge(user_data_china,cotton_water_risk, how= 'inner', left_on='hexid', right_on='hexId')\n",
    "merge_df.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "id": "ffccd47c",
   "metadata": {},
   "outputs": [],
   "source": [
    "#save as json\n",
    "china_impact = []\n",
    "for i,row in merge_df.iterrows():\n",
    "    element = {\n",
    "        'volume':row['volume'],\n",
    "        'hexid':row['hexid'],\n",
    "        'geometry':row['geometry'],\n",
    "        'impact':float(row['p_dis']*row['sumStats'])\n",
    "    }\n",
    "    china_impact.append(element)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 43,
   "id": "018c0d2f",
   "metadata": {},
   "outputs": [],
   "source": [
    "with open('../../datasets/processed/water_indicators/water impact_china_h3.json','w') as f:\n",
    "    json.dump(china_impact,f)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "1d1eab89",
   "metadata": {},
   "outputs": [],
   "source": [
    "with open('../../datasets/processed/water_indicators/water impact_china_h3.json', 'r') as f:\n",
    "    china_test = json.load(f)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "0a666deb",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>volume</th>\n",
       "      <th>hexid</th>\n",
       "      <th>geometry</th>\n",
       "      <th>impact</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>2400</td>\n",
       "      <td>8640f24afffffff</td>\n",
       "      <td>{'type': 'Polygon', 'coordinates': [[[107.1846...</td>\n",
       "      <td>0.009032</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>2400</td>\n",
       "      <td>86408602fffffff</td>\n",
       "      <td>{'type': 'Polygon', 'coordinates': [[[112.8473...</td>\n",
       "      <td>0.285882</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>2400</td>\n",
       "      <td>86208b28fffffff</td>\n",
       "      <td>{'type': 'Polygon', 'coordinates': [[[76.67422...</td>\n",
       "      <td>0.000809</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>2400</td>\n",
       "      <td>864b36b5fffffff</td>\n",
       "      <td>{'type': 'Polygon', 'coordinates': [[[121.0798...</td>\n",
       "      <td>0.000901</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>2400</td>\n",
       "      <td>8620d2247ffffff</td>\n",
       "      <td>{'type': 'Polygon', 'coordinates': [[[79.40063...</td>\n",
       "      <td>0.000959</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   volume            hexid                                           geometry  \\\n",
       "0    2400  8640f24afffffff  {'type': 'Polygon', 'coordinates': [[[107.1846...   \n",
       "1    2400  86408602fffffff  {'type': 'Polygon', 'coordinates': [[[112.8473...   \n",
       "2    2400  86208b28fffffff  {'type': 'Polygon', 'coordinates': [[[76.67422...   \n",
       "3    2400  864b36b5fffffff  {'type': 'Polygon', 'coordinates': [[[121.0798...   \n",
       "4    2400  8620d2247ffffff  {'type': 'Polygon', 'coordinates': [[[79.40063...   \n",
       "\n",
       "     impact  \n",
       "0  0.009032  \n",
       "1  0.285882  \n",
       "2  0.000809  \n",
       "3  0.000901  \n",
       "4  0.000959  "
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "gdf = gpd.GeoDataFrame(china_test)\n",
    "gdf.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "74927e9f",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>volume</th>\n",
       "      <th>hexid</th>\n",
       "      <th>geometry</th>\n",
       "      <th>impact</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>2400</td>\n",
       "      <td>8640f24afffffff</td>\n",
       "      <td>POLYGON ((107.18462 33.27653, 107.18040 33.246...</td>\n",
       "      <td>0.009032</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>2400</td>\n",
       "      <td>86408602fffffff</td>\n",
       "      <td>POLYGON ((112.84735 33.43795, 112.84264 33.408...</td>\n",
       "      <td>0.285882</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>2400</td>\n",
       "      <td>86208b28fffffff</td>\n",
       "      <td>POLYGON ((76.67422 37.40554, 76.71535 37.39027...</td>\n",
       "      <td>0.000809</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>2400</td>\n",
       "      <td>864b36b5fffffff</td>\n",
       "      <td>POLYGON ((121.07985 29.22806, 121.11258 29.242...</td>\n",
       "      <td>0.000901</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>2400</td>\n",
       "      <td>8620d2247ffffff</td>\n",
       "      <td>POLYGON ((79.40064 37.42992, 79.36041 37.44607...</td>\n",
       "      <td>0.000959</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   volume            hexid                                           geometry  \\\n",
       "0    2400  8640f24afffffff  POLYGON ((107.18462 33.27653, 107.18040 33.246...   \n",
       "1    2400  86408602fffffff  POLYGON ((112.84735 33.43795, 112.84264 33.408...   \n",
       "2    2400  86208b28fffffff  POLYGON ((76.67422 37.40554, 76.71535 37.39027...   \n",
       "3    2400  864b36b5fffffff  POLYGON ((121.07985 29.22806, 121.11258 29.242...   \n",
       "4    2400  8620d2247ffffff  POLYGON ((79.40064 37.42992, 79.36041 37.44607...   \n",
       "\n",
       "     impact  \n",
       "0  0.009032  \n",
       "1  0.285882  \n",
       "2  0.000809  \n",
       "3  0.000901  \n",
       "4  0.000959  "
      ]
     },
     "execution_count": 19,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "gdf['geometry'] = [shape(row['geometry']) for i,row in gdf.iterrows()]\n",
    "gdf.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "id": "d65edfe4",
   "metadata": {},
   "outputs": [],
   "source": [
    "gdf.to_file(\n",
    "    './china_test.shp',\n",
    "    driver='ESRI Shapefile')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "id": "1a526b2e",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "\n",
       "\n",
       "\n",
       "\n",
       "\n",
       "\n",
       "  <div class=\"bk-root\" id=\"4f3f3a9a-4e65-42af-b731-eea3b64edc58\" data-root-id=\"1633\"></div>\n"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/javascript": [
       "(function(root) {\n",
       "  function embed_document(root) {\n",
       "    \n",
       "  var docs_json = {\"52fa0a58-20c1-4551-95eb-bbb511b0472f\":{\"roots\":{\"references\":[{\"attributes\":{\"children\":[[{\"id\":\"1353\"},0,0],[{\"id\":\"1411\"},0,1],[{\"id\":\"1469\"},1,0],[{\"id\":\"1527\"},1,1]]},\"id\":\"1633\",\"type\":\"GridBox\"},{\"attributes\":{\"active_drag\":\"auto\",\"active_inspect\":\"auto\",\"active_multi\":null,\"active_scroll\":\"auto\",\"active_tap\":\"auto\"},\"id\":\"1546\",\"type\":\"Toolbar\"},{\"attributes\":{\"axis\":{\"id\":\"1542\"},\"dimension\":1,\"grid_line_color\":\"white\",\"ticker\":null},\"id\":\"1545\",\"type\":\"Grid\"},{\"attributes\":{},\"id\":\"1543\",\"type\":\"BasicTicker\"},{\"attributes\":{\"data_source\":{\"id\":\"1494\"},\"glyph\":{\"id\":\"1495\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1496\"},\"selection_glyph\":null,\"view\":{\"id\":\"1498\"}},\"id\":\"1497\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"source\":{\"id\":\"1489\"}},\"id\":\"1493\",\"type\":\"CDSView\"},{\"attributes\":{\"data_source\":{\"id\":\"1489\"},\"glyph\":{\"id\":\"1490\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1491\"},\"selection_glyph\":null,\"view\":{\"id\":\"1493\"}},\"id\":\"1492\",\"type\":\"GlyphRenderer\"},{\"attributes\":{},\"id\":\"1561\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{\"data_source\":{\"id\":\"1510\"},\"glyph\":{\"id\":\"1511\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1512\"},\"selection_glyph\":null,\"view\":{\"id\":\"1514\"}},\"id\":\"1513\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"data\":{\"x\":{\"__ndarray__\":\"LUMc6+I2Gj/kfjf4UJqUP8PwwYY1jaQ/FCJokULNrj+yKQfOp4a0P1pCWlOuprk/A1ut2LTGvj/VOQCvXfPBPynGqfFgg8Q/fVJTNGQTxz/R3vx2Z6PJPyVrprlqM8w/evdP/G3Dzj/nwXyfuKnQPxGI0UC68dE/O04m4rs50z9lFHuDvYHUP4/azyS/ydU/uaAkxsAR1z/jZnlnwlnYPw0tzgjEodk/N/MiqsXp2j9huXdLxzHcP4t/zOzIed0/tkUhjsrB3j/wBbsX5gTgPwVpZejmqOA/GswPuedM4T8vL7qJ6PDhP0SSZFrplOI/WfUOK+o44z9uWLn76tzjP4O7Y8zrgOQ/mB4Onewk5T+tgbht7cjlP8LkYj7ubOY/10cND+8Q5z/sqrff77TnPwEOYrDwWOg/FnEMgfH86D8r1LZR8qDpP0A3YSLzROo/VZoL8/Po6j9q/bXD9IzrP39gYJT1MOw/lMMKZfbU7D+pJrU193jtP76JXwb4HO4/1OwJ1/jA7j/pT7Sn+WTvP39ZLzx9BPA/CYuEpH1W8D+UvNkMfqjwPx7uLnV++vA/qR+E3X5M8T8zUdlFf57xP76CLq5/8PE/SLSDFoBC8j/T5dh+gJTyP10XLueA5vI/6EiDT4E48z9yeti3gYrzP/2rLSCC3PM/h92CiIIu9D8SD9jwgoD0P51ALVmD0vQ/J3KCwYMk9T+yo9cphHb1PzzVLJKEyPU/xwaC+oQa9j9RONdihWz2P9xpLMuFvvY/ZpuBM4YQ9z/xzNabhmL3P3v+KwSHtPc/BjCBbIcG+D+QYdbUh1j4PxuTKz2Iqvg/pcSApYj8+D8w9tUNiU75P7onK3aJoPk/RVmA3ony+T/PitVGikT6P1q8Kq+Klvo/5O1/F4vo+j9vH9V/izr7P/lQKuiLjPs/hIJ/UIze+z8OtNS4jDD8P5nlKSGNgvw/Ixd/iY3U/D+uSNTxjSb9Pzh6KVqOeP0/w6t+wo7K/T9N3dMqjxz+P9gOKZOPbv4/Y0B++4/A/j/tcdNjkBL/P3ijKMyQZP8/AtV9NJG2/z9Hg2nOSAQAQAwclAJJLQBA0bS+NklWAECXTelqSX8AQFzmE59JqABAIX8+00nRAEDmF2kHSvoAQKywkztKIwFAcUm+b0pMAUA24uijSnUBQPt6E9hKngFAwRM+DEvHAUCGrGhAS/ABQEtFk3RLGQJAEN69qEtCAkDWdujcS2sCQJsPExFMlAJAYKg9RUy9AkAlQWh5TOYCQOvZkq1MDwNAsHK94Uw4A0B1C+gVTWEDQDqkEkpNigNAAD09fk2zA0DF1WeyTdwDQIpukuZNBQRATwe9Gk4uBEAVoOdOTlcEQNo4EoNOgARAn9E8t06pBEBlamfrTtIEQCoDkh9P+wRA75u8U08kBUC0NOeHT00FQHrNEbxPdgVAP2Y88E+fBUAE/2YkUMgFQMmXkVhQ8QVAjzC8jFAaBkBUyebAUEMGQBliEfVQbAZA3vo7KVGVBkCkk2ZdUb4GQGkskZFR5wZALsW7xVEQB0DzXeb5UTkHQLn2EC5SYgdAfo87YlKLB0BDKGaWUrQHQAjBkMpS3QdAzlm7/lIGCECT8uUyUy8IQFiLEGdTWAhAHSQ7m1OBCEDjvGXPU6oIQKhVkANU0whAbe66N1T8CEAyh+VrVCUJQPgfEKBUTglAvbg61FR3CUCCUWUIVaAJQEjqjzxVyQlADYO6cFXyCUDSG+WkVRsKQJe0D9lVRApAXU06DVZtCkAi5mRBVpYKQOd+j3VWvwpArBe6qVboCkBysOTdVhELQDdJDxJXOgtA/OE5RldjC0DBemR6V4wLQIcTj65XtQtATKy54lfeC0ARReQWWAcMQNbdDktYMAxAnHY5f1hZDEBhD2SzWIIMQCaojudYqwxA60C5G1nUDECx2eNPWf0MQHZyDoRZJg1AOws5uFlPDUAApGPsWXgNQMY8jiBaoQ1Ai9W4VFrKDUBQbuOIWvMNQBUHDr1aHA5A25848VpFDkCgOGMlW24OQGXRjVlblw5AK2q4jVvADkDwAuPBW+kOQLWbDfZbEg9AejQ4Klw7D0BAzWJeXGQPQAVmjZJcjQ9Ayv63xly2D0CPl+L6XN8PQCqYhpcuBBBAjOSbsa4YEEDvMLHLLi0QQFJ9xuWuQRBAtMnb/y5WEEAXFvEZr2oQQHpiBjQvfxBA3K4bTq+TEEA/+zBoL6gQQKFHRoKvvBBABJRbnC/REEBn4HC2r+UQQMkshtAv+hBALHmb6q8OEUCPxbAEMCMRQPERxh6wNxFAVF7bODBMEUC2qvBSsGARQBn3BW0wdRFAfEMbh7CJEUDejzChMJ4RQEHcRbuwshFApChb1TDHEUAGdXDvsNsRQGnBhQkx8BFAzA2bI7EEEkAuWrA9MRkSQJGmxVexLRJA8/LacTFCEkBWP/CLsVYSQLmLBaYxaxJAG9gawLF/EkB+JDDaMZQSQOFwRfSxqBJAQ71aDjK9EkCmCXAostESQAhWhUIy5hJAa6KaXLL6EkDO7q92Mg8TQDA7xZCyIxNAk4faqjI4E0D20+/EskwTQFggBd8yYRNAu2wa+bJ1E0AduS8TM4oTQIAFRS2znhNA41FaRzOzE0BFnm9hs8cTQKjqhHsz3BNACzealbPwE0Btg6+vMwUUQNDPxMmzGRRAMhza4zMuFECVaO/9s0IUQPi0BBg0VxRAWgEaMrRrFEC9TS9MNIAUQCCaRGa0lBRAguZZgDSpFEDlMm+atL0UQEh/hLQ00hRAqsuZzrTmFEANGK/oNPsUQG9kxAK1DxVA0rDZHDUkFUA1/e42tTgVQJdJBFE1TRVA+pUZa7VhFUBd4i6FNXYVQL8uRJ+1ihVAIntZuTWfFUCEx27TtbMVQOcThO01yBVASmCZB7bcFUCsrK4hNvEVQA/5wzu2BRZAckXZVTYaFkDUke5vti4WQDfeA4o2QxZAmSoZpLZXFkD8di6+NmwWQF/DQ9i2gBZAwQ9Z8jaVFkAkXG4Mt6kWQIeogyY3vhZA6fSYQLfSFkBMQa5aN+cWQK6Nw3S3+xZAEdrYjjcQF0B0Ju6otyQXQNZyA8M3ORdAOb8Y3bdNF0CcCy73N2IXQP5XQxG4dhdAYaRYKziLF0DE8G1FuJ8XQCY9g184tBdAiYmYebjIF0Dr1a2TON0XQE4iw6248RdAsW7YxzgGGEATu+3huBoYQHYHA/w4LxhA2VMYFrlDGEA7oC0wOVgYQJ7sQkq5bBhAADlYZDmBGEBjhW1+uZUYQMbRgpg5qhhAKB6Ysrm+GECLaq3MOdMYQO62wua55xhAUAPYADr8GECzT+0auhAZQBWcAjU6JRlAeOgXT7o5GUDbNC1pOk4ZQD2BQoO6YhlAoM1XnTp3GUADGm23uosZQGVmgtE6oBlAyLKX67q0GUAr/6wFO8kZQI1Lwh+73RlA8JfXOTvyGUBS5OxTuwYaQLUwAm47GxpAGH0XiLsvGkB6ySyiO0QaQN0VQry7WBpAQGJX1jttGkCirmzwu4EaQAX7gQo8lhpAZ0eXJLyqGkDKk6w+PL8aQC3gwVi80xpAjyzXcjzoGkDyeOyMvPwaQFXFAac8ERtAtxEXwbwlG0AaXizbPDobQHyqQfW8ThtA3/ZWDz1jG0BCQ2wpvXcbQKSPgUM9jBtAB9yWXb2gG0BqKKx3PbUbQMx0wZG9yRtAL8HWqz3eG0CRDezFvfIbQPRZAeA9BxxAV6YW+r0bHEC58isUPjAcQBw/QS6+RBxAf4tWSD5ZHEDh12tivm0cQEQkgXw+ghxAp3CWlr6WHEAJvauwPqscQGwJwcq+vxxAzlXW5D7UHEAxouv+vugcQJTuABk//RxA9joWM78RHUBZhytNPyYdQLzTQGe/Oh1AHiBWgT9PHUCBbGubv2MdQOO4gLU/eB1ARgWWz7+MHUCpUavpP6EdQAuewAPAtR1AburVHUDKHUDRNus3wN4dQDODAFJA8x1Als8VbMAHHkD4GyuGQBweQFtoQKDAMB5AvrRVukBFHkAgAWvUwFkeQINNgO5Abh5A5pmVCMGCHkBI5qoiQZceQKsywDzBqx5ADn/VVkHAHkBwy+pwwdQeQNMXAItB6R5ANWQVpcH9HkCYsCq/QRIfQPv8P9nBJh9AXUlV80E7H0DAlWoNwk8fQCPifydCZB9AhS6VQcJ4H0DoeqpbQo0fQErHv3XCoR9ArRPVj0K2H0AQYOqpwsofQHKs/8NC3x9A1fgU3sLzH0CcIhV8IQQgQM3IH4lhDiBA/m4qlqEYIEAwFTWj4SIgQGG7P7AhLSBAkmFKvWE3IEDEB1XKoUEgQPWtX9fhSyBAJlRq5CFWIEBY+nTxYWAgQImgf/6haiBAukaKC+J0IEDs7JQYIn8gQB2TnyViiSBATjmqMqKTIEB/37Q/4p0gQLGFv0wiqCBA4ivKWWKyIEAT0tRmorwgQEV433PixiBAdh7qgCLRIECnxPSNYtsgQNlq/5qi5SBAChEKqOLvIEA7txS1IvogQG1dH8JiBCFAngMqz6IOIUDPqTTc4hghQAFQP+kiIyFAMvZJ9mItIUBjnFQDozchQJVCXxDjQSFAxuhpHSNMIUD3jnQqY1YhQCg1fzejYCFAWtuJRONqIUCLgZRRI3UhQLwnn15jfyFA7s2pa6OJIUAfdLR445MhQFAav4UjniFAgsDJkmOoIUCzZtSfo7IhQOQM36zjvCFAFrPpuSPHIUBHWfTGY9EhQHj//tOj2yFAqqUJ4ePlIUDbSxTuI/AhQAzyHvtj+iFAPpgpCKQEIkBvPjQV5A4iQKDkPiIkGSJA0YpJL2QjIkADMVQ8pC0iQDTXXknkNyJAZX1pViRCIkCXI3RjZEwiQMjJfnCkViJA+W+JfeRgIkArFpSKJGsiQFy8npdkdSJAjWKppKR/IkC/CLSx5IkiQPCuvr4klCJAIVXJy2SeIkBT+9PYpKgiQISh3uXksiJAtUfp8iS9IkDm7fP/ZMciQBiU/gyl0SJASToJGuXbIkB64BMnJeYiQKyGHjRl8CJA3SwpQaX6IkAO0zNO5QQjQEB5PlslDyNAcR9JaGUZI0CixVN1pSMjQNRrXoLlLSNABRJpjyU4I0A2uHOcZUIjQGhefqmlTCNAmQSJtuVWI0DKqpPDJWEjQPxQntBlayNALfeo3aV1I0BenbPq5X8jQI9DvvcliiNAwenIBGaUI0Dyj9MRpp4jQCM23h7mqCNAVdzoKyazI0CGgvM4Zr0jQLco/kWmxyNA6c4IU+bRI0AadRNgJtwjQEsbHm1m5iNAfcEoeqbwI0CuZzOH5vojQN8NPpQmBSRAEbRIoWYPJEBCWlOuphkkQHMAXrvmIyRApKZoyCYuJEDWTHPVZjgkQAfzfeKmQiRAOJmI7+ZMJEBqP5P8JlckQJvlnQlnYSRAzIuoFqdrJED+MbMj53UkQC/YvTAngCRAYH7IPWeKJECSJNNKp5QkQMPK3VfnniRA9HDoZCepJEAmF/NxZ7MkQFe9/X6nvSRAiGMIjOfHJEC6CROZJ9IkQOuvHaZn3CRAHFYos6fmJEBN/DLA5/AkQH+iPc0n+yRAsEhI2mcFJUDh7lLnpw8lQBOVXfTnGSVARDtoASgkJUB14XIOaC4lQKeHfRuoOCVA2C2IKOhCJUAJ1JI1KE0lQDt6nUJoVyVAbCCoT6hhJUCdxrJc6GslQM9svWkodiVAABPIdmiAJUAxudKDqIolQGJf3ZDolCVAlAXonSifJUDFq/KqaKklQPZR/beosyVAKPgHxei9JUBZnhLSKMglQIpEHd9o0iVAvOon7KjcJUDtkDL56OYlQB43PQYp8SVAUN1HE2n7JUCBg1IgqQUmQLIpXS3pDyZA5M9nOikaJkAVdnJHaSQmQEYcfVSpLiZAeMKHYek4JkCpaJJuKUMmQNoOnXtpTSZAC7WniKlXJkA9W7KV6WEmQG4BvaIpbCZAn6fHr2l2JkDRTdK8qYAmQAL03MnpiiZAM5rn1imVJkBlQPLjaZ8mQJbm/PCpqSZAx4wH/umzJkD5MhILKr4mQCrZHBhqyCZAW38nJarSJkCNJTIy6twmQL7LPD8q5yZA73FHTGrxJkAgGFJZqvsmQFK+XGbqBSdAg2RncyoQJ0C0CnKAahonQOawfI2qJCdAF1eHmuouJ0BI/ZGnKjknQHqjnLRqQydAq0mnwapNJ0Dc77HO6lcnQA6WvNsqYidAPzzH6GpsJ0Bw4tH1qnYnQKKI3ALrgCdA0y7nDyuLJ0AE1fEca5UnQDZ7/CmrnydAZyEHN+upJ0CYxxFEK7QnQMltHFFrvidA+xMnXqvIJ0AsujFr69InQF1gPHgr3SdAjwZHhWvnJ0DArFGSq/EnQPFSXJ/r+ydAI/lmrCsGKEBUn3G5axAoQIVFfMarGihAt+uG0+skKEDokZHgKy8oQBk4nO1rOShAS96m+qtDKEB8hLEH7E0oQK0qvBQsWChA39DGIWxiKEAQd9EurGwoQEEd3DvsdihAcsPmSCyBKECkafFVbIsoQNUP/GKslShABrYGcOyfKEA4XBF9LKooQGkCHIpstChAmqgml6y+KEDMTjGk7MgoQP30O7Es0yhALptGvmzdKEBgQVHLrOcoQJHnW9js8ShAwo1m5Sz8KED0M3HybAYpQCXae/+sEClAVoCGDO0aKUCHJpEZLSUpQLnMmyZtLylA6nKmM605KUAbGbFA7UMpQE2/u00tTilAfmXGWm1YKUCvC9FnrWIpQOGx23TtbClAEljmgS13KUBD/vCObYEpQHWk+5utiylApkoGqe2VKUDX8BC2LaApQAmXG8NtqilAOj0m0K20KUBr4zDd7b4pQJ2JO+otySlAzi9G923TKUD/1VAErt0pQDB8WxHu5ylAYiJmHi7yKUCTyHArbvwpQMRueziuBipA9hSGRe4QKkAnu5BSLhsqQFhhm19uJSpAigembK4vKkC7rbB57jkqQOxTu4YuRCpAHvrFk25OKkBPoNCgrlgqQIBG263uYipAsuzlui5tKkDjkvDHbncqQBQ5+9SugSpARd8F4u6LKkB3hRDvLpYqQKgrG/xuoCpA2dElCa+qKkALeDAW77QqQDweOyMvvypAbcRFMG/JKkCfalA9r9MqQNAQW0rv3SpAAbdlVy/oKkAzXXBkb/IqQGQDe3Gv/CpAlamFfu8GK0DHT5CLLxErQPj1mphvGytAKZylpa8lK0BbQrCy7y8rQIzour8vOitAvY7FzG9EK0DuNNDZr04rQCDb2ubvWCtAUYHl8y9jK0CCJ/AAcG0rQLTN+g2wdytA5XMFG/CBK0AWGhAoMIwrQEjAGjVwlitAeWYlQrCgK0CqDDBP8KorQNyyOlwwtStADVlFaXC/K0A+/092sMkrQHClWoPw0ytAoUtlkDDeK0DS8W+dcOgrQAOYeqqw8itANT6Ft/D8K0Bm5I/EMAcsQJeKmtFwESxAyTCl3rAbLED61q/r8CUsQCt9uvgwMCxAXSPFBXE6LECOyc8SsUQsQL9v2h/xTixA8RXlLDFZLEAivO85cWMsQFNi+kaxbSxAhQgFVPF3LEC2rg9hMYIsQOdUGm5xjCxAGfske7GWLEBKoS+I8aAsQHtHOpUxqyxArO1EonG1LEDek0+vsb8sQA86WrzxySxAQOBkyTHULEByhm/Wcd4sQKMseuOx6CxA1NKE8PHyLEAGeY/9Mf0sQDcfmgpyBy1AaMWkF7IRLUCaa68k8hstQMsRujEyJi1A/LfEPnIwLUAuXs9LsjotQF8E2ljyRC1AkKrkZTJPLUDBUO9yclktQPP2+X+yYy1AJJ0EjfJtLUBVQw+aMngtQIfpGadygi1AuI8ktLKMLUDpNS/B8pYtQBvcOc4yoS1ATIJE23KrLUB9KE/osrUtQK/OWfXyvy1A4HRkAjPKLUARG28Pc9QtQEPBeRyz3i1AdGeEKfPoLUClDY82M/MtQNezmUNz/S1ACFqkULMHLkA5AK9d8xEuQGqmuWozHC5AnEzEd3MmLkDN8s6EszAuQP6Y2ZHzOi5AMD/knjNFLkBh5e6rc08uQJKL+bizWS5AxDEExvNjLkD11w7TM24uQCZ+GeBzeC5AWCQk7bOCLkCJyi7684wuQLpwOQc0ly5A7BZEFHShLkAdvU4htKsuQE5jWS70tS5AgAlkOzTALkCxr25IdMouQOJVeVW01C5AE/yDYvTeLkBFoo5vNOkuQHZImXx08y5Ap+6jibT9LkDZlK6W9AcvQAo7uaM0Ei9AO+HDsHQcL0Bth869tCYvQJ4t2cr0MC9Az9Pj1zQ7L0ABeu7kdEUvQDIg+fG0Ty9AY8YD//RZL0CVbA4MNWQvQMYSGRl1bi9A97gjJrV4L0AoXy4z9YIvQFoFOUA1jS9Ai6tDTXWXL0C8UU5ataEvQO73WGf1qy9AH55jdDW2L0BQRG6BdcAvQILqeI61yi9As5CDm/XUL0DkNo6oNd8vQBbdmLV16S9AR4OjwrXzL0B4Ka7P9f0vQNVnXO4aBDBA7brh9DoJMEAGDmf7Wg4wQB9h7AF7EzBAN7RxCJsYMEBQB/cOux0wQGlafBXbIjBAga0BHPsnMECaAIciGy0wQLNTDCk7MjBAy6aRL1s3MEDk+RY2ezwwQP1MnDybQTBAFaAhQ7tGMEAu86ZJ20swQEdGLFD7UDBAX5mxVhtWMEB47DZdO1swQJE/vGNbYDBAqZJBantlMEDC5cZwm2owQNs4THe7bzBA84vRfdt0MEAM31aE+3kwQCUy3IobfzBAPYVhkTuEMEBW2OaXW4kwQG8rbJ57jjBAh37xpJuTMECg0Xaru5gwQLgk/LHbnTBA0XeBuPuiMEDqyga/G6gwQAIejMU7rTBAG3ERzFuyMEA0xJbSe7cwQEwXHNmbvDBAZWqh37vBMEB+vSbm28YwQJYQrOz7yzBAr2Mx8xvRMEDItrb5O9YwQOAJPABc2zBA+VzBBnzgMEASsEYNnOUwQCoDzBO86jBAQ1ZRGtzvMEBcqdYg/PQwQHT8Wycc+jBAjU/hLTz/MECmomY0XAQxQL716zp8CTFA10hxQZwOMUDwm/ZHvBMxQAjve07cGDFAIUIBVfwdMUA6lYZbHCMxQFLoC2I8KDFAazuRaFwtMUCEjhZvfDIxQJzhm3WcNzFAtTQhfLw8MUDOh6aC3EExQObaK4n8RjFA/y2xjxxMMUAYgTaWPFExQDDUu5xcVjFASSdBo3xbMUBhesapnGAxQHrNS7C8ZTFAkyDRttxqMUCrc1a9/G8xQMTG28McdTFA3Rlhyjx6MUD1bObQXH8xQA7Aa9d8hDFAJxPx3ZyJMUA/ZnbkvI4xQFi5++rckzFAcQyB8fyYMUCJXwb4HJ4xQKKyi/48ozFAuwURBV2oMUDTWJYLfa0xQOyrGxKdsjFABf+gGL23MUAdUiYf3bwxQDalqyX9wTFAT/gwLB3HMUBnS7YyPcwxQICeOzld0TFAmfHAP33WMUCxREZGndsxQMqXy0y94DFA4+pQU93lMUD7PdZZ/eoxQBSRW2Ad8DFALeTgZj31MUBFN2ZtXfoxQF6K63N9/zFAd91wep0EMkCPMPaAvQkyQKiDe4fdDjJAwNYAjv0TMkDZKYaUHRkyQPJ8C5s9HjJACtCQoV0jMkAjIxaofSgyQDx2m66dLTJAVMkgtb0yMkBtHKa73TcyQIZvK8L9PDJAnsKwyB1CMkC3FTbPPUcyQNBou9VdTDJA6LtA3H1RMkABD8binVYyQBpiS+m9WzJAMrXQ791gMkBLCFb2/WUyQGRb2/wdazJAfK5gAz5wMkCVAeYJXnUyQK5UaxB+ejJAxqfwFp5/MkDf+nUdvoQyQPhN+yPeiTJAEKGAKv6OMkAp9AUxHpQyQEJHizc+mTJAWpoQPl6eMkBz7ZVEfqMyQIxAG0ueqDJApJOgUb6tMkC95iVY3rIyQNY5q17+tzJA7owwZR69MkAH4LVrPsIyQB8zO3JexzJAOIbAeH7MMkBR2UV/ntEyQGksy4W+1jJAgn9QjN7bMkCb0tWS/uAyQLMlW5ke5jJAzHjgnz7rMkDly2WmXvAyQP0e66x+9TJAFnJws576MkAvxfW5vv8yQEcYe8DeBDNAYGsAx/4JM0B5voXNHg8zQJERC9Q+FDNAqmSQ2l4ZM0DDtxXhfh4zQNsKm+eeIzNA9F0g7r4oM0ANsaX03i0zQCUEK/v+MjNAPlewAR84M0BXqjUIPz0zQG/9ug5fQjNAiFBAFX9HM0Cho8Ubn0wzQLn2SiK/UTNA0knQKN9WM0DrnFUv/1szQAPw2jUfYTNAHENgPD9mM0A1luVCX2szQE3pakl/cDNAZjzwT591M0B+j3VWv3ozQJfi+lzffzNAsDWAY/+EM0DIiAVqH4ozQOHbinA/jzNA+i4Qd1+UM0ASgpV9f5kzQCvVGoSfnjNARCigir+jM0BceyWR36gzQHXOqpf/rTNAjiEwnh+zM0CmdLWkP7gzQL/HOqtfvTNA2BrAsX/CM0DwbUW4n8czQAnByr6/zDNAIhRQxd/RM0A6Z9XL/9YzQFO6WtIf3DNAbA3g2D/hM0CEYGXfX+YzQJ2z6uV/6zNAtgZw7J/wM0DOWfXyv/UzQOesevnf+jNAAAAAAAAANEA=\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[1000]},\"y\":{\"__ndarray__\":\"FcsQCzoY2zm+MGVv+jH2PES2z0bmRV49BUBMjKK7mT1wH2GdcGbEPYvlQKEpSeU9aBijO/wKAT5JTCtCZbsWPjhhzlSuhSo+2eCreuLvOz5G4WXxpiVLPsBxjI59tlg+sPCvaQpRZT4y+D/2ypJxPpvB2dAk4Xs+d2FZ0GFkhT6i9fBWdOSPPvFfgO4yLZc+vfqo7rd3oD6vCIocsO+mPvJJLtsTYK8+U+GrdQ4dtT4npqKZ/P+7PjIPGOCEUcI+fGJOthWtxz623fii2kHOPou5eqg8ItM+LkVCsq731z5ihDzOf8HdPu8KQmeKUeI+qeKfhY1h5j7pa3VA0yXrPlLskXaTWvA+myyZEhGU8z6qt6pHnEz3PnX2Fz1hkvs+veIKkEE6AD+X31cbkAEDP4OpgKiqJwY/MRtXS6C1CT83vqLXAbUNPxbTOFHxFxE/JC9BeGyYEz+69AUJf2EWP6HHNxb3eBk/fjpR2ePkHD/SuFajylUgP2qqEb3NaSI/pFpx/uKxJD+HtbRykTEnP6mEPul+7Ck/wjkVYW/mLD932XcxohEwPxS+MCV+0zE/blZgv9i6Mz/GHzPOzMk1PzTbd0eCAjg/EQOXzi1nOj/2F7kzEPo8P2fSdex1vT8/DeYzQ9tZQT+esQAKmu9CP2I/AEotoUQ/27jvqc9vRj+7x9AmwFxIP4wIrcBBaUo/6d9lJZuWTD/Dtr9ZFuZOP06pazCArFA/w8oXcVT4UT9yt0LnMFdTP9WXy4G/yVQ/buOF96pQVj+L1lKYnuxXP8E59h1Gnlk/n4W7fE1mWz9a9P+zYEVdPwSWtZ4rPF8/AXv54aylYD8rLNETy7lhP6eCsY3F2mI/ekTXB/EIZD/zmamyoURlP8NJqh8rjmY/wfygKuDlZz90RwnjEkxpP0/mynUUwWo/ckpDFzVFbD9IQqftw9htP7I5w/sOfG8/bB0QhrGXcD9jxEnOhXlxP3ItH2WpY3I/q3gBn0BWcz9x9LkMb1F0P58zIXJXVXU/iLQXvRtidj8iF8L83Hd3P1y6Clm7lng/sHJqCta+eT+D5/lRS/B6P9D/zHE4K3w/rqOZpblvfT9k9Kob6r1+P339EPfxCoA/EFZCDuC7gD8y/81Cy3GBP5LY0PC+LII/WCFf3sXsgj9Vu+s46rGDP8jX15I1fIQ/ZiEr4bBLhT8saXR5ZCCGP6fO0g9Y+oY/BU8ntZLZhz80mm7VGr6IPycBQzb2p4k/QUWG9SmXij85BTOIuouLP7F5VbmrhYw/fCkrqQCFjT/vM2nMu4mOP+LFqOvek48/AqN8kbVRkD/13ctwMNyQPyJ35fRfaZE//9VxqEP5kT//VrC/2ouSP+a7mhgkIZM/6ssZOx65kz+Q0EpZx1OUP+mZ1U8d8ZQ/I7JSph2RlT+8ZcGPxTOWP/FDDesR2ZY/griiQ/+Alz+qXhLSiSuYP8Cqwnyt2Jg/H4ev2GWImT9PfzcqrjqaP2oT9mWB75o/V8yqMdqmmz8gqSzlsmCcP2h8aYsFHZ0//dBw48vbnT9y64lh/5yeP+R+VDCZYJ8/QdX5GEkToD/eaqGAcXegP0UAivnB3KA/+o67izZDoT9TB4Udy6qhP2VpKHR7E6I/oMSKNEN9oj9f6ufjHeiiPyafiegGVKM/eheCivnAoz/bjGn08C6kP564HjTonaQ/VAKKO9oNpT9MMGPhwX6lPy1p+eGZ8KU/IVb931xjpj8gNk1lBdemP+GywuONS6c/SkkCtvDApz+bF0wgKDeoP2fkTVEurqg/FTL2Yv0lqT+dM0hbj56pP8J3MC3eF6o/MCFaueORqj9UggTPmQyrP/P02Cz6h6s/J8bAgf4DrD+WELttoICsPxNfsoLZ/aw/avNRRaN7rT9Ljdot9/mtP+qO9qjOeK4/IF2NGCP4rj9H2pXU7XevP7zb5yso+K8/ej2GsmU8sD/0kYZf6HywP8+hILmYvbA/Nz2NWHP+sD9lm3fUdD+xP+fOYcGZgLE/E1QIst7BsT9arcQ3QAOyP5gB7+K6RLI/6rA+Q0uGsj8j1Sno7ceyP2ajQ2GfCbM/q6SZPlxLsz+/uw8RIY2zP1zvumrqzrM/yO8637QQtD9uTxIEfVK0P7dm/XA/lLQ/eNtHwPjVtD8QxSCPpRe1Pzhm7X1CWbU/o3aaMMyatT829utOP9y1P2uEy4SYHbY/3jaVgtRetj826mL975+2P9UIVq/n4LY/tcPfV7ghtz9euQe8XmK3P+oHsabXorc/CMfd6B/jtz9O5/BZNCO4P6J07tcRY7g/xDm6R7WiuD8cw1SVG+K4P7G/FrRBIbk/Ar/qniRguT8YS4VYwZ65P1tem+sU3bk/wzQXaxwbuj+7eEvy1Fi6P9jLJKU7lro/96tZsE3Tuj+6tZhJCBC7P2pFta9oTLs/U3fSKmyIuz+UiYwMEMS7P66gILBR/7s/I/GSei46vD8eUNPao3S8P5Ut4Emvrrw/dPrnSk7ovD+n/WhrfiG9P7SaT0M9Wr0/YQ0TdYiSvT89ndCtXcq9P9hMZaW6Ab4/GgiGHp04vj9LVdbmAm++P/uM/dbppL4/n5y60k/avj/zV/bIMg+/P45d1LOQQ78/55LCmGd3vz9NPIeItaq/P4K1TZ943b8/t+dYgtcHwD/46+R1qyDAP0qol0k3OcA/eSyDInpRwD8R6YErc2nAP/gfOZUhgcA/oLYaloSYwD9pbGZqm6/AP8N3KlRlxsA/24xDm+HcwD9qUFyND/PAP1w57H3uCME/KuQ1xn0ewT992kTFvDPBP/bR6t+qSME/52S8gEddwT+sRw0YknHBP4396xuKhcE/7A8dCC+ZwT+DyhVegKzBP5F/9qR9v8E/0VaEaSbSwT/aqSI+euTBP/zwy7p49sE/N0MKfSEIwj8vbO8ndBnCP+GaDGRwKsI/7qtp3xU7wj82EnxNZEvCP5VgHWdbW8I/fXeB6vpqwj8lWSybQnrCPyWn50EyicI/Bsy3rMmXwj+o09CuCKbCPxH1iiDvs8I/VtBW33zBwj88Y7HNsc7CPzy3F9ON28I/fEv62xDowj9FPbDZOvTCP50xasILAMM/cAIlkYMLwz/iMZxFohbDPyUmPORnIcM/bzAUdtQrwz9SYcgI6DXDP/Esg66iP8M/duHmfQRJwz8D8v6RDVLDP5MYMQq+WsM/5VAuChZjwz/YruO5FWvDP1kSa0W9csM/Drv73Ax6wz/9vdq0BIHDPyJfSwWlh8M/SlF/Cu6Nwz/x3YYE4JPDP3P3QDd7mcM/VjdL6r+ewz/GyvForqPDPwhPHwJHqMM/9J9MCIqswz8ymnDRd7DDP/7S77YQtMM/aEeMFVW3wz+nBFVNRbrDP0/LlcHhvMM//a7G2Cq/wz9DtHv8IMHDP0VuVJnEwsM/zp3rHhbEwz8r08b/FcXDP4cURrHExcM/HoqTqyLGwz/EMZNpMMbDPx2b0mjuxcM/Aq54KV3Fwz9DfDUufcTDPy4gMvxOw8M/FakAG9PBwz8iF4wUCsDDP4xnCHX0vcM/gLLiypK7wz/CW7Gm5bjDPzpXJJvttcM/bYL1PKuywz/4E9kiH6/DPx4ibuVJq8M/P0EvHyynwz9OO2NsxqLDPyrhDWsZnsM/tPbguiWZwz+GOi3965PDPyGK09RsjsM/WiM25qiIwz/SAyrXoILDPzZn6E5VfMM/+WQA9sZ1wz9Brkh29m7DP6ds0XrkZ8M/fELWr5Fgwz8TbbDC/ljDP8gJyWEsUcM/L36LPBtJwz8UBFgDzEDDP6pZdmc/OMM/hZYIG3Yvwz+6Jf7QcCbDP6TlBj0wHcM/rG2GE7UTwz9zeocJAArDP9GAr9QRAMM/32cyK+v1wj90asbDjOvCP1MgmFX34MI/Yq8+mCvWwj8KJbBDKsvCPyn4NRD0v8I/kLNhtom0wj+AyQHv66jCPxmQFnMbncI/CGfH+xiRwj+CBlhC5YTCP6z3HQCBeMI/kjZ27uxrwj+7/brGKV/CP2K7OUI4UsI/dTApGhlFwj9IuZ8HzTfCPxLAicNUKsI/JlmgBrEcwj/7CGCJ4g7CP9Oz/wPqAMI/HrdnLsjywT9xLCnAfeTBP/hVdXAL1sE/cjQV9nHHwT9oRmEHsrjBP7BwOVrMqcE/AxD9o8GawT93M4OZkovBP+r/Eu8/fME/6ztcWMpswT84BHCIMl3BP3eouTF5TcE/CbD3BZ89wT/CBjW2pC3BP1BRwvKKHcE/Cmkva1INwT8H/0TO+/zAPx5m/smH7MA/sIODC/fbwD/d5iI/SsvAP/cFTBCCusA/2qGJKZ+pwD/rTnw0opjAP4Qj1dmLh8A/VItQwVx2wD+VP7GRFWXAP8Fju/C2U8A/TMYvg0FCwD9PRcfstTDAP6tWLtAUH8A/S7MAz14NwD+YSooTKfe/Pzzx0j9t078/oBt9X4uvvz86HemshIu/P/mHLmBaZ78/lxoVrw1Dvz9H8A3Nnx6/PzvxLOsR+r4/RIMiOGXVvj90eTXgmrC+P55CPQ20i74/c1Wc5rFmvj+n2TqRlUG+P2uNgS9gHL4/e+ZU4RL3vT/UbRDErtG9P3BVgvI0rL0/U0fnhKaGvT/lbOaQBGG9PxmujSlQO70/dydOX4oVvT821vg/tO+8P8Z5u9bOybw/1qkdLNujvD8/IP5F2n28P9s1kCfNV7w/mpFZ0bQxvD8sCTBBkgu8PymyN3Jm5bs/NSPhXDK/uz9g5Of29pi7P6cNUTO1crs/NRNqAm5Muz9yvsdRIia7P/NSRQzT/7o/4t4DGoHZuj/VtWlgLbO6P04VIsLYjLo/YfIcH4Rmuj90745UMEC6P5958TzeGbo/mAwDsI7zuT/PnMeCQs25P68miYf6prk/ZWLYjbeAuT94m41ielq5P3uryc9DNLk/8xb3nBQOuT/7S8uO7ee4P9ABSGfPwbg/dbi85bqbuD/tV8jGsHW4P0vuWsSxT7g/tou3lb4puD/9O3bv1wO4P9ochoP+3bc/U5AvATO4tz9VihYVdpK3P0b5PGnIbLc/hkgFpSpHtz9R/DRtnSG3P4hm92Mh/LY/jXPgKLfWtj+Tju9YX7G2P9ycko4ajLY/SQ+pYelmtj9eCYdnzEG2P3qd+DLEHLY/eR1FVNH3tT8SfzJZ9NK1P4LTCM0trrU/AtKVOH6JtT8cdDAi5mS1P7GjvA1mQLU/6fmufP4btT+UjhDur/e0P1zXgt5607Q/TpZDyF+vtD9C1zAjX4u0P2f7zGR5Z7Q/odJCAK9DtD80wmlmACC0PwP4yQVu/LM/HaqgSvjYsz8mYuSen7WzP8BTSWpkkrM/+71FEkdvsz/zVhb6R0yzP0nBwoJnKbM//goiC6YGsz9MNd/vA+SyP/fEfYuBwbI/oVpeNh+fsj/AUsNG3XyyP+5s1RC8WrI/yXmo5rs4sj9aD0AY3RayP31DlPMf9bE/vmuWxITTsT994jXVC7KxP+/QZG21kLE/b/0c04FvsT/2nWRKcU6xP00uUxWELbE/fkkWdLoMsT9ihvakFOywP9VWXOSSy7A/IenUbDWrsD+ICxd3/IqwP2MRCDroarA/trnA6vhKsD+kFpK8LiuwP8R1CuGJC7A/yZH0DxXYrz+hHfK+YZmvPy141Cf6Wq8/vEYEoN4crz/VuZV5D9+uP5laUgONoa4/mdXCiFdkrj+LwjhSbyeuP7Jo2KTU6q0/WX+iwoeurT+S6X3qiHKtP1ltQVjYNq0/H2W9RHb7rD/Ea8XlYsCsP9kBOm6ehaw/tCwSDilLrD8fDmXyAhGsP4R0c0Us16s/TGOxLqWdqz/4ks/SbWSrP1zoxFOGK6s/E+PX0O7yqj96Aqhmp7qqP88gNy+wgqo/acTyQQlLqj+RZr2zshOqP3av95as3Kk/RKeJ+/alqT/62+vukW+pP2h7MHx9Oak/iWEMrLkDqT+WGuCERs6oP8fYwAokmag/Ol2BP1JkqD8g1Loi0S+oP7yj1bGg+6c/1y0S6MDHpz/Fg5G+MZSnP5cMXizzYKc/Hx10JgUupz/fgcqfZ/umP5n6WokayaY/Gacq0h2Xpj9UZVJncWWmP7UgBzQVNKY/CxKiIQkDpj938KgXTdKlP8US1vvgoaU/bYEgssRxpT+n+MMc+EGlP93aSBx7EqU/PxOMj03jpD8L6MZTb7SkP/O8lkTghaQ/MsUEPKBXpD8npY0SrymkP6MDKZ8M/KM/uwpRt7jOoz/W1wkvs6GjPzDb6Nj7dKM/qSYchpJIoz+Yq3EGdxyjP+1nXiip8KI/c4IFuSjFoj/cVT+E9ZmiPxproFQPb6I/eWKA83VEoj/MywApKRqiP2PtE7wo8KE/63mDcnTGoT9JNfcQDJ2hPxKI+1rvc6E/FgIIEx5LoT+fy4X6lyKhP4gF1tFc+qA/JxhYWGzSoD8q8W9MxqqgPx4wjGtqg6A/9EEsclhcoD9wa+YbkDWgP1LCbSMRD6A/MiswhbbRnz9oicdk3IWfPxkL+1WTOp8/fjOMx9rvnj+U5a8msqWeP+SKGd8YXJ4/LBgGWw4Tnj/Z8EYDksqdP8uoTD+jgp0/lKQxdUE7nT+LmMQJbPScP8bmkmAirpw/sNvy22NonD/syQ3dLyOcP30F6sOF3ps/371072Samz/ut4u9zFabP1znBou8E5s/oOfBszPRmj8qVaWSMY+aP1oGsIG1TZo/8CQA2r4Mmj+RJ9zzTMyZPxSsuyZfjJk/iTJQyfRMmT/fuI0xDQ6ZP+c3s7Snz5g/iQFTp8ORmD8xAFtdYFSYPxjYHCp9F5g/UOpVYBnblz+uOTdSNJ+XPwIybVHNY5c/w1Enr+Molz8ath+8du6WP++JosiFtJY/51eVJBB7lj9zP34fFUKWP3wNiwiUCZY/fTiYLozRlT+pwDfg/JmVP9Xzt2vlYpU/2RUqH0UslT9v7WhIG/aUP4c1HzVnwJQ/yvPNMiiLlD8htNKOXVaUP3qpbZYGIpQ/U7THliLukz/9TvjcsLqTP85fC7awh5M/rvEGbyFVkz8o0/BUAiOTP/cb1LRS8ZI/ypnG2xHAkj/wI+4WP4+SP5/WhbPZXpI/oTXj/uAukj//NntGVP+RP8Y159cy0JE/5MzpAHyhkT/PmnMPL3ORP9btp1FLRZE/VlnhFdAXkT9QNLaqvOqQP3QB/V4QvpA/r8DQgcqRkD/WKpVi6mWQP2vX+lBvOpA/pUwDnVgPkD9s9AkuS8mPP9Y9Xh+rdI8/XTIbsM8gjz8aRhmDt82OPzfz+Dthe44/d+Apf8spjj9k3/Hx9NiNPyzDczrciI0/ShC2/385jT9Zhanp3uqMP9N9L6H3nIw/DC8g0MhPjD+Xv1AhUQOMP/o5mUCPt4s//1ra2oFsiz+nOwOeJyKLP9/XFjl/2Io/9nExXIePij9G0424PkeKP6tqigCk/4k/IEmu57W4iT8G/a0ic3KJPy5McGfaLIk/ls0SberniD/1Yu7roaOIP1uSm53/X4g/wcD2PAIdiD+oTSSGqNqHPxKQlDbxmIc/nrUHDdtXhz/6g5HJZBeHP+L8nC2N14Y/a+Xv+1KYhj/+MK74tFmGP+RPXemxG4Y/hWLnlEjehT9NUZ7Dd6GFP3/JPj8+ZYU/0B/z0pophT+6GFZLjO6EPzaXdXYRtIQ/7THVIyl6hD+or3Ak0kCEPwxrvkoLCIQ/DZ6xatPPgz+hlbxZKZiDP/LN0u4LYYM/TPdqAnoqgz9f5IBucvSCPypilw70voI/k/m5v/2Jgj9+m35gjlWCP383B9GkIYI/XT0D8z/ugT8GCrGpXruBPx5A39n/iIE/lAzuaSJXgT9dV9BBxSWBPwDhDEvn9IA/Dk2/cIfEgD/BGZmfpJSAP1WF4sU9ZYA/WWF701E2gD8B1Nu53weAP2wQKtjMs38/9JijvclYfz+PQa4QtP5+PxloCcGJpX4/0aKqwUhNfj+Ger4I7/V9P88FqY96n30/cGUGU+lJfT9LIqtSOfV8P/JtpJFooXw/E0Y4FnVOfD9me+XpXPx7P32cYxkeq3s/O8WitLZaez+QU8vOJAt7P3iBPX5mvHo/YeWQ3Hluej9F2ZMGXSF6P6XIShwO1Xk/fmbvQIuJeT9cy++a0j55P9l77VPi9Hg/kli8mLireD+pd2GZU2N4PzHoEYmxG3g/Z2AxntDUdz/21lASr453P3oHLSJLSXc/ROOsDaMEdz9O7t8XtcB2PzGJ/IZ/fXY/JChepAA7dj/jd4O8Nvl1P79wDB8guHU/8Ve4Hrt3dT8osGMRBjh1P3QZBlD/+HQ/syCwNqW6dD9y/4gk9nx0P0RMzHvwP3Q/85vHoZIDdD8YFNj+2sdzP4jvZ/7HjHM/iPTrDlhScz+w3eChiRhzP4K1yCtb33I/PiUoJMumcj8Mt4MF2G5yPyUMXU2AN3I/NwcwfMIAcj8f628VncpxP6tuhJ8OlXE/kMXGoxVgcT+tnn6usCtxP1wY307e93A/2KoDF53EcD/xCO2b65FwP6f3fXXIX3A/2hx4PjIucD8NivEoT/pvPyZC6y9OmW8/avdy2F45bz/1zcFuftpuP2fFrUSqfG4/YPaisd8fbj8nwpwSHMRtP2L1HspcaW0/Vt0uQJ8PbT+kUEzi4LZsP8msaiMfX2w/fMfpe1cIbD8y1Y5ph7JrP7hFfW+sXWs/K5YvFsQJaz9tGXDry7ZqPym4UYLBZGo/cKcoc6ITaj9mF4NbbMNpP23aId4cdGk/pgTxorElaT9ghABXKNhoP5C0fKx+i2g/o+imWrI/aD+d8s0dwfRnP0ukRreoqmc/FUtk7WZhZz8jJ3GL+RhnP+repmFe0WY/8u0mRZOKZj/wEPMPlkRmPzeu5aBk/2U/QDuq2/y6ZT84oLWoXHdlP+qYPvWBNGU/vxM2s2ryZD/Kjz/ZFLFkP/h4qWJ+cGQ/f4NlT6UwZD8ABwGkh/FjP+VYnWkjs2M/uyborXZ1Yz8o0RODfzhjP/HGz/87/GI/yuBAP6rAYj+UvvlgyIViP2sl84iUS2I/TV+E3wwSYj/knFuRL9lhP+lYds/6oGE/1r0Zz2xpYT9bDsvJgzJhPzcQSP09/GA//nl/q5nGYD9RZIkalZFgPxW+n5QuXWA/Q8QWaGQpYD90+6rOaexfP4F1nNE8h18/KzHujT4jXz9jE4XAa8BeP2zELy7BXl4/89GXozv+XT+z2zL1155dP03JM/+SQF0/kAp8pWnjXD8z44zTWIdcP2bAeHxdLFw/zJrUmnTSWz9VY6kwm3lbP/17ZUfOIVs/TD3O7wrLWj+0h/FBTnVaP5ZhF12VIFo/26KzZ93MWT8rrVePI3pZP5ExpAhlKFk/bQQ7D5/XWD+u/rDlzodYP0Ptf9XxOFg/YY/4LgXrVz/ZojRJBp5XPyf/CILyUVc/DMD3PccGVz+2fiLogbxWP0WaPPIfc1Y/YpB91J4qVj/iZJMN/OJVP10ZlSI1nFU/PzX1nkdWVT9yXXQUMRFVP278ExvvzFQ/IPsIUX+JVD/4ia5a30ZUP7D6eOIMBVQ/WavomAXEUz/kAX00x4NTP9B4p3FPRFM/ar2+EpwFUz/q3vHfqsdSP/WOO6d5ilI/IXRVPAZOUj9Ijat4ThJSPz+nTztQ11E/4OPsaAmdUT/bUrvrd2NRP96cc7OZKlE/S8BCtWzyUD/7373r7rpQP4Ak1lYehFA/I6/M+/hNUD8jnyblfBhQPx9TQkVQx08/IYZLkvFeTz8puHzl2fdOP1NfE30Fkk4/8UhfoXAtTj9PgKukF8pNPy9bJ+P2Z00/jqrPwgoHTT9/EFizT6dMP7l7FC7CSEw/rMfitV7rSz+kgRTXIY9LP9DTWCcINEs/v5SmRQ7aSj8RfCbaMIFKP/N8HZZsKUo/MUXXM77SST9V4ZB2In1JP62GYyqWKEk/rYEvJBbVSD+NSYdBn4JIP3C5mmguMUg/DW4iiMDgRz9USEuXUpFHP5MVopXhQkc/qFv/imr1Rj/jSnOH6qhGPxDUMaNeXUY/SuN+/sMSRj/hv5rBF8lFP1uQrhxXgEU/9wK5R384RT8MG3uCjfFEP00iZRR/q0Q/P76DTFFmRD9bKm2BASJEP8aVLhGN3kM/9qQ5YfGbQz+yF1LeK1pDP2CSe/w5GUM/84rnNhnZQj/cWeMPx5lCP/xtxhBBW0I/2aPgyYQdQj99wGjSj+BBP/kOa8hfpEE/4SC4UPJoQT/2sdMWRS5BPyeu48xV9EA/IVqfKyK7QD+qnj7yp4JAP+91aebkSkA/8Hon1NYTQD+wNp8b97o/P6bV79ehTz8/QjDLmqnlPj8oCPotCn0+P1vzY2e/FT4//Q7wKMWvPT8c9WVgF0s9P1HzTgey5zw/LoTXIpGFPD88CbHDsCQ8PwrG8wUNxTs/lBwBEaJmOz9nCWYXbAk7P9nfvVZnrTo/nkaVF5BSOj8tc02t4vg5Pyik/3VboDk/Pttg2vZIOT+11KVNsfI4Py49Z02HnTg/nyWGYXVJOD8ytBAcePY3Px0SJxmMpDc/35bg/q1TNz8fLzF92gM3P73/zk0OtTY/AUUYNEZnNj+GbPn8fho2P0Bq0361zjU/ikhimeaDNT/w8aM1Dzo1P/c0v0Us8TQ/5gHrxDqpND8=\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[1000]}},\"selected\":{\"id\":\"1507\"},\"selection_policy\":{\"id\":\"1506\"}},\"id\":\"1494\",\"type\":\"ColumnDataSource\"},{\"attributes\":{\"line_alpha\":0.7,\"line_color\":\"#ff8888\",\"line_width\":4,\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1495\",\"type\":\"Line\"},{\"attributes\":{\"line_alpha\":0.7,\"line_color\":\"orange\",\"line_width\":2,\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1511\",\"type\":\"Line\"},{\"attributes\":{\"source\":{\"id\":\"1494\"}},\"id\":\"1498\",\"type\":\"CDSView\"},{\"attributes\":{\"line_alpha\":0.1,\"line_color\":\"#ff8888\",\"line_width\":4,\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1496\",\"type\":\"Line\"},{\"attributes\":{\"data\":{\"x\":{\"__ndarray__\":\"LUMc6+I2Gj/kfjf4UJqUP8PwwYY1jaQ/FCJokULNrj+yKQfOp4a0P1pCWlOuprk/A1ut2LTGvj/VOQCvXfPBPynGqfFgg8Q/fVJTNGQTxz/R3vx2Z6PJPyVrprlqM8w/evdP/G3Dzj/nwXyfuKnQPxGI0UC68dE/O04m4rs50z9lFHuDvYHUP4/azyS/ydU/uaAkxsAR1z/jZnlnwlnYPw0tzgjEodk/N/MiqsXp2j9huXdLxzHcP4t/zOzIed0/tkUhjsrB3j/wBbsX5gTgPwVpZejmqOA/GswPuedM4T8vL7qJ6PDhP0SSZFrplOI/WfUOK+o44z9uWLn76tzjP4O7Y8zrgOQ/mB4Onewk5T+tgbht7cjlP8LkYj7ubOY/10cND+8Q5z/sqrff77TnPwEOYrDwWOg/FnEMgfH86D8r1LZR8qDpP0A3YSLzROo/VZoL8/Po6j9q/bXD9IzrP39gYJT1MOw/lMMKZfbU7D+pJrU193jtP76JXwb4HO4/1OwJ1/jA7j/pT7Sn+WTvP39ZLzx9BPA/CYuEpH1W8D+UvNkMfqjwPx7uLnV++vA/qR+E3X5M8T8zUdlFf57xP76CLq5/8PE/SLSDFoBC8j/T5dh+gJTyP10XLueA5vI/6EiDT4E48z9yeti3gYrzP/2rLSCC3PM/h92CiIIu9D8SD9jwgoD0P51ALVmD0vQ/J3KCwYMk9T+yo9cphHb1PzzVLJKEyPU/xwaC+oQa9j9RONdihWz2P9xpLMuFvvY/ZpuBM4YQ9z/xzNabhmL3P3v+KwSHtPc/BjCBbIcG+D+QYdbUh1j4PxuTKz2Iqvg/pcSApYj8+D8w9tUNiU75P7onK3aJoPk/RVmA3ony+T/PitVGikT6P1q8Kq+Klvo/5O1/F4vo+j9vH9V/izr7P/lQKuiLjPs/hIJ/UIze+z8OtNS4jDD8P5nlKSGNgvw/Ixd/iY3U/D+uSNTxjSb9Pzh6KVqOeP0/w6t+wo7K/T9N3dMqjxz+P9gOKZOPbv4/Y0B++4/A/j/tcdNjkBL/P3ijKMyQZP8/AtV9NJG2/z9Hg2nOSAQAQAwclAJJLQBA0bS+NklWAECXTelqSX8AQFzmE59JqABAIX8+00nRAEDmF2kHSvoAQKywkztKIwFAcUm+b0pMAUA24uijSnUBQPt6E9hKngFAwRM+DEvHAUCGrGhAS/ABQEtFk3RLGQJAEN69qEtCAkDWdujcS2sCQJsPExFMlAJAYKg9RUy9AkAlQWh5TOYCQOvZkq1MDwNAsHK94Uw4A0B1C+gVTWEDQDqkEkpNigNAAD09fk2zA0DF1WeyTdwDQIpukuZNBQRATwe9Gk4uBEAVoOdOTlcEQNo4EoNOgARAn9E8t06pBEBlamfrTtIEQCoDkh9P+wRA75u8U08kBUC0NOeHT00FQHrNEbxPdgVAP2Y88E+fBUAE/2YkUMgFQMmXkVhQ8QVAjzC8jFAaBkBUyebAUEMGQBliEfVQbAZA3vo7KVGVBkCkk2ZdUb4GQGkskZFR5wZALsW7xVEQB0DzXeb5UTkHQLn2EC5SYgdAfo87YlKLB0BDKGaWUrQHQAjBkMpS3QdAzlm7/lIGCECT8uUyUy8IQFiLEGdTWAhAHSQ7m1OBCEDjvGXPU6oIQKhVkANU0whAbe66N1T8CEAyh+VrVCUJQPgfEKBUTglAvbg61FR3CUCCUWUIVaAJQEjqjzxVyQlADYO6cFXyCUDSG+WkVRsKQJe0D9lVRApAXU06DVZtCkAi5mRBVpYKQOd+j3VWvwpArBe6qVboCkBysOTdVhELQDdJDxJXOgtA/OE5RldjC0DBemR6V4wLQIcTj65XtQtATKy54lfeC0ARReQWWAcMQNbdDktYMAxAnHY5f1hZDEBhD2SzWIIMQCaojudYqwxA60C5G1nUDECx2eNPWf0MQHZyDoRZJg1AOws5uFlPDUAApGPsWXgNQMY8jiBaoQ1Ai9W4VFrKDUBQbuOIWvMNQBUHDr1aHA5A25848VpFDkCgOGMlW24OQGXRjVlblw5AK2q4jVvADkDwAuPBW+kOQLWbDfZbEg9AejQ4Klw7D0BAzWJeXGQPQAVmjZJcjQ9Ayv63xly2D0CPl+L6XN8PQCqYhpcuBBBAjOSbsa4YEEDvMLHLLi0QQFJ9xuWuQRBAtMnb/y5WEEAXFvEZr2oQQHpiBjQvfxBA3K4bTq+TEEA/+zBoL6gQQKFHRoKvvBBABJRbnC/REEBn4HC2r+UQQMkshtAv+hBALHmb6q8OEUCPxbAEMCMRQPERxh6wNxFAVF7bODBMEUC2qvBSsGARQBn3BW0wdRFAfEMbh7CJEUDejzChMJ4RQEHcRbuwshFApChb1TDHEUAGdXDvsNsRQGnBhQkx8BFAzA2bI7EEEkAuWrA9MRkSQJGmxVexLRJA8/LacTFCEkBWP/CLsVYSQLmLBaYxaxJAG9gawLF/EkB+JDDaMZQSQOFwRfSxqBJAQ71aDjK9EkCmCXAostESQAhWhUIy5hJAa6KaXLL6EkDO7q92Mg8TQDA7xZCyIxNAk4faqjI4E0D20+/EskwTQFggBd8yYRNAu2wa+bJ1E0AduS8TM4oTQIAFRS2znhNA41FaRzOzE0BFnm9hs8cTQKjqhHsz3BNACzealbPwE0Btg6+vMwUUQNDPxMmzGRRAMhza4zMuFECVaO/9s0IUQPi0BBg0VxRAWgEaMrRrFEC9TS9MNIAUQCCaRGa0lBRAguZZgDSpFEDlMm+atL0UQEh/hLQ00hRAqsuZzrTmFEANGK/oNPsUQG9kxAK1DxVA0rDZHDUkFUA1/e42tTgVQJdJBFE1TRVA+pUZa7VhFUBd4i6FNXYVQL8uRJ+1ihVAIntZuTWfFUCEx27TtbMVQOcThO01yBVASmCZB7bcFUCsrK4hNvEVQA/5wzu2BRZAckXZVTYaFkDUke5vti4WQDfeA4o2QxZAmSoZpLZXFkD8di6+NmwWQF/DQ9i2gBZAwQ9Z8jaVFkAkXG4Mt6kWQIeogyY3vhZA6fSYQLfSFkBMQa5aN+cWQK6Nw3S3+xZAEdrYjjcQF0B0Ju6otyQXQNZyA8M3ORdAOb8Y3bdNF0CcCy73N2IXQP5XQxG4dhdAYaRYKziLF0DE8G1FuJ8XQCY9g184tBdAiYmYebjIF0Dr1a2TON0XQE4iw6248RdAsW7YxzgGGEATu+3huBoYQHYHA/w4LxhA2VMYFrlDGEA7oC0wOVgYQJ7sQkq5bBhAADlYZDmBGEBjhW1+uZUYQMbRgpg5qhhAKB6Ysrm+GECLaq3MOdMYQO62wua55xhAUAPYADr8GECzT+0auhAZQBWcAjU6JRlAeOgXT7o5GUDbNC1pOk4ZQD2BQoO6YhlAoM1XnTp3GUADGm23uosZQGVmgtE6oBlAyLKX67q0GUAr/6wFO8kZQI1Lwh+73RlA8JfXOTvyGUBS5OxTuwYaQLUwAm47GxpAGH0XiLsvGkB6ySyiO0QaQN0VQry7WBpAQGJX1jttGkCirmzwu4EaQAX7gQo8lhpAZ0eXJLyqGkDKk6w+PL8aQC3gwVi80xpAjyzXcjzoGkDyeOyMvPwaQFXFAac8ERtAtxEXwbwlG0AaXizbPDobQHyqQfW8ThtA3/ZWDz1jG0BCQ2wpvXcbQKSPgUM9jBtAB9yWXb2gG0BqKKx3PbUbQMx0wZG9yRtAL8HWqz3eG0CRDezFvfIbQPRZAeA9BxxAV6YW+r0bHEC58isUPjAcQBw/QS6+RBxAf4tWSD5ZHEDh12tivm0cQEQkgXw+ghxAp3CWlr6WHEAJvauwPqscQGwJwcq+vxxAzlXW5D7UHEAxouv+vugcQJTuABk//RxA9joWM78RHUBZhytNPyYdQLzTQGe/Oh1AHiBWgT9PHUCBbGubv2MdQOO4gLU/eB1ARgWWz7+MHUCpUavpP6EdQAuewAPAtR1AburVHUDKHUDRNus3wN4dQDODAFJA8x1Als8VbMAHHkD4GyuGQBweQFtoQKDAMB5AvrRVukBFHkAgAWvUwFkeQINNgO5Abh5A5pmVCMGCHkBI5qoiQZceQKsywDzBqx5ADn/VVkHAHkBwy+pwwdQeQNMXAItB6R5ANWQVpcH9HkCYsCq/QRIfQPv8P9nBJh9AXUlV80E7H0DAlWoNwk8fQCPifydCZB9AhS6VQcJ4H0DoeqpbQo0fQErHv3XCoR9ArRPVj0K2H0AQYOqpwsofQHKs/8NC3x9A1fgU3sLzH0CcIhV8IQQgQM3IH4lhDiBA/m4qlqEYIEAwFTWj4SIgQGG7P7AhLSBAkmFKvWE3IEDEB1XKoUEgQPWtX9fhSyBAJlRq5CFWIEBY+nTxYWAgQImgf/6haiBAukaKC+J0IEDs7JQYIn8gQB2TnyViiSBATjmqMqKTIEB/37Q/4p0gQLGFv0wiqCBA4ivKWWKyIEAT0tRmorwgQEV433PixiBAdh7qgCLRIECnxPSNYtsgQNlq/5qi5SBAChEKqOLvIEA7txS1IvogQG1dH8JiBCFAngMqz6IOIUDPqTTc4hghQAFQP+kiIyFAMvZJ9mItIUBjnFQDozchQJVCXxDjQSFAxuhpHSNMIUD3jnQqY1YhQCg1fzejYCFAWtuJRONqIUCLgZRRI3UhQLwnn15jfyFA7s2pa6OJIUAfdLR445MhQFAav4UjniFAgsDJkmOoIUCzZtSfo7IhQOQM36zjvCFAFrPpuSPHIUBHWfTGY9EhQHj//tOj2yFAqqUJ4ePlIUDbSxTuI/AhQAzyHvtj+iFAPpgpCKQEIkBvPjQV5A4iQKDkPiIkGSJA0YpJL2QjIkADMVQ8pC0iQDTXXknkNyJAZX1pViRCIkCXI3RjZEwiQMjJfnCkViJA+W+JfeRgIkArFpSKJGsiQFy8npdkdSJAjWKppKR/IkC/CLSx5IkiQPCuvr4klCJAIVXJy2SeIkBT+9PYpKgiQISh3uXksiJAtUfp8iS9IkDm7fP/ZMciQBiU/gyl0SJASToJGuXbIkB64BMnJeYiQKyGHjRl8CJA3SwpQaX6IkAO0zNO5QQjQEB5PlslDyNAcR9JaGUZI0CixVN1pSMjQNRrXoLlLSNABRJpjyU4I0A2uHOcZUIjQGhefqmlTCNAmQSJtuVWI0DKqpPDJWEjQPxQntBlayNALfeo3aV1I0BenbPq5X8jQI9DvvcliiNAwenIBGaUI0Dyj9MRpp4jQCM23h7mqCNAVdzoKyazI0CGgvM4Zr0jQLco/kWmxyNA6c4IU+bRI0AadRNgJtwjQEsbHm1m5iNAfcEoeqbwI0CuZzOH5vojQN8NPpQmBSRAEbRIoWYPJEBCWlOuphkkQHMAXrvmIyRApKZoyCYuJEDWTHPVZjgkQAfzfeKmQiRAOJmI7+ZMJEBqP5P8JlckQJvlnQlnYSRAzIuoFqdrJED+MbMj53UkQC/YvTAngCRAYH7IPWeKJECSJNNKp5QkQMPK3VfnniRA9HDoZCepJEAmF/NxZ7MkQFe9/X6nvSRAiGMIjOfHJEC6CROZJ9IkQOuvHaZn3CRAHFYos6fmJEBN/DLA5/AkQH+iPc0n+yRAsEhI2mcFJUDh7lLnpw8lQBOVXfTnGSVARDtoASgkJUB14XIOaC4lQKeHfRuoOCVA2C2IKOhCJUAJ1JI1KE0lQDt6nUJoVyVAbCCoT6hhJUCdxrJc6GslQM9svWkodiVAABPIdmiAJUAxudKDqIolQGJf3ZDolCVAlAXonSifJUDFq/KqaKklQPZR/beosyVAKPgHxei9JUBZnhLSKMglQIpEHd9o0iVAvOon7KjcJUDtkDL56OYlQB43PQYp8SVAUN1HE2n7JUCBg1IgqQUmQLIpXS3pDyZA5M9nOikaJkAVdnJHaSQmQEYcfVSpLiZAeMKHYek4JkCpaJJuKUMmQNoOnXtpTSZAC7WniKlXJkA9W7KV6WEmQG4BvaIpbCZAn6fHr2l2JkDRTdK8qYAmQAL03MnpiiZAM5rn1imVJkBlQPLjaZ8mQJbm/PCpqSZAx4wH/umzJkD5MhILKr4mQCrZHBhqyCZAW38nJarSJkCNJTIy6twmQL7LPD8q5yZA73FHTGrxJkAgGFJZqvsmQFK+XGbqBSdAg2RncyoQJ0C0CnKAahonQOawfI2qJCdAF1eHmuouJ0BI/ZGnKjknQHqjnLRqQydAq0mnwapNJ0Dc77HO6lcnQA6WvNsqYidAPzzH6GpsJ0Bw4tH1qnYnQKKI3ALrgCdA0y7nDyuLJ0AE1fEca5UnQDZ7/CmrnydAZyEHN+upJ0CYxxFEK7QnQMltHFFrvidA+xMnXqvIJ0AsujFr69InQF1gPHgr3SdAjwZHhWvnJ0DArFGSq/EnQPFSXJ/r+ydAI/lmrCsGKEBUn3G5axAoQIVFfMarGihAt+uG0+skKEDokZHgKy8oQBk4nO1rOShAS96m+qtDKEB8hLEH7E0oQK0qvBQsWChA39DGIWxiKEAQd9EurGwoQEEd3DvsdihAcsPmSCyBKECkafFVbIsoQNUP/GKslShABrYGcOyfKEA4XBF9LKooQGkCHIpstChAmqgml6y+KEDMTjGk7MgoQP30O7Es0yhALptGvmzdKEBgQVHLrOcoQJHnW9js8ShAwo1m5Sz8KED0M3HybAYpQCXae/+sEClAVoCGDO0aKUCHJpEZLSUpQLnMmyZtLylA6nKmM605KUAbGbFA7UMpQE2/u00tTilAfmXGWm1YKUCvC9FnrWIpQOGx23TtbClAEljmgS13KUBD/vCObYEpQHWk+5utiylApkoGqe2VKUDX8BC2LaApQAmXG8NtqilAOj0m0K20KUBr4zDd7b4pQJ2JO+otySlAzi9G923TKUD/1VAErt0pQDB8WxHu5ylAYiJmHi7yKUCTyHArbvwpQMRueziuBipA9hSGRe4QKkAnu5BSLhsqQFhhm19uJSpAigembK4vKkC7rbB57jkqQOxTu4YuRCpAHvrFk25OKkBPoNCgrlgqQIBG263uYipAsuzlui5tKkDjkvDHbncqQBQ5+9SugSpARd8F4u6LKkB3hRDvLpYqQKgrG/xuoCpA2dElCa+qKkALeDAW77QqQDweOyMvvypAbcRFMG/JKkCfalA9r9MqQNAQW0rv3SpAAbdlVy/oKkAzXXBkb/IqQGQDe3Gv/CpAlamFfu8GK0DHT5CLLxErQPj1mphvGytAKZylpa8lK0BbQrCy7y8rQIzour8vOitAvY7FzG9EK0DuNNDZr04rQCDb2ubvWCtAUYHl8y9jK0CCJ/AAcG0rQLTN+g2wdytA5XMFG/CBK0AWGhAoMIwrQEjAGjVwlitAeWYlQrCgK0CqDDBP8KorQNyyOlwwtStADVlFaXC/K0A+/092sMkrQHClWoPw0ytAoUtlkDDeK0DS8W+dcOgrQAOYeqqw8itANT6Ft/D8K0Bm5I/EMAcsQJeKmtFwESxAyTCl3rAbLED61q/r8CUsQCt9uvgwMCxAXSPFBXE6LECOyc8SsUQsQL9v2h/xTixA8RXlLDFZLEAivO85cWMsQFNi+kaxbSxAhQgFVPF3LEC2rg9hMYIsQOdUGm5xjCxAGfske7GWLEBKoS+I8aAsQHtHOpUxqyxArO1EonG1LEDek0+vsb8sQA86WrzxySxAQOBkyTHULEByhm/Wcd4sQKMseuOx6CxA1NKE8PHyLEAGeY/9Mf0sQDcfmgpyBy1AaMWkF7IRLUCaa68k8hstQMsRujEyJi1A/LfEPnIwLUAuXs9LsjotQF8E2ljyRC1AkKrkZTJPLUDBUO9yclktQPP2+X+yYy1AJJ0EjfJtLUBVQw+aMngtQIfpGadygi1AuI8ktLKMLUDpNS/B8pYtQBvcOc4yoS1ATIJE23KrLUB9KE/osrUtQK/OWfXyvy1A4HRkAjPKLUARG28Pc9QtQEPBeRyz3i1AdGeEKfPoLUClDY82M/MtQNezmUNz/S1ACFqkULMHLkA5AK9d8xEuQGqmuWozHC5AnEzEd3MmLkDN8s6EszAuQP6Y2ZHzOi5AMD/knjNFLkBh5e6rc08uQJKL+bizWS5AxDEExvNjLkD11w7TM24uQCZ+GeBzeC5AWCQk7bOCLkCJyi7684wuQLpwOQc0ly5A7BZEFHShLkAdvU4htKsuQE5jWS70tS5AgAlkOzTALkCxr25IdMouQOJVeVW01C5AE/yDYvTeLkBFoo5vNOkuQHZImXx08y5Ap+6jibT9LkDZlK6W9AcvQAo7uaM0Ei9AO+HDsHQcL0Bth869tCYvQJ4t2cr0MC9Az9Pj1zQ7L0ABeu7kdEUvQDIg+fG0Ty9AY8YD//RZL0CVbA4MNWQvQMYSGRl1bi9A97gjJrV4L0AoXy4z9YIvQFoFOUA1jS9Ai6tDTXWXL0C8UU5ataEvQO73WGf1qy9AH55jdDW2L0BQRG6BdcAvQILqeI61yi9As5CDm/XUL0DkNo6oNd8vQBbdmLV16S9AR4OjwrXzL0B4Ka7P9f0vQNVnXO4aBDBA7brh9DoJMEAGDmf7Wg4wQB9h7AF7EzBAN7RxCJsYMEBQB/cOux0wQGlafBXbIjBAga0BHPsnMECaAIciGy0wQLNTDCk7MjBAy6aRL1s3MEDk+RY2ezwwQP1MnDybQTBAFaAhQ7tGMEAu86ZJ20swQEdGLFD7UDBAX5mxVhtWMEB47DZdO1swQJE/vGNbYDBAqZJBantlMEDC5cZwm2owQNs4THe7bzBA84vRfdt0MEAM31aE+3kwQCUy3IobfzBAPYVhkTuEMEBW2OaXW4kwQG8rbJ57jjBAh37xpJuTMECg0Xaru5gwQLgk/LHbnTBA0XeBuPuiMEDqyga/G6gwQAIejMU7rTBAG3ERzFuyMEA0xJbSe7cwQEwXHNmbvDBAZWqh37vBMEB+vSbm28YwQJYQrOz7yzBAr2Mx8xvRMEDItrb5O9YwQOAJPABc2zBA+VzBBnzgMEASsEYNnOUwQCoDzBO86jBAQ1ZRGtzvMEBcqdYg/PQwQHT8Wycc+jBAjU/hLTz/MECmomY0XAQxQL716zp8CTFA10hxQZwOMUDwm/ZHvBMxQAjve07cGDFAIUIBVfwdMUA6lYZbHCMxQFLoC2I8KDFAazuRaFwtMUCEjhZvfDIxQJzhm3WcNzFAtTQhfLw8MUDOh6aC3EExQObaK4n8RjFA/y2xjxxMMUAYgTaWPFExQDDUu5xcVjFASSdBo3xbMUBhesapnGAxQHrNS7C8ZTFAkyDRttxqMUCrc1a9/G8xQMTG28McdTFA3Rlhyjx6MUD1bObQXH8xQA7Aa9d8hDFAJxPx3ZyJMUA/ZnbkvI4xQFi5++rckzFAcQyB8fyYMUCJXwb4HJ4xQKKyi/48ozFAuwURBV2oMUDTWJYLfa0xQOyrGxKdsjFABf+gGL23MUAdUiYf3bwxQDalqyX9wTFAT/gwLB3HMUBnS7YyPcwxQICeOzld0TFAmfHAP33WMUCxREZGndsxQMqXy0y94DFA4+pQU93lMUD7PdZZ/eoxQBSRW2Ad8DFALeTgZj31MUBFN2ZtXfoxQF6K63N9/zFAd91wep0EMkCPMPaAvQkyQKiDe4fdDjJAwNYAjv0TMkDZKYaUHRkyQPJ8C5s9HjJACtCQoV0jMkAjIxaofSgyQDx2m66dLTJAVMkgtb0yMkBtHKa73TcyQIZvK8L9PDJAnsKwyB1CMkC3FTbPPUcyQNBou9VdTDJA6LtA3H1RMkABD8binVYyQBpiS+m9WzJAMrXQ791gMkBLCFb2/WUyQGRb2/wdazJAfK5gAz5wMkCVAeYJXnUyQK5UaxB+ejJAxqfwFp5/MkDf+nUdvoQyQPhN+yPeiTJAEKGAKv6OMkAp9AUxHpQyQEJHizc+mTJAWpoQPl6eMkBz7ZVEfqMyQIxAG0ueqDJApJOgUb6tMkC95iVY3rIyQNY5q17+tzJA7owwZR69MkAH4LVrPsIyQB8zO3JexzJAOIbAeH7MMkBR2UV/ntEyQGksy4W+1jJAgn9QjN7bMkCb0tWS/uAyQLMlW5ke5jJAzHjgnz7rMkDly2WmXvAyQP0e66x+9TJAFnJws576MkAvxfW5vv8yQEcYe8DeBDNAYGsAx/4JM0B5voXNHg8zQJERC9Q+FDNAqmSQ2l4ZM0DDtxXhfh4zQNsKm+eeIzNA9F0g7r4oM0ANsaX03i0zQCUEK/v+MjNAPlewAR84M0BXqjUIPz0zQG/9ug5fQjNAiFBAFX9HM0Cho8Ubn0wzQLn2SiK/UTNA0knQKN9WM0DrnFUv/1szQAPw2jUfYTNAHENgPD9mM0A1luVCX2szQE3pakl/cDNAZjzwT591M0B+j3VWv3ozQJfi+lzffzNAsDWAY/+EM0DIiAVqH4ozQOHbinA/jzNA+i4Qd1+UM0ASgpV9f5kzQCvVGoSfnjNARCigir+jM0BceyWR36gzQHXOqpf/rTNAjiEwnh+zM0CmdLWkP7gzQL/HOqtfvTNA2BrAsX/CM0DwbUW4n8czQAnByr6/zDNAIhRQxd/RM0A6Z9XL/9YzQFO6WtIf3DNAbA3g2D/hM0CEYGXfX+YzQJ2z6uV/6zNAtgZw7J/wM0DOWfXyv/UzQOesevnf+jNAAAAAAAAANEA=\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[1000]},\"y\":{\"__ndarray__\":\"+se16Amt1zi+JoeJ0o5uPPSF34lF1uQ8sXhPJ+CbKj1mPNbcXi5cPVrqrf+9aoI9NzomCvy7oT0g/w4ov6i7PTTwkjWie9I9z+E3Mhn05T2ZVUKnNML3Pf9bh/fg2Ac+Ard/rTl+Fj4+IlAV7iIkPps+SP4bPjE+/rSXOTlrPD4+ZUhwl6ZGPkJNL6UTiFE+H0P6vldxWj7ff4XLLHxjPqr5j+AYIGw+wyKsJNvrcz7yv3sTn757Pp3nbuTfBYM+wDWkxfq3iT5R6O2UICmRPqZfiiynoJY+3IBsw8KBnT5NJiOuvQqjPiChdHvWV6g+g/Es2wfYrj7TWXF/0mCzPmttr/cCKbg+v85sygznvT6TCCztvmDCPvmZVqGjccY+v1OY3QU+yz6+U/LYG3DQPsXbFTGautM+j68os2SO1z4BG+zn3/zbPg4DsH6BjOA+dizCW7Z74z6MAhU2PNfmPp/+UH4pq+o+wQ4a4IcE7z49g5tUr/jxPj5sIo5ewPQ+NM9YVGLh9z5E5e2AWWT7PoT9qgd2Uv8+Z94d7MDaAT9mDGPT8UsEP+MeScxRAgc/c1MN6bcDCj9+9fpxUFYNP1eACYVPgBA/nPlcYMCEEj/+m6YHF7wUP7/rx2AeKhc/e1b249DSGT+fjk15WbocP4AgYUoU5R8/qV6xw8erIT9gJb0PRosjP5kr+jV/kyU/3JP5ZgfHJz9mDysfjSgqPwRfyWfZuiw/M/ygENCALz/5+Urxtz4xP/7RaGXp2TI/yk9C/5aTND+7RpYLaW02P2ujqJMVaTg/3fTXY2CIOj9r8WYOG808P5KceOokOT8/BKOfhzXnQD+UFLAldEdCP854R4xSvkM/VPCyxdtMRT+8WsCfIfRGP+/s8J88tUg/QVHV9UuRSj/cW5hrdYlMP374vVTlnk4/bkaOPWdpUD/HywsFNZNRPz5vEbx7zVI//f5KN94YVD/kU+xXAnZVP9Qp+P2Q5VY/jkm8+TVoWD/Wz4f8n/5ZP0SPoIiAqVs/rrZ84ItpXT+VEUb1eD9fPwovVqoAlmA/miwGi/CXYT+qoXhj66ViP+Zde6tRwGM/13iIAYXnZD8qnSAg6BtmP4qd3tLeXWc/jXBH682taD/pulk1GwxqP+kV4GsteWs/vUSJLGz1bD9dksnrP4FuP3ZIRPSIDnA/6TzPD6bkcD8JNpKfLMNxP4djzUxSqnI/4m90DE2acz8JpZwYU5N0P4b32umalXU/LZKTMFuhdj9HeTzOyrZ3PyvalM4g1ng/TZjSYJT/eT9ApcfQXDN7P3ytAICxcXw/J57e3sm6fT9PhKxl3Q5/P3eg2cYRN4A/b0Mm5WnsgD8sSfvAkqeBP1sCtQOoaII/d6NZScUvgz9AaCgdBv2DP2DUK/aF0IQ/TLnPM2CqhT+npHsasIqGP5lYMtCQcYc/8Ok2WR1fiD9bHbiUcFOJP5aYgjmlToo/fHi60tVQiz/a2Jy8HFqMP0fXSSGUao0/QpWX9VWCjj8Mu+71e6GPP1F7mNEPZJA/AfjUHy37kD9nkwVmIpaRP+mTOQL8NJI/x0PALsbXkj9fhLgAjX6TPz6opmZcKZQ/ccQQJ0DYlD+CpSHfQ4uVP8mTUgFzQpY/+Q8c1Nj9lj9crq1wgL2XPyY3rcF0gZg/Kiz9gcBJmT8w14o7bhaaP5H+I0aI55o/r1tUxhi9mz/F8EqsKZecP4VTx7LEdZ0/9gUPXvNYnj+p8Or6vkCfP0eJ1k6YFqA/MzufkCiPoD9rvhqTFAqhP6NF+ohgh6E/RJPohhAHoj+2wyGDKImiP5tXD1WsDaM/gYHotJ+Uoz80uVY7Bh6kP+KWHmHjqaQ/HvbMfjo4pT9iYWjMDsmlP+HEJmFjXKY/nGcnMzvypj9CKDEXmYqnP6X6dMB/Jag/MKNUwPHCqD8Wqy2G8WKpPwuIKF+BBao/O/QLdqOqqj/DbBTTWVKrP4nTz1um/Ks/Uir90oqprD8aYXDYCFmtP74t+ughC64/reVTXte/rj9bTg9vKnevPw0uRReOGLA/82lzxtZ2sD/o4oKrb9awP2lqQxtZN7E/sJ/lWJOZsT9RT/6VHv2xP8+mi/L6YbI/Yjb8fCjIsj9tujcypy+zP32lqf12mLM/EWRNuZcCtD+jU7wtCW60P4JkPRLL2rQ/5mDWDN1ItT8Z0F6yPri1P4lvlIbvKLY/ATkx/O6atj877wJ1PA63PywoBELXgrc/7s12o774tz/HDADJ8W+4P9WoxdFv6Lg/3q+MzDdiuT9Hgtm3SN25P7AoEYKhWbo/Ge+bCUHXuj+9PAkdJla7P4OgNHtP1rs/hwls07tXvD9WI5fFadq8P7bNX+JXXr0/8KZbq4TjvT/BoDaT7mm+P8mX3v2T8b4/4eOvQHN6vz8MbVFRRQLAPw4cPS7sR8A/eTd5TC2OwD+u43i6B9XAP3Sq3H96HME/01iLnYRkwT9wPMsNJa3BP5G8W8Ra9sE/3UqPriRAwj+mp2WzgYrCP6V1prNw1cI/cRn8ifAgwz+x4A4LAG3DP9BsoAWeucM/9V2nQskGxD+FOWuFgFTEP3CJoIvCosQ/si+FDY7xxD+X6vy94UDFP08Grkq8kMU/qjceXBzhxT8/nc+VADLGPz3iXZZng8Y/1ICb90/Vxj9RH69OuCfHP9UFMSyfesc/WqhIHAPOxz8mQsqm4iHIP5R/VE88dsg/VTJulQ7LyD8FDqT0VyDJP9FopuQWdsk/T/5m2UnMyT+xsDZD7yLKP45F444Feso/9BvVJYvRyj8C2CxufinLPyAC4crdgcs/Wpbbm6fayz9Gghc+2jPMP0QNvgt0jcw/ZypEXHPnzD/tr4eE1kHNP85y7NabnM0/6kN5o8H3zT/Zy/Q3RlPOPzNEAuAnr84/xAo+5WQLzz/gDVqP+2fPP+0OOiTqxM8/gdwHdBcR0D8vRbsO5D/QP/PGxwLabtA/1nEOcPid0D+5is51Ps3QP6obszKr/NA/UGjgxD0s0T9+RgFK9VvRP6xZVN/Qi9E/ujC5oc+70T8rRb2t8OvRPyzbqB8zHNI/tMGLE5ZM0j8D8kmlGH3SP+kNqPC5rdI/Z7xXEXne0j9z4wMjVQ/TPzu/XEFNQNM/cdUjiGBx0z/rxDcTjqLTPzvwn/7U09M/3AOYZjQF1D8zVptnqzbUP2MicB45aNQ/N5wyqNyZ1D+q3V8ilcvUP5Wt4Kph/dQ/jh4UYEEv1T97BtpgM2HVP/NNncw2k9U/jhdew0rF1T+pvrtlbvfVP0ut/tSgKdY/gQkiM+Fb1j8iOd2iLo7WP7k8rUeIwNY/seDdRe3y1j87xZLCXCXXPzA80OPVV9c/nf2D0FeK1z/6sY2w4bzXP89Sx6xy79c/d2EN7wki2D9280aiplTYP2qVbfJHh9g/gwOVDO252D87uPIelezYP0ZR5Vg/H9k/TMr76upR2T8tjvwGl4TZP1Re7N9Ct9k/VRAVqu3p2T+OIgyblhzaP4Qmuek8T9o/rwJczt+B2j8gC5OCfrTaP37wYEEY59o/UIcyR6wZ2z9zZeTROUzbP2dYyCDAfts/PbKqdD6x2z91b9cPtOPbP2E0HzYgFtw/cyPcLIJI3D88jPY62XrcP/Ry6agkrdw/zvHGwGPf3D9qczzOlRHdPyPHlh66Q90/qQ/GANB13T+Ki2HF1qfdP704q77N2d0/NVOTQLQL3j9errugiT3eP7vqejZNb94/7YbfWv6g3j+SzbJonNLeP3Cfe7wmBN8/rRqBtJw13z9UH82w/WbfP/SxLhNJmN8/gjs8P37J3z+yqFWanPrfP4Az08XRFeA/GaETPkku4D8KEFBrtEbgP6HO1AMTX+A/7ETXvmR34D9To3ZUqY/gPxSCvH3gp+A/J3Gd9AnA4D93eflzJdjgP+eOnLcy8OA/LPQ+fDEI4T+7j4V/ISDhP9syAoACOOE/pNIzPdRP4T8Ss4Z3lmfhP5eEVPBIf+E/VHTkaeuW4T8GL2unfa7hPwzXCm3/xeE/s+3Sf3Dd4T/fL8Cl0PThP3RmvKUfDOI/hCqeR10j4j+UnShUiTriP0YWC5WjUeI/WsHg1Kto4j98NzDfoX/iP+cHa4CFluI/QDjthVat4j+cufy9FMTiP07TyPe/2uI/BYNpA1jx4j98096x3AfjP4YoENVNHuM/LoLLP6s04z8PtsTF9ErjPyaflDsqYeM/WEW4dkt34z9I+49NWI3jPyx0XpdQo+M/y9BHLDS54z+CpFDlAs/jP+7xXJy85OM/BiAvLGH64z9c52Zw8A/kP/I3gEVqJeQ/wxfSiM465D8ueo0YHVDkP5AQvNNVZeQ/CBQ/mnh65D/CCM5MhY/kP+J69cx7pOQ/ObUV/Vu55D8pcmHAJc7kP2aG3PrY4uQ/d4ZakXX35D9oZn1p+wvlP2QUtGlqIOU/Og45ecI05T+98RCAA0nlP4oICWctXeU/Hc+1F0Bx5T+Ud3F8O4XlP+ZnWoAfmeU/PLRRD+ys5T8ylfkVocDlP2ras4E+1OU/NFmgQMTn5T8IWJtBMvvlP4j2O3SIDuY/JpLSyMYh5j8LKGcw7TTmP9Kzt5z7R+Y/wIs2APJa5j8gughO0G3mP1BUBHqWgOY/bs+ueEST5j/NUjs/2qXmP14IicNXuOY/Imsh/LzK5j/ikzbgCd3mPx6EoWc+7+Y/km/giloB5z8kBBVDXhPnP8awAopJJec/1OoMWhw35z+wcjWu1kjnP1aXGoJ4Wuc/93j10QFs5z8OS5iacn3nP8mVbNnKjuc/9HZxjAqg5z9s4jmyMbHnP3Li6klAwuc/xNc5UzbT5z96uWrOE+TnPypVTrzY9Oc/7o5AHoUF6D/voSb2GBboP9JgbUaUJug/9HYHEvc26D8AqmtcQUfoP+4bkylzV+g//Y33fYxn6D8wpJFejXfoP8Up19B1h+g/hla52kWX6D8YFaOC/aboP3FKd8+ctug/Wx6PyCPG6D9QRbh1ktXoP4hLM9/o5Og/buGxDSf06D+UKVUKTQPpPxsIrN5aEuk/o3OxlFAh6T8EyMo2LjDpP54axs/zPuk/XpDYaqFN6T/RtZwTN1zpP9DYENa0auk/SmSVvhp56T8NPuvZaIfpP38mMjWflek/hBrn3b2j6T+Ft+LhxLHpP7ShV0+0v+k/c+zQNIzN6T8khTChTNvpP0KgraP16Ok/3ijTS4f26T9zMn6pAQTqP1Vt3MxkEeo/i51qxrAe6j8qFPOm5SvqP1IrjH8DOeo/xsSWYQpG6j8iy7xe+lLqP8K174jTX+o/UQ9n8pVs6j87/56tQXnqP6bVVs3Wheo/cpqPZFWS6j/jnoqGvZ7qPzMSyEYPq+o/BJkFuUq36j+v5zzxb8PqP39fogN/z+o/3a6jBHjb6j9tdOYIW+fqPynlRiUo8+o/eHXWbt/+6j8+hdr6gArrP/oOy94MFus/8llRMIMh6z9fr0YF5CzrP6kSs3MvOOs/y/zLkWVD6z+2GvN1hk7rP8kOtTaSWes/gjXI6ohk6z8jbQupam/rP5jghIg3eus/ZtVgoO+E6z/DfPAHk4/rP9nHqNYhmus/Fj8hJJyk6z+03BIIAq/rP2DqVppTues/DuLl8pDD6z/aUdYpus3rPyDDW1fP1+s/v6TFk9Dh6z9sOH73vevrP02DCZuX9es/gEEEl13/6z/u3CIEEAnsP1ZnMPuuEuw/IpcNlToc7D+0x6/qsiXsP6f8HxUYL+w/Neh5LWo47D+g9OpMqUHsP95QsYzVSuw/RgAbBu9T7D8x7YTS9VzsP+7+WQvqZew/ijISystu7D/AtjEom3fsP/kKSD9YgOw/PyHvKAOJ7D8yg8r+m5HsPyR6htoimuw/BjrX1Zei7D9VD3gK+6rsPyeQKpJMs+w/+c+1hoy77D+EluUBu8PsP4WZiR3Yy+w/XLl08+PT7D+iQHyd3tvsP4wmdzXI4+w/OlQ91aDr7D/Z7KaWaPPsP5eYi5Mf++w/fNLB5cUC7T/UOB6nWwrtP7fgcvHgEe0/DKyO3lUZ7T9wojyIuiDtP7xMQwgPKO0/ZhNkeFMv7T9qn1ryhzbtPwA+3I+sPe0/10aXasFE7T8khTKcxkvtPwajTD68Uu0/1pd7aqJZ7T+7GEw6eWDtPxAMQcdAZ+0/Iv/SKvlt7T+Gnm9+onTtP/Uweds8e+0/hxRGW8iB7T+PPiAXRYjtP7K9RCizju0/jz7jpxKV7T+2kh2vY5vtPxE6B1emoe0/k+6kuNqn7T9FMuzsAK7tP6DfwgwZtO0/Q7z+MCO67T/ADWVyH8DtP94wqukNxu0/8zJxr+7L7T9wbUvcwdHtP7QjuIiH1+0/9iIkzT/d7T9RZOnB6uLtP/KwTn+I6O0/a0iHHRnu7T8CibK0nPPtPx2a21wT+e0/txj5LX3+7T/Mxew/2gPuP8w2g6oqCe4/A4hzhW4O7j/uEF/opRPuP40a0erQGO4/f5c+pO8d7j8d3gUsAiPuP2ZkbpkIKO4/u32oAwMt7j9vGs2B8THuPzKJ3SrUNu4/LjrDFas77j/pg09ZdkDuP/tpOww2Re4/SmUnRepJ7j8zLpsak07uPyGIBaMwU+4/Aw+89MJX7j84BvslSlzuPzAp5UzGYO4/ln2Dfzdl7j8ZJ8XTnWnuP6s8f1/5be4/ZJ9sOEpy7j/S0i10kHbuP8bWSCjMeu4/pwIpav1+7j8n4h5PJIPuP3ETYOxAh+4/vSYHV1OL7j8+fxOkW4/uP4g1aehZk+4/JfvQOE6X7j+s//epOJvuPw7Xb1AZn+4/KmGuQPCi7j+9sg2PvabuP4P/y0+Bqu4/koULlzuu7j/7edJ47LHuP5P2CgmUte4/6uiCWzK57j94AuyDx7zuP9yp25VTwO4/UO3KpNbD7j8odhbEUMfuP3Z9/gbCyu4/s8GmgCrO7j+KfRZEitHuP5xfOGTh1O4/UIPa8y/Y7j+jaq4FdtvuPwH5SKyz3u4/A28i+ujh7j8vZ5YBFuXuP67T49Q66O4/3vwshlfr7j/UgHcnbO7uP9BTrMp48e4/d8GXgX307j8Gb+ldevfuPzxeNHFv+u4/Q/HuzFz97j8973KCQgDvP8KJ/aIgA+8/D2OvP/cF7z8KlYxpxgjvP/q4fDGOC+8/C/BKqE4O7z977KXeBxHvP5D7H+W5E+8/NBAvzGQW7z9EziykCBnvP4uWVn2lG+8/Z5PNZzse7z8OxpZzyiDvP3oUm7BSI+8/9FenLtQl7z8tbGz9TijvPwA/fyzDKu8/v+BYyzAt7z8PlVbply/vP1rkuZX4Me8/vq2o31I07z+XOS3WpjbvP3dMNoj0OO8/tTqXBDw77z9r/AdafT3vP/ZBJZe4P+8/6Yhwyu1B7z+AMVACHUTvP32UD01GRu8/dxnfuGlI7z+VTdRTh0rvP7b66SufTO8//z4AT7FO7z/OpNzKvVDvPxE7Kq3EUu8/+a15A8ZU7z8KYEHbwVbvP4uD3UG4WO8/SzSQRKla7z+2kYHwlFzvP0fZv1J7Xu8/QYE/eFxg7z+/U9ttOGLvPwaKVEAPZO8/K+hS/OBl7z/32GSurWfvPxeK/2J1ae8/iAh/Jjhr7z9MXSYF9mzvP1SqHwuvbu8/rUd8RGNw7z/k4DS9EnLvP6OSKYG9c+8/hQginGN17z8Zm80ZBXfvPx9uwwWieO8/7Y6Cazp67z8KE3JWznvvP+s24dFdfe8/6HwH6eh+7z9IzASnb4DvP4iQ4Rbyge8/tdiOQ3CD7z/0duY36oTvPyMgq/5fhu8/qIuIotGH7z9LkxMuP4nvPztTyquoiu8/KEoUJg6M7z93eUKnb43vP46FjznNju8/NdYf5yaQ7z8OtwG6fJHvPxx4LbzOku8/YI6F9xyU7z+DtNZ1Z5XvP5ML2ECulu8/xjsrYvGX7z9SlVzjMJnvP0gx481smu8/fRIhK6Wb7z95RmME2pzvP3EG4mILnu8/PNjATzmf7z9crw7UY6DvP/0NxviKoe8/+CXNxq6i7z/h+fVGz6PvPwh+/oHspO8/frmQgAam7z8Z50JLHafvP3SWl+owqO8/5sz9ZkGp7z94JtHITqrvP9b2WRhZq+8/L2rNXWCs7z8Ypk2hZK3vP2Hq6eplru8/2rGeQmSv7z8U01WwX7DvPxah5jtYse8//gsW7U2y7z+awZbLQLPvP/FNCd8wtO8/uzv8Lh617z/KNOzCCLbvP2AiRKLwtu8/eE1d1NW37z/zfn9guLjvP70f4U2Yue8/1lino3W67z9GM+ZoULvvPwS4oKQovO8/ug/JXf687z9+okCb0b3vP2032GOivu8/MBRQvnC/7z9oHFixPMDvPwLxj0MGwe8/cA+He83B7z/G8LxfksLvP8AoofZUw+8/rISTRhXE7z8zKuRV08TvPxC20yqPxe8/nFqTy0jG7z9N/kQ+AMfvPwZa+4i1x+8/WRe6sWjI7z+e7nW+GcnvP/bEFLXIye8/Icptm3XK7z8/lkl3IMvvP3JHYk7Jy+8/U59jJnDM7z9VIOsEFc3vP/wqiO+3ze8/9xq861jO7z8aZPr+987vPy6vqC6Vz+8/qPYegDDQ7z86o6f4ydDvPzyof51h0e8/9p/Wc/fR7z/K586Ai9LvPzC8fckd0+8/nFTrUq7T7z8x/xIiPdTvP1g84zvK1O8/NNo9pVXV7z/qD/hi39XvP8iY2nln1u8/S8+h7u3W7z/1x/3FctfvPwZskgT21+8/DpT3rnfY7z9XIrnJ99jvPygdV1l22e8/58hFYvPZ7z8Owu3obtrvPwEXrPHo2u8/tWHSgGHb7z854aaa2NvvPxOTZENO3O8/d0w7f8Lc7z9Y009SNd3vP1X3u8Cm3e8/daqOzhbe7z/MGcx/hd7vP+fFbdjy3u8/JJti3F7f7z/NCY+Pyd/vPyQezfUy4O8/MJjsEpvg7z94A7PqAeHvP4fO24Bn4e8/UmIY2cvh7z9xORD3LuLvPzf3YN6Q4u8/nn6ekvHi7z8MCVMXUePvP/Q8/2+v4+8/TUQaoAzk7z/j4hGraOTvP4KMSpTD5O8/+HofXx3l7z/zw+IOduXvP7Bu3abN5e8/kolPKiTm7z+FP3CceebvPz3tbQDO5u8/UzZuWSHn7z87Go6qc+fvPwoJ4vbE5+8/JPh1QRXo7z+4dk2NZOjvPxzCY92y6O8/AdqrNADp7z+BlBCWTOnvPwWydASY6e8/DPGyguLp7z/BIZ4TLOrvP3g5Abp06u8//WWfeLzq7z+8IDRSA+vvP9BBc0lJ6+8/3RIJYY7r7z/PYZqb0uvvP3STxPsV7O8/6bUdhFjs7z/ukjQ3muzvPwzCkBfb7O8/nbqyJxvt7z+o5RNqWu3vP6OvJuGY7e8/CppWj9bt7z/STAh3E+7vP72nmZpP7u8/htNh/Iru7z/vUrGexe7vP6IT0oP/7u8/+n4Hrjjv7z+jio4fce/vPxjJndqo7+8//nll4d/v7z9gmg82FvDvP8P0v9pL8O8/HzGU0YDw7z+u5KMctfDvP56hAL7o8O8/pQa2txvx7z9ozskLTvHvP8/eO7x/8e8/LVgGy7Dx7z9LpB064fHvP1SFcAsR8u8/nSToQEDy7z9QIWjcbvLvP/Kezt+c8u8/z1P0TMry7z9Cl6wl9/LvP99vxWsj8+8/eaEHIU/z7z8TuzZHevPvP6gkEeCk8+8/1CxQ7c7z7z9qFqhw+PPvP9slyGsh9O8/i65a4En07z8BIAXQcfTvP/0SaDyZ9O8/blYfJ8D07z9L/MGR5vTvP05m4n0M9e8/kVIO7TH17z8P6M7gVvXvPwvDqFp79e8/UgEcXJ/17z9pTqTmwvXvP5rvuPvl9e8/58/MnAj27z/fi07LKvbvP1Z9qIhM9u8/CcdA1m327z8aYHm1jvbvP34fsCev9u8/Rsc+Ls/27z/RD3vK7vbvP+Sytv0N9+8/pnY/ySz37z+EOF8uS/fvP/T3Wy5p9+8/KOF3yob37z+hV/EDpPfvP6cAA9zA9+8/r83jU9337z+dBsds+ffvP/hT3CcV+O8//8hPhjD47z+h7UmJS/jvP2vI7zFm+O8/TuhigYD47z9TbsF4mvjvPz0XJhm0+O8/BkWoY8347z9SCFxZ5vjvP8QpUvv++O8/ODOYShf57z/veDhIL/nvP5siOvVG+e8/XzShUl757z+ql25hdfnvPwskoCKM+e8/4qcwl6L57z8G8RfAuPnvP0nVSp7O+e8/9Dq7MuT57z8iIVh++fnvPwuoDYIO+u8/OhnFPiP67z+u72S1N/rvP+Lf0OZL+u8/x9/p01/67z+lLo59c/rvP+ZcmeSG+u8/2FPkCZr67z9HXUXurPrvPxorkJK/+u8/yt6V99H67z/RECUe5PrvP//XCQf2+u8/v9ANswf77z9KJPgiGfvvP8SPjVcq++8/SGuQUTv77z/isMARTPvvP3YD3Jhc++8/k7Wd52z77z860L7+fPvvP4oZ9t6M++8/ZBv4iJz77z/0KXf9q/vvPzBqIz27++8/RdiqSMr77z/qTbkg2fvvP7CI+MXn++8/NzAQOfb77z9W3KV6BPzvPzAbXYsS/O8/PXfXayD87z9AfbQcLvzvPyvCkZ47/O8/+egK8kj87z8=\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[1000]}},\"selected\":{\"id\":\"1525\"},\"selection_policy\":{\"id\":\"1524\"}},\"id\":\"1510\",\"type\":\"ColumnDataSource\"},{\"attributes\":{\"source\":{\"id\":\"1510\"}},\"id\":\"1514\",\"type\":\"CDSView\"},{\"attributes\":{\"label\":{\"value\":\"PDF\"},\"renderers\":[{\"id\":\"1497\"}]},\"id\":\"1509\",\"type\":\"LegendItem\"},{\"attributes\":{\"line_alpha\":0.1,\"line_color\":\"orange\",\"line_width\":2,\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1512\",\"type\":\"Line\"},{\"attributes\":{\"background_fill_color\":\"#fefefe\",\"items\":[{\"id\":\"1509\"},{\"id\":\"1526\"}],\"location\":\"center_right\"},\"id\":\"1508\",\"type\":\"Legend\"},{\"attributes\":{\"text\":\"Weibull Distribution (\\u03bb=1, k=1.25)\"},\"id\":\"1528\",\"type\":\"Title\"},{\"attributes\":{\"label\":{\"value\":\"CDF\"},\"renderers\":[{\"id\":\"1513\"}]},\"id\":\"1526\",\"type\":\"LegendItem\"},{\"attributes\":{},\"id\":\"1501\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{\"background_fill_color\":\"#fafafa\",\"below\":[{\"id\":\"1364\"}],\"center\":[{\"id\":\"1367\"},{\"id\":\"1371\"},{\"id\":\"1392\"}],\"left\":[{\"id\":\"1368\"}],\"plot_height\":400,\"plot_width\":400,\"renderers\":[{\"id\":\"1376\"},{\"id\":\"1381\"},{\"id\":\"1397\"}],\"title\":{\"id\":\"1354\"},\"toolbar\":{\"id\":\"1372\"},\"toolbar_location\":null,\"x_range\":{\"id\":\"1356\"},\"x_scale\":{\"id\":\"1360\"},\"y_range\":{\"id\":\"1358\"},\"y_scale\":{\"id\":\"1362\"}},\"id\":\"1353\",\"subtype\":\"Figure\",\"type\":\"Plot\"},{\"attributes\":{\"background_fill_color\":\"#fafafa\",\"below\":[{\"id\":\"1422\"}],\"center\":[{\"id\":\"1425\"},{\"id\":\"1429\"},{\"id\":\"1450\"}],\"left\":[{\"id\":\"1426\"}],\"plot_height\":400,\"plot_width\":400,\"renderers\":[{\"id\":\"1434\"},{\"id\":\"1439\"},{\"id\":\"1455\"}],\"title\":{\"id\":\"1412\"},\"toolbar\":{\"id\":\"1430\"},\"toolbar_location\":null,\"x_range\":{\"id\":\"1414\"},\"x_scale\":{\"id\":\"1418\"},\"y_range\":{\"id\":\"1416\"},\"y_scale\":{\"id\":\"1420\"}},\"id\":\"1411\",\"subtype\":\"Figure\",\"type\":\"Plot\"},{\"attributes\":{\"bottom\":{\"value\":0},\"fill_alpha\":{\"value\":0.5},\"fill_color\":{\"value\":\"navy\"},\"left\":{\"field\":\"left\"},\"line_alpha\":{\"value\":0.5},\"line_color\":{\"value\":\"white\"},\"right\":{\"field\":\"right\"},\"top\":{\"field\":\"top\"}},\"id\":\"1374\",\"type\":\"Quad\"},{\"attributes\":{},\"id\":\"1524\",\"type\":\"UnionRenderers\"},{\"attributes\":{\"text\":\"Normal Distribution (\\u03bc=0, \\u03c3=0.5)\"},\"id\":\"1354\",\"type\":\"Title\"},{\"attributes\":{},\"id\":\"1525\",\"type\":\"Selection\"},{\"attributes\":{\"data\":{\"left\":{\"__ndarray__\":\"KqYf47TW1DmTQ8IrApnpP5NDwisCmfk/rrLRoMEyA0CTQ8IrApkJQHjUsrZC/w9ArrLRoMEyE0Ah+0nm4WUWQJNDwisCmRlABYw6cSLMHEB41LK2Qv8fQHWOFX4xmSFArrLRoMEyI0Dn1o3DUcwkQCH7SebhZSZAWh8GCXL/J0CTQ8IrApkpQMxnfk6SMitABYw6cSLMLEA/sPaTsmUuQHjUsrZC/y9AWHy3bGnMMEB1jhV+MZkxQJKgc4/5ZTJArrLRoMEyM0DLxC+yif8zQOfWjcNRzDRABOnr1BmZNUAh+0nm4WU2QD0NqPepMjdAWh8GCXL/N0B2MWQaOsw4QJNDwisCmTlAsFUgPcplOkDMZ35OkjI7QOl53F9a/ztABYw6cSLMPEAinpiC6pg9QD+w9pOyZT5AW8JUpXoyP0B41LK2Qv8/QEpzCGQFZkBAWHy3bGnMQEBnhWZ1zTJBQHWOFX4xmUFAg5fEhpX/QUCSoHOP+WVCQKCpIphdzEJArrLRoMEyQ0C9u4CpJZlDQA==\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[50]},\"right\":{\"__ndarray__\":\"k0PCKwKZ6T+TQ8IrApn5P66y0aDBMgNAk0PCKwKZCUB41LK2Qv8PQK6y0aDBMhNAIftJ5uFlFkCTQ8IrApkZQAWMOnEizBxAeNSytkL/H0B1jhV+MZkhQK6y0aDBMiNA59aNw1HMJEAh+0nm4WUmQFofBgly/ydAk0PCKwKZKUDMZ35OkjIrQAWMOnEizCxAP7D2k7JlLkB41LK2Qv8vQFh8t2xpzDBAdY4VfjGZMUCSoHOP+WUyQK6y0aDBMjNAy8Qvson/M0Dn1o3DUcw0QATp69QZmTVAIftJ5uFlNkA9Daj3qTI3QFofBgly/zdAdjFkGjrMOECTQ8IrApk5QLBVID3KZTpAzGd+TpIyO0DpedxfWv87QAWMOnEizDxAIp6YguqYPUA/sPaTsmU+QFvCVKV6Mj9AeNSytkL/P0BKcwhkBWZAQFh8t2xpzEBAZ4Vmdc0yQUB1jhV+MZlBQIOXxIaV/0FAkqBzj/llQkCgqSKYXcxCQK6y0aDBMkNAvbuAqSWZQ0DLxC+yif9DQA==\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[50]},\"top\":{\"__ndarray__\":\"07gFI/BJ8D+aF/xRaCGpPz2cRyd+CqI/yWSZXpommz9AbrbbPjCVP83LHEWikZA/4pCYDHgEij9LX6t+eUmFP7LFks6HFYI/yKNNd3kbfj9rsPKY5357P0AVlhYRnnY/6aoEucahdT/Selv9rJNyP/EOAT427m8/yMzEgI2faT/tAyV+9DNkP8/xkXxl82A/y+1i3+HGXD9ggEndzXBYP1lfq355SVU/TgLhqw+HUj+zD6g28MBQP7QI8fSiOkk/Lrx1UeMLSD8T1wNnpH9EPz5fq355STU/+dYDZ6R/ND8T1wNnpH80PzI63oKh9S0/tAjx9KI6KT+6Si2yS4kfP4PnUpZOEyY/tAjx9KI6KT+6Si2yS4kPP4jGtDf66xI/cMa0N/rrEj+VCPH0ojoZP4jGtDf66xI/qCmPU/dhHD/iSi2yS4kPP4jGtDf66xI/dQjx9KI6+T6IxrQ3+usCP4jGtDf66wI/dQjx9KI66T60CPH0ojrpPrQI8fSiOvk+dQjx9KI66T60CPH0ojrpPg==\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[50]}},\"selected\":{\"id\":\"1389\"},\"selection_policy\":{\"id\":\"1388\"}},\"id\":\"1373\",\"type\":\"ColumnDataSource\"},{\"attributes\":{},\"id\":\"1365\",\"type\":\"BasicTicker\"},{\"attributes\":{\"bottom\":{\"value\":0},\"fill_alpha\":{\"value\":0.5},\"fill_color\":{\"value\":\"navy\"},\"left\":{\"field\":\"left\"},\"line_alpha\":{\"value\":0.5},\"line_color\":{\"value\":\"white\"},\"right\":{\"field\":\"right\"},\"top\":{\"field\":\"top\"}},\"id\":\"1432\",\"type\":\"Quad\"},{\"attributes\":{},\"id\":\"1356\",\"type\":\"DataRange1d\"},{\"attributes\":{\"axis_label\":\"Pr(x)\",\"formatter\":{\"id\":\"1387\"},\"ticker\":{\"id\":\"1369\"}},\"id\":\"1368\",\"type\":\"LinearAxis\"},{\"attributes\":{},\"id\":\"1562\",\"type\":\"UnionRenderers\"},{\"attributes\":{\"start\":0},\"id\":\"1358\",\"type\":\"DataRange1d\"},{\"attributes\":{},\"id\":\"1563\",\"type\":\"Selection\"},{\"attributes\":{},\"id\":\"1360\",\"type\":\"LinearScale\"},{\"attributes\":{},\"id\":\"1503\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{\"axis_label\":\"x\",\"formatter\":{\"id\":\"1385\"},\"ticker\":{\"id\":\"1365\"}},\"id\":\"1364\",\"type\":\"LinearAxis\"},{\"attributes\":{},\"id\":\"1362\",\"type\":\"LinearScale\"},{\"attributes\":{\"axis\":{\"id\":\"1364\"},\"grid_line_color\":\"white\",\"ticker\":null},\"id\":\"1367\",\"type\":\"Grid\"},{\"attributes\":{\"data\":{\"left\":{\"__ndarray__\":\"KqYf47TW1DmTQ8IrApnpP5NDwisCmfk/rrLRoMEyA0CTQ8IrApkJQHjUsrZC/w9ArrLRoMEyE0Ah+0nm4WUWQJNDwisCmRlABYw6cSLMHEB41LK2Qv8fQHWOFX4xmSFArrLRoMEyI0Dn1o3DUcwkQCH7SebhZSZAWh8GCXL/J0CTQ8IrApkpQMxnfk6SMitABYw6cSLMLEA/sPaTsmUuQHjUsrZC/y9AWHy3bGnMMEB1jhV+MZkxQJKgc4/5ZTJArrLRoMEyM0DLxC+yif8zQOfWjcNRzDRABOnr1BmZNUAh+0nm4WU2QD0NqPepMjdAWh8GCXL/N0B2MWQaOsw4QJNDwisCmTlAsFUgPcplOkDMZ35OkjI7QOl53F9a/ztABYw6cSLMPEAinpiC6pg9QD+w9pOyZT5AW8JUpXoyP0B41LK2Qv8/QEpzCGQFZkBAWHy3bGnMQEBnhWZ1zTJBQHWOFX4xmUFAg5fEhpX/QUCSoHOP+WVCQKCpIphdzEJArrLRoMEyQ0C9u4CpJZlDQA==\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[50]},\"right\":{\"__ndarray__\":\"k0PCKwKZ6T+TQ8IrApn5P66y0aDBMgNAk0PCKwKZCUB41LK2Qv8PQK6y0aDBMhNAIftJ5uFlFkCTQ8IrApkZQAWMOnEizBxAeNSytkL/H0B1jhV+MZkhQK6y0aDBMiNA59aNw1HMJEAh+0nm4WUmQFofBgly/ydAk0PCKwKZKUDMZ35OkjIrQAWMOnEizCxAP7D2k7JlLkB41LK2Qv8vQFh8t2xpzDBAdY4VfjGZMUCSoHOP+WUyQK6y0aDBMjNAy8Qvson/M0Dn1o3DUcw0QATp69QZmTVAIftJ5uFlNkA9Daj3qTI3QFofBgly/zdAdjFkGjrMOECTQ8IrApk5QLBVID3KZTpAzGd+TpIyO0DpedxfWv87QAWMOnEizDxAIp6YguqYPUA/sPaTsmU+QFvCVKV6Mj9AeNSytkL/P0BKcwhkBWZAQFh8t2xpzEBAZ4Vmdc0yQUB1jhV+MZlBQIOXxIaV/0FAkqBzj/llQkCgqSKYXcxCQK6y0aDBMkNAvbuAqSWZQ0DLxC+yif9DQA==\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[50]},\"top\":{\"__ndarray__\":\"07gFI/BJ8D+aF/xRaCGpPz2cRyd+CqI/yWSZXpommz9AbrbbPjCVP83LHEWikZA/4pCYDHgEij9LX6t+eUmFP7LFks6HFYI/yKNNd3kbfj9rsPKY5357P0AVlhYRnnY/6aoEucahdT/Selv9rJNyP/EOAT427m8/yMzEgI2faT/tAyV+9DNkP8/xkXxl82A/y+1i3+HGXD9ggEndzXBYP1lfq355SVU/TgLhqw+HUj+zD6g28MBQP7QI8fSiOkk/Lrx1UeMLSD8T1wNnpH9EPz5fq355STU/+dYDZ6R/ND8T1wNnpH80PzI63oKh9S0/tAjx9KI6KT+6Si2yS4kfP4PnUpZOEyY/tAjx9KI6KT+6Si2yS4kPP4jGtDf66xI/cMa0N/rrEj+VCPH0ojoZP4jGtDf66xI/qCmPU/dhHD/iSi2yS4kPP4jGtDf66xI/dQjx9KI6+T6IxrQ3+usCP4jGtDf66wI/dQjx9KI66T60CPH0ojrpPrQI8fSiOvk+dQjx9KI66T60CPH0ojrpPg==\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[50]}},\"selected\":{\"id\":\"1563\"},\"selection_policy\":{\"id\":\"1562\"}},\"id\":\"1547\",\"type\":\"ColumnDataSource\"},{\"attributes\":{\"axis\":{\"id\":\"1368\"},\"dimension\":1,\"grid_line_color\":\"white\",\"ticker\":null},\"id\":\"1371\",\"type\":\"Grid\"},{\"attributes\":{},\"id\":\"1369\",\"type\":\"BasicTicker\"},{\"attributes\":{\"active_drag\":\"auto\",\"active_inspect\":\"auto\",\"active_multi\":null,\"active_scroll\":\"auto\",\"active_tap\":\"auto\"},\"id\":\"1372\",\"type\":\"Toolbar\"},{\"attributes\":{\"bottom\":{\"value\":0},\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"navy\"},\"left\":{\"field\":\"left\"},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"white\"},\"right\":{\"field\":\"right\"},\"top\":{\"field\":\"top\"}},\"id\":\"1549\",\"type\":\"Quad\"},{\"attributes\":{},\"id\":\"1564\",\"type\":\"UnionRenderers\"},{\"attributes\":{\"bottom\":{\"value\":0},\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"navy\"},\"left\":{\"field\":\"left\"},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"white\"},\"right\":{\"field\":\"right\"},\"top\":{\"field\":\"top\"}},\"id\":\"1375\",\"type\":\"Quad\"},{\"attributes\":{},\"id\":\"1565\",\"type\":\"Selection\"},{\"attributes\":{\"background_fill_color\":\"#fafafa\",\"below\":[{\"id\":\"1480\"}],\"center\":[{\"id\":\"1483\"},{\"id\":\"1487\"},{\"id\":\"1508\"}],\"left\":[{\"id\":\"1484\"}],\"plot_height\":400,\"plot_width\":400,\"renderers\":[{\"id\":\"1492\"},{\"id\":\"1497\"},{\"id\":\"1513\"}],\"title\":{\"id\":\"1470\"},\"toolbar\":{\"id\":\"1488\"},\"toolbar_location\":null,\"x_range\":{\"id\":\"1472\"},\"x_scale\":{\"id\":\"1476\"},\"y_range\":{\"id\":\"1474\"},\"y_scale\":{\"id\":\"1478\"}},\"id\":\"1469\",\"subtype\":\"Figure\",\"type\":\"Plot\"},{\"attributes\":{\"label\":{\"value\":\"CDF\"},\"renderers\":[{\"id\":\"1397\"}]},\"id\":\"1410\",\"type\":\"LegendItem\"},{\"attributes\":{\"source\":{\"id\":\"1394\"}},\"id\":\"1398\",\"type\":\"CDSView\"},{\"attributes\":{\"line_alpha\":0.1,\"line_color\":\"orange\",\"line_width\":2,\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1396\",\"type\":\"Line\"},{\"attributes\":{\"data_source\":{\"id\":\"1394\"},\"glyph\":{\"id\":\"1395\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1396\"},\"selection_glyph\":null,\"view\":{\"id\":\"1398\"}},\"id\":\"1397\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"data_source\":{\"id\":\"1552\"},\"glyph\":{\"id\":\"1553\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1554\"},\"selection_glyph\":null,\"view\":{\"id\":\"1556\"}},\"id\":\"1555\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"data_source\":{\"id\":\"1378\"},\"glyph\":{\"id\":\"1379\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1380\"},\"selection_glyph\":null,\"view\":{\"id\":\"1382\"}},\"id\":\"1381\",\"type\":\"GlyphRenderer\"},{\"attributes\":{},\"id\":\"1504\",\"type\":\"UnionRenderers\"},{\"attributes\":{\"source\":{\"id\":\"1547\"}},\"id\":\"1551\",\"type\":\"CDSView\"},{\"attributes\":{},\"id\":\"1505\",\"type\":\"Selection\"},{\"attributes\":{\"data_source\":{\"id\":\"1547\"},\"glyph\":{\"id\":\"1548\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1549\"},\"selection_glyph\":null,\"view\":{\"id\":\"1551\"}},\"id\":\"1550\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"data_source\":{\"id\":\"1568\"},\"glyph\":{\"id\":\"1569\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1570\"},\"selection_glyph\":null,\"view\":{\"id\":\"1572\"}},\"id\":\"1571\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"source\":{\"id\":\"1373\"}},\"id\":\"1377\",\"type\":\"CDSView\"},{\"attributes\":{\"data\":{\"x\":{\"__ndarray__\":\"LUMc6+I2Gj8tdG364JqAP+pXgheqgJA/vfXNseOzmD/JyQymjnOgP7OYMnMrjaQ/nGdYQMimqD+GNn4NZcCsP7gCUu0AbbA/LerkU895sj+i0Xe6nYa0Pxe5CiFsk7Y/i6CdhzqguD8AiDDuCK26P3Vvw1TXubw/6lZWu6XGvj8vn/QQumnAP+kSPkQhcME/pIaHd4h2wj9e+tCq73zDPxluGt5Wg8Q/0+FjEb6JxT+OVa1EJZDGP0jJ9neMlsc/Aj1Aq/OcyD+9sIneWqPJP3ck0xHCqco/MpgcRSmwyz/sC2Z4kLbMP6d/r6v3vM0/YfP43l7Dzj8cZ0ISxsnPP2vtxaIWaNA/SKdqPErr0D8lYQ/WfW7RPwMbtG+x8dE/4NRYCeV00j+9jv2iGPjSP5pIojxMe9M/eAJH1n/+0z9VvOtvs4HUPzJ2kAnnBNU/DzA1oxqI1T/s6dk8TgvWP8qjftaBjtY/p10jcLUR1z+EF8gJ6ZTXP2HRbKMcGNg/PosRPVCb2D8cRbbWgx7ZP/n+WnC3odk/1rj/Cesk2j+zcqSjHqjaP5EsST1SK9s/bubt1oWu2z9LoJJwuTHcPyhaNwrttNw/BRTcoyA43T/jzYA9VLvdP8CHJdeHPt4/nUHKcLvB3j96+24K70TfP1i1E6QiyN8/mjfcHqsl4D+JlK7rRGfgP3jxgLjeqOA/Zk5ThXjq4D9VqyVSEizhP0MI+B6sbeE/MmXK60Wv4T8hwpy43/DhPw8fb4V5MuI//ntBUhN04j/s2BMfrbXiP9s15utG9+I/ypK4uOA44z+474qFenrjP6dMXVIUvOM/lqkvH6794z+EBgLsRz/kP3Nj1LjhgOQ/YcCmhXvC5D9QHXlSFQTlPz96Sx+vReU/Ldcd7EiH5T8cNPC44sjlPwqRwoV8CuY/+e2UUhZM5j/oSmcfsI3mP9anOexJz+Y/xQQMueMQ5z+zYd6FfVLnP6K+sFIXlOc/kRuDH7HV5z9/eFXsShfoP27VJ7nkWOg/XDL6hX6a6D9Lj8xSGNzoPzrsnh+yHek/KElx7Etf6T8XpkO55aDpPwYDFoZ/4uk/9F/oUhkk6j/jvLofs2XqP9EZjexMp+o/wHZfuebo6j+v0zGGgCrrP50wBFMabOs/jI3WH7St6z966qjsTe/rP2lHe7nnMOw/WKRNhoFy7D9GASBTG7TsPzVe8h+19ew/I7vE7E437T8SGJe56HjtPwF1aYaCuu0/79E7Uxz87T/eLg4gtj3uP82L4OxPf+4/u+iyuenA7j+qRYWGgwLvP5iiV1MdRO8/h/8pILeF7z92XPzsUMfvP7Jc51x1BPA/KYtQQ0Il8D+hubkpD0bwPxjoIhDcZvA/jxaM9qiH8D8HRfXcdajwP35zXsNCyfA/9aHHqQ/q8D9t0DCQ3ArxP+T+mXapK/E/Wy0DXXZM8T/SW2xDQ23xP0qK1SkQjvE/wbg+EN2u8T8456f2qc/xP7AVEd128PE/J0R6w0MR8j+ecuOpEDLyPxahTJDdUvI/jc+1dqpz8j8E/h5dd5TyP3ssiENEtfI/81rxKRHW8j9qiVoQ3vbyP+G3w/aqF/M/WeYs3Xc48z/QFJbDRFnzP0dD/6kRevM/v3FokN6a8z82oNF2q7vzP63OOl143PM/Jf2jQ0X98z+cKw0qEh70PxNadhDfPvQ/iojf9qtf9D8Ct0jdeID0P3nlscNFofQ/8BMbqhLC9D9oQoSQ3+L0P99w7XasA/U/Vp9WXXkk9T/Ozb9DRkX1P0X8KCoTZvU/vCqSEOCG9T8zWfv2rKf1P6uHZN15yPU/IrbNw0bp9T+Z5DaqEwr2PxEToJDgKvY/iEEJd61L9j//b3Jdemz2P3ee20NHjfY/7sxEKhSu9j9l+60Q4c72P90pF/et7/Y/VFiA3XoQ9z/LhunDRzH3P0K1UqoUUvc/uuO7kOFy9z8xEiV3rpP3P6hAjl17tPc/IG/3Q0jV9z+XnWAqFfb3Pw7MyRDiFvg/hvoy9643+D/9KJzde1j4P3RXBcRIefg/64VuqhWa+D9jtNeQ4rr4P9riQHev2/g/URGqXXz8+D/JPxNESR35P0BufCoWPvk/t5zlEONe+T8vy073r3/5P6b5t918oPk/HSghxEnB+T+VVoqqFuL5PwyF85DjAvo/g7Ncd7Aj+j/64cVdfUT6P3IQL0RKZfo/6T6YKheG+j9gbQER5Kb6P9ibavewx/o/T8rT3X3o+j/G+DzESgn7Pz4npqoXKvs/tVUPkeRK+z8shHh3sWv7P6Sy4V1+jPs/G+FKREut+z+SD7QqGM77Pwk+HRHl7vs/gWyG97EP/D/4mu/dfjD8P2/JWMRLUfw/5/fBqhhy/D9eJiuR5ZL8P9VUlHeys/w/TYP9XX/U/D/EsWZETPX8PzvgzyoZFv0/sg45EeY2/T8qPaL3slf9P6FrC95/eP0/GJp0xEyZ/T+QyN2qGbr9Pwf3RpHm2v0/fiWwd7P7/T/2UxlegBz+P22CgkRNPf4/5LDrKhpe/j9c31QR537+P9MNvvezn/4/Sjwn3oDA/j/BapDETeH+PzmZ+aoaAv8/sMdikeci/z8n9st3tEP/P58kNV6BZP8/FlOeRE6F/z+NgQcrG6b/PwWwcBHoxv8/fN7Z97Tn/z96hiHvQAQAQLYdVmKnFABA8bSK1Q0lAEAtTL9IdDUAQGnj87vaRQBApHooL0FWAEDgEV2ip2YAQBypkRUOdwBAV0DGiHSHAECT1/r72pcAQM9uL29BqABACgZk4qe4AEBGnZhVDskAQII0zch02QBAvcsBPNvpAED5YjavQfoAQDX6aiKoCgFAcJGflQ4bAUCsKNQIdSsBQOe/CHzbOwFAI1c970FMAUBf7nFiqFwBQJqFptUObQFA1hzbSHV9AUAStA+8240BQE1LRC9CngFAieJ4oqiuAUDFea0VD78BQAAR4oh1zwFAPKgW/NvfAUB4P0tvQvABQLPWf+KoAAJA7220VQ8RAkArBenIdSECQGacHTzcMQJAojNSr0JCAkDeyoYiqVICQBliu5UPYwJAVfnvCHZzAkCRkCR83IMCQMwnWe9ClAJACL+NYqmkAkBDVsLVD7UCQH/t9kh2xQJAu4QrvNzVAkD2G2AvQ+YCQDKzlKKp9gJAbkrJFRAHA0Cp4f2IdhcDQOV4MvzcJwNAIRBnb0M4A0Bcp5viqUgDQJg+0FUQWQNA1NUEyXZpA0APbTk83XkDQEsEbq9DigNAh5uiIqqaA0DCMteVEKsDQP7JCwl3uwNAOmFAfN3LA0B1+HTvQ9wDQLGPqWKq7ANA7Sbe1RD9A0AovhJJdw0EQGRVR7zdHQRAn+x7L0QuBEDbg7Ciqj4EQBcb5RURTwRAUrIZiXdfBECOSU783W8EQMrggm9EgARABXi34qqQBEBBD+xVEaEEQH2mIMl3sQRAuD1VPN7BBED01ImvRNIEQDBsviKr4gRAawPzlRHzBECnmicJeAMFQOMxXHzeEwVAHsmQ70QkBUBaYMViqzQFQJb3+dURRQVA0Y4uSXhVBUANJmO83mUFQEm9ly9FdgVAhFTMoquGBUDA6wAWEpcFQPuCNYl4pwVANxpq/N63BUBzsZ5vRcgFQK5I0+Kr2AVA6t8HVhLpBUAmdzzJePkFQGEOcTzfCQZAnaWlr0UaBkDZPNoirCoGQBTUDpYSOwZAUGtDCXlLBkCMAnh831sGQMeZrO9FbAZAAzHhYqx8BkA/yBXWEo0GQHpfSkl5nQZAtvZ+vN+tBkDyjbMvRr4GQC0l6KKszgZAabwcFhPfBkClU1GJee8GQODqhfzf/wZAHIK6b0YQB0BXGe/irCAHQJOwI1YTMQdAz0dYyXlBB0AK34w84FEHQEZ2wa9GYgdAgg32Iq1yB0C9pCqWE4MHQPk7Xwl6kwdANdOTfOCjB0BwasjvRrQHQKwB/WKtxAdA6Jgx1hPVB0AjMGZJeuUHQF/Hmrzg9QdAm17PL0cGCEDW9QOjrRYIQBKNOBYUJwhATiRtiXo3CECJu6H84EcIQMVS1m9HWAhAAeoK461oCEA8gT9WFHkIQHgYdMl6iQhAs6+oPOGZCEDvRt2vR6oIQCveESOuughAZnVGlhTLCECiDHsJe9sIQN6jr3zh6whAGTvk70f8CEBV0hhjrgwJQJFpTdYUHQlAzACCSXstCUAImLa84T0JQEQv6y9ITglAf8Yfo65eCUC7XVQWFW8JQPf0iIl7fwlAMoy9/OGPCUBuI/JvSKAJQKq6JuOusAlA5VFbVhXBCUAh6Y/Je9EJQF2AxDzi4QlAmBf5r0jyCUDUri0jrwIKQBBGYpYVEwpAS92WCXwjCkCHdMt84jMKQMILAPBIRApA/qI0Y69UCkA6OmnWFWUKQHXRnUl8dQpAsWjSvOKFCkDt/wYwSZYKQCiXO6OvpgpAZC5wFha3CkCgxaSJfMcKQNtc2fzi1wpAF/QNcEnoCkBTi0Ljr/gKQI4id1YWCQtAyrmryXwZC0AGUeA84ykLQEHoFLBJOgtAfX9JI7BKC0C5Fn6WFlsLQPStsgl9awtAMEXnfON7C0Bs3BvwSYwLQKdzUGOwnAtA4wqF1hatC0AeorlJfb0LQFo57rzjzQtAltAiMEreC0DRZ1ejsO4LQA3/ixYX/wtASZbAiX0PDECELfX84x8MQMDEKXBKMAxA/Fte47BADEA385JWF1EMQHOKx8l9YQxAryH8PORxDEDquDCwSoIMQCZQZSOxkgxAYueZlhejDECdfs4JfrMMQNkVA33kwwxAFa038ErUDEBQRGxjseQMQIzboNYX9QxAyHLVSX4FDUADCgq95BUNQD+hPjBLJg1Aejhzo7E2DUC2z6cWGEcNQPJm3Il+Vw1ALf4Q/eRnDUBplUVwS3gNQKUseuOxiA1A4MOuVhiZDUAcW+PJfqkNQFjyFz3luQ1Ak4lMsEvKDUDPIIEjstoNQAu4tZYY6w1ARk/qCX/7DUCC5h595QsOQL59U/BLHA5A+RSIY7IsDkA1rLzWGD0OQHFD8Ul/TQ5ArNolveVdDkDocVowTG4OQCQJj6Oyfg5AX6DDFhmPDkCbN/iJf58OQNbOLP3lrw5AEmZhcEzADkBO/ZXjstAOQImUylYZ4Q5AxSv/yX/xDkABwzM95gEPQDxaaLBMEg9AePGcI7MiD0C0iNGWGTMPQO8fBgqAQw9AK7c6feZTD0BnTm/wTGQPQKLlo2OzdA9A3nzY1hmFD0AaFA1KgJUPQFWrQb3mpQ9AkUJ2ME22D0DN2aqjs8YPQAhx3xYa1w9ARAgUioDnD0CAn0j95vcPQF2bPrgmBBBA++bY8VkMEECZMnMrjRQQQDd+DWXAHBBA1MmnnvMkEEByFULYJi0QQBBh3BFaNRBArqx2S409EEBM+BCFwEUQQOpDq77zTRBAh49F+CZWEEAl298xWl4QQMMmemuNZhBAYXIUpcBuEED/va7e83YQQJwJSRgnfxBAOlXjUVqHEEDYoH2LjY8QQHbsF8XAlxBAFDiy/vOfEECyg0w4J6gQQE/P5nFasBBA7RqBq424EECLZhvlwMAQQCmytR70yBBAx/1PWCfREEBlSeqRWtkQQAKVhMuN4RBAoOAeBcHpEEA+LLk+9PEQQNx3U3gn+hBAesPtsVoCEUAYD4jrjQoRQLVaIiXBEhFAU6a8XvQaEUDx8VaYJyMRQI898dFaKxFALYmLC44zEUDK1CVFwTsRQGggwH70QxFABmxauCdMEUCkt/TxWlQRQEIDjyuOXBFA4E4pZcFkEUB9msOe9GwRQBvmXdgndRFAuTH4EVt9EUBXfZJLjoURQPXILIXBjRFAkxTHvvSVEUAwYGH4J54RQM6r+zFbphFAbPeVa46uEUAKQzClwbYRQKiOyt70vhFARtpkGCjHEUDjJf9RW88RQIFxmYuO1xFAH70zxcHfEUC9CM7+9OcRQFtUaDgo8BFA+J8Cclv4EUCW65yrjgASQDQ3N+XBCBJA0oLRHvUQEkBwzmtYKBkSQA4aBpJbIRJAq2Wgy44pEkBJsToFwjESQOf81D71ORJAhUhveChCEkAjlAmyW0oSQMHfo+uOUhJAXis+JcJaEkD8dthe9WISQJrCcpgoaxJAOA4N0ltzEkDWWacLj3sSQHSlQUXCgxJAEfHbfvWLEkCvPHa4KJQSQE2IEPJbnBJA69OqK4+kEkCJH0VlwqwSQCZr3571tBJAxLZ52Ci9EkBiAhQSXMUSQABOrkuPzRJAnplIhcLVEkA85eK+9d0SQNkwffgo5hJAd3wXMlzuEkAVyLFrj/YSQLMTTKXC/hJAUV/m3vUGE0DvqoAYKQ8TQIz2GlJcFxNAKkK1i48fE0DIjU/FwicTQGbZ6f71LxNABCWEOCk4E0CicB5yXEATQD+8uKuPSBNA3QdT5cJQE0B7U+0e9lgTQBmfh1gpYRNAt+ohklxpE0BUNrzLj3ETQPKBVgXDeRNAkM3wPvaBE0AuGYt4KYoTQMxkJbJckhNAarC/64+aE0AH/Fklw6ITQKVH9F72qhNAQ5OOmCmzE0Dh3ijSXLsTQH8qwwuQwxNAHXZdRcPLE0C6wfd+9tMTQFgNkrgp3BNA9lgs8lzkE0CUpMYrkOwTQDLwYGXD9BNA0Dv7nvb8E0Bth5XYKQUUQAvTLxJdDRRAqR7KS5AVFEBHamSFwx0UQOW1/r72JRRAggGZ+CkuFEAgTTMyXTYUQL6YzWuQPhRAXORnpcNGFED6LwLf9k4UQJh7nBgqVxRANcc2Ul1fFEDTEtGLkGcUQHFea8XDbxRAD6oF//Z3FECt9Z84KoAUQEtBOnJdiBRA6IzUq5CQFECG2G7lw5gUQCQkCR/3oBRAwm+jWCqpFEBguz2SXbEUQP4G2MuQuRRAm1JyBcTBFEA5ngw/98kUQNfppngq0hRAdTVBsl3aFEATgdvrkOIUQLDMdSXE6hRAThgQX/fyFEDsY6qYKvsUQIqvRNJdAxVAKPveC5ELFUDGRnlFxBMVQGOSE3/3GxVAAd6tuCokFUCfKUjyXSwVQD114iuRNBVA28B8ZcQ8FUB5DBef90QVQBZYsdgqTRVAtKNLEl5VFUBS7+VLkV0VQPA6gIXEZRVAjoYav/dtFUAs0rT4KnYVQMkdTzJefhVAZ2npa5GGFUAFtYOlxI4VQKMAHt/3lhVAQUy4GCufFUDel1JSXqcVQHzj7IuRrxVAGi+HxcS3FUC4eiH/978VQFbGuzgryBVA9BFWcl7QFUCRXfCrkdgVQC+piuXE4BVAzfQkH/joFUBrQL9YK/EVQAmMWZJe+RVAp9fzy5EBFkBEI44FxQkWQOJuKD/4ERZAgLrCeCsaFkAeBl2yXiIWQLxR9+uRKhZAWp2RJcUyFkD36Ctf+DoWQJU0xpgrQxZAM4Bg0l5LFkDRy/oLklMWQG8XlUXFWxZADGMvf/hjFkCqrsm4K2wWQEj6Y/JedBZA5kX+K5J8FkCEkZhlxYQWQCLdMp/4jBZAvyjN2CuVFkBddGcSX50WQPu/AUySpRZAmQuchcWtFkA3Vza/+LUWQNWi0PgrvhZAcu5qMl/GFkAQOgVsks4WQK6Fn6XF1hZATNE53/jeFkDqHNQYLOcWQIhoblJf7xZAJbQIjJL3FkDD/6LFxf8WQGFLPf/4BxdA/5bXOCwQF0Cd4nFyXxgXQDouDKySIBdA2Hmm5cUoF0B2xUAf+TAXQBQR21gsORdAslx1kl9BF0BQqA/MkkkXQO3zqQXGURdAiz9EP/lZF0Api954LGIXQMfWeLJfahdAZSIT7JJyF0ADbq0lxnoXQKC5R1/5ghdAPgXimCyLF0DcUHzSX5MXQHqcFgyTmxdAGOiwRcajF0C2M0t/+asXQFN/5bgstBdA8cp/8l+8F0CPFhosk8QXQC1itGXGzBdAy61On/nUF0Bo+ejYLN0XQAZFgxJg5RdApJAdTJPtF0BC3LeFxvUXQOAnUr/5/RdAfnPs+CwGGEAbv4YyYA4YQLkKIWyTFhhAV1a7pcYeGED1oVXf+SYYQJPt7xgtLxhAMTmKUmA3GEDOhCSMkz8YQGzQvsXGRxhAChxZ//lPGECoZ/M4LVgYQEazjXJgYBhA5P4nrJNoGECBSsLlxnAYQB+WXB/6eBhAveH2WC2BGEBbLZGSYIkYQPl4K8yTkRhAlsTFBceZGEA0EGA/+qEYQNJb+ngtqhhAcKeUsmCyGEAO8y7sk7oYQKw+ySXHwhhASYpjX/rKGEDn1f2YLdMYQIUhmNJg2xhAI20yDJTjGEDBuMxFx+sYQF8EZ3/68xhA/E8BuS38GECam5vyYAQZQDjnNSyUDBlA1jLQZccUGUB0fmqf+hwZQBLKBNktJRlArxWfEmEtGUBNYTlMlDUZQOus04XHPRlAifhtv/pFGUAnRAj5LU4ZQMWPojJhVhlAYts8bJReGUAAJ9elx2YZQJ5ycd/6bhlAPL4LGS53GUDaCaZSYX8ZQHdVQIyUhxlAFaHaxcePGUCz7HT/+pcZQFE4DzkuoBlA74OpcmGoGUCNz0OslLAZQCob3uXHuBlAyGZ4H/vAGUBmshJZLskZQAT+rJJh0RlAoklHzJTZGUBAleEFyOEZQN3gez/76RlAeywWeS7yGUAZeLCyYfoZQLfDSuyUAhpAVQ/lJcgKGkDzWn9f+xIaQJCmGZkuGxpALvKz0mEjGkDMPU4MlSsaQGqJ6EXIMxpACNWCf/s7GkClIB25LkQaQENst/JhTBpA4bdRLJVUGkB/A+xlyFwaQB1Php/7ZBpAu5og2S5tGkBY5roSYnUaQPYxVUyVfRpAlH3vhciFGkAyyYm/+40aQNAUJPkulhpAbmC+MmKeGkALrFhslaYaQKn38qXIrhpAR0ON3/u2GkDljicZL78aQIPawVJixxpAISZcjJXPGkC+cfbFyNcaQFy9kP/73xpA+ggrOS/oGkCYVMVyYvAaQDagX6yV+BpA0+v55cgAG0BxN5Qf/AgbQA+DLlkvERtArc7IkmIZG0BLGmPMlSEbQOll/QXJKRtAhrGXP/wxG0Ak/TF5LzobQMJIzLJiQhtAYJRm7JVKG0D+3wAmyVIbQJwrm1/8WhtAOXc1mS9jG0DXws/SYmsbQHUOagyWcxtAE1oERsl7G0CxpZ5//IMbQE/xOLkvjBtA7DzT8mKUG0CKiG0slpwbQCjUB2bJpBtAxh+in/ysG0BkazzZL7UbQAG31hJjvRtAnwJxTJbFG0A9TguGyc0bQNuZpb/81RtAeeU/+S/eG0AXMdoyY+YbQLR8dGyW7htAUsgOpsn2G0DwE6nf/P4bQI5fQxkwBxxALKvdUmMPHEDK9neMlhccQGdCEsbJHxxABY6s//wnHECj2UY5MDAcQEEl4XJjOBxA33B7rJZAHEB9vBXmyUgcQBoIsB/9UBxAuFNKWTBZHEBWn+SSY2EcQPTqfsyWaRxAkjYZBspxHEAvgrM//XkcQM3NTXkwghxAaxnosmOKHEAJZYLslpIcQKewHCbKmhxARfy2X/2iHEDiR1GZMKscQICT69JjsxxAHt+FDJe7HEC8KiBGysMcQFp2un/9yxxA+MFUuTDUHECVDe/yY9wcQDNZiSyX5BxA0aQjZsrsHEBv8L2f/fQcQA08WNkw/RxAq4fyEmQFHUBI04xMlw0dQOYeJ4bKFR1AhGrBv/0dHUAitlv5MCYdQMAB9jJkLh1AXU2QbJc2HUD7mCqmyj4dQJnkxN/9Rh1ANzBfGTFPHUDVe/lSZFcdQHPHk4yXXx1AEBMuxspnHUCuXsj//W8dQEyqYjkxeB1A6vX8cmSAHUCIQZesl4gdQCaNMebKkB1Aw9jLH/6YHUBhJGZZMaEdQP9vAJNkqR1AnbuazJexHUA7BzUGy7kdQNlSzz/+wR1Adp5peTHKHUAU6gOzZNIdQLI1nuyX2h1AUIE4JsviHUDuzNJf/uodQIsYbZkx8x1AKWQH02T7HUDHr6EMmAMeQGX7O0bLCx5AA0fWf/4THkChknC5MRweQD7eCvNkJB5A3CmlLJgsHkB6dT9myzQeQBjB2Z/+PB5Atgx02TFFHkBUWA4TZU0eQPGjqEyYVR5Aj+9ChstdHkAtO92//mUeQMuGd/kxbh5AadIRM2V2HkAHHqxsmH4eQKRpRqbLhh5AQrXg3/6OHkDgAHsZMpceQH5MFVNlnx5AHJivjJinHkC540nGy68eQFcv5P/+tx5A9Xp+OTLAHkCTxhhzZcgeQDESs6yY0B5Az11N5svYHkBsqecf/+AeQAr1gVky6R5AqEAck2XxHkBGjLbMmPkeQOTXUAbMAR9AgiPrP/8JH0Afb4V5MhIfQL26H7NlGh9AWwa67JgiH0D5UVQmzCofQJed7l//Mh9ANemImTI7H0DSNCPTZUMfQHCAvQyZSx9ADsxXRsxTH0CsF/J//1sfQEpjjLkyZB9A564m82VsH0CF+sAsmXQfQCNGW2bMfB9AwZH1n/+EH0Bf3Y/ZMo0fQP0oKhNmlR9AmnTETJmdH0A4wF6GzKUfQNYL+b//rR9AdFeT+TK2H0ASoy0zZr4fQLDux2yZxh9ATTpipszOH0Drhfzf/9YfQInRlhkz3x9AJx0xU2bnH0DFaMuMme8fQGO0ZcbM9x9AAAAAAAAAIEA=\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[1000]},\"y\":{\"__ndarray__\":\"U1ZRB+v/vz+Mg7C+kPLXP86tEMwyV9w/3qJW7uE63z+ZZKYe3LTgP5cJvJjXleE/vei4TLxR4j8b601KYfLiP7HD60v1feM/dE0duKP44z+q/nL6YmXkP45++wdkxuQ/GCQ8PFMd5T8wIJtOgGvlP2gJmxr4seU/gbzl55Xx5T/Rzv1fDyvmP9YhkQ/9XuY/UF2hl+CN5j9ijGRHKbjmP+3yYpc33uY//Kh21l8A5z8sceU/7B7nPyfiLaEeOuc/jQkDqzFS5z9hWlsBWmfnPy6ZMRnHeec/8kHc7qOJ5z+aLzOdF5fnP3MdydtFouc/gHgPaU+r5z9CMylkUrLnPwvuYplqt+c/Sp2pw7G65z8LB+DEP7znP+C/ldYqvOc/9wxZtIe65z8tV6PAabfnP+wJMiXjsuc/TBt57wSt5z/JCL8p36XnP3A/WvGAnec/boJ0iviT5z9eBKlxU4nnP5zaxGuefec/Sajmk+Vw5z8FaTFoNGPnP7DKPtWVVOc/90J3QBRF5z+1yXCRuTTnP1+vcDqPI+c/LEIpQJ4R5z/LwMhA7/7mP1RdbHqK6+Y/O7wH0XfX5j87WM/TvsLmPxJ5MsJmreY/1utvkHaX5j8VYM/r9IDmP5ksiD7oaeY/2kNds1ZS5j/nRPU4RjrmPwfW9IS8IeY/5c3gFr8I5j9VHM06U+/lP5Th3At+1eU/i6+XdkS75T8/ixc7q6DlP//pEu+2heU/EZbF/2tq5T8bH7uzzk7lPwk7fSzjMuU/iUMoaK0W5T9SyedCMfrkP/kIXXhy3eQ/YuTwpHTA5D8N3xJHO6PkP5F6ZsDJheQ/yTLgViNo5D9oPtM1S0rkP2Yg8W5ELOQ/mQA8+xEO5D8Lruy7tu/jP5IbTXs10eM/eBaI7ZCy4z936G6xy5PjP16INVHodOM/fvAlQ+lV4z97Jkvq0DbjPwJ2FJehF+M/I1bxh1344j+TaObpBtniPx76G9mfueI/KGRmYSqa4j+JqMh+qHriP9Sa8R0cW+I/aOSzHIc74j95K3lK6xviP3SgsGhK/OE/hjA5K6bc4T8omMc4AL3hP5+MSCtaneE/8C8/kLV94T9f/x/pE17hP9hpqKt2PuE/eDgzQt8e4T8i8QkMT//gP2JYs13H3+A/4TU/gUnA4D9XfI+21qDgPyL0njNwgeA/3IXFJBdi4D9vQPqszELgP7Y0E+aRI+A/WT8D4WcE4D/KrytMn8rfP1f2UWqUjN8/JovKC7FO3z/ioegP9xDfP9vQakZo094/EUjhbwaW3j/C+BA+01jeP+vMU1TQG94/swz2R//e3T8lDpGgYaLdPxRKY9j4Zd0/ye+lXMYp3T/UD+CNy+3cPxV1N8AJstw/+0G/O4J23D/5ZsQ8NjvcPw8GGPQmANw/e9ZXh1XF2z+VmjQRw4rbPzS5tqFwUNs/IguBPl8W2z8c7BHjj9zaP7SeAoEDo9o/SRFFALtp2j/KEWA/tzDaP179qRP599k/xfiBSYG/2T/tvIekUIfZP+gD0t9nT9k/vKAjrscX2T/cTB+6cODYP3k1eqZjqdg/VFItDqFy2D89j6WEKTzYP4TR8pX9Bdg/p+H1xh3Q1z/CQY2ViprXP374wHhEZdc/MFjt4Esw1z+1yew3ofvWP7ahQOFEx9Y/fQc5OjeT1j/X8xuaeF/WPxVOS1IJLNY/ny1qrun41T+yRYH0GcbVPw6BImWak9U/B9OLO2th1T83Q8mtjC/VP+s41uz+/dQ/PQu+JMLM1D+G2rt81pvUP923WRc8a9Q/4x6PEvM61D9sxt6H+wrUP9PLc4xV29M/YT0+MQGs0z9JBw+D/nzTP0NHs4pNTtM/UwoPTe4f0z81eDfL4PHSP/1vjAIlxNI/JJnR7LqW0j817EaAomnSP2G2wK/bPNI/0hq/amYQ0j/NFIWdQuTRP3L9LjFwuNE/8ZfIC++M0T/TpmIQv2HRP/EMKB/gNtE/znxyFVIM0T+cuN7NFOLQP3RlYCAouNA/CXRV4ouO0D84IZnmP2XQP4GQlv1DPNA/ugJb9ZcT0D8UVk8zd9bPP2ZIBmhdhs8/WBCVF+I2zz/6V4TMBOjOP7EDTA3Fmc4/L0ZzXCJMzj9KCLA4HP/NP9inBR2yss0/HhHjgONmzT9BNkDYrxvNP9HnupMW0cw/vxGzIBeHzD/iX2bpsD3MP9RMC1Xj9Ms/lZ7rx62syz9PU36jD2XLP4ABgUYIHss/Ma4QDZfXyj+kG8JQu5HKP6GTuWh0TMo/li/CqcEHyj8noWRmosPJP8B9/e4VgMk/fw/TkRs9yT/SrSqbsvrIPyugXVXauMg/+YztCJJ3yD85d5j82DbIP51MbHWu9sc/qwbathG3xz+0YMgCAnjHP6ckppl+Occ//RB8uob7xj9+Wf6iGb7GP7zEnY82gcY/ZWiYu9xExj8BBgphCwnGPyAK/LjBzcU/fy91+/6SxT8dyIhfwljFP9StZRsLH8U/DtxkZNjlxD9wtBdvKa3EP8/vVW/9dMQ/OD1LmFM9xD98kIQcKwbEP8kh/S2Dz8M/tx8r/lqZwz9yFQy+sWPDPywGMZ6GLsM/Zj/Kztj5wj9g47J/p8XCPyAtfODxkcI/P294ILdewj/dzsVu9ivCP/m7WPqu+cE/higG8t/HwT9Sf42EiJbBPwdcouCnZcE/gwX2ND01wT92q0CwRwXBP99oSoHG1cA/5gv01rimwD/ApD/gHXjAP2PcWMz0ScA/GhSdyjwcwD9cnkYV6t2/P/3Oh3g5hL8/TBxAH2Yrvz8wMlJqbtO+P3s9T7tQfL4/98CEdAsmvj8WCgr5nNC9P1FHzawDfL0/5UGg9D0ovT9rvEQ2StW8P8l4eNgmg7w/WeYAQ9IxvD+MerbeSuG7P2a1jxWPkbs/kNOrUp1Cuz+pL10CdPS6Py5UM5IRp7o/ub8EcXRauj8lXfgOmw66P9iwjt2Dw7k/0LyqTy15uT/4nJrZlS+5Px3dH/G75rg/nYl3DZ6euD/o/GGnOle4P05qKjmQELg//yeuPp3Ktz9tuWM1YIW3Pz6bYZzXQLc/6tFk9AH9tj/PPNe/3bm2P0Ou1YJpd7Y/L8o1w6M1tj+JrIsIi/S1P0tYL9wdtLU/rfBByVp0tT8vvbJcQDW1P+H5QyXN9rQ/73SPs/+4tD9f+gqa1nu0PxmPDG1QP7Q/YHzOwmsDtD+OLHMzJ8izPwnaCFmBjbM/vhGNz3hTsz+XCfA0DBqzPzrMFyk64bI/6jrjTQGpsj9J5ixHYHGyPwW/zbpVOrI/Up+fUOADsj/srX+y/s2xP4+bUIyvmLE/u7v8i/FjsT+Q+Xdhwy+xP3ipwb4j/LA/mDjmVxHJsD+XugDjipawP7ZWPBiPZLA/upTVsRwzsD+UihtsMgKwP8jW4Qqeo68/VPGZfOJDrz84rHiyL+WuP0GCwzWDh64/nVjtk9oqrj9xf5deM8+tP6J9kiuLdK0/XqjelN8arT9YiKw4LsKsP3sNXbl0aqw/tZKBvbATrD9Nstvv372rP/DsXP//aKs/uCMmnw4Vqz+s5oaGCcKqP/aY/HDub6o/fWsxHrseqj9IL/tRbc6pP6oAWtQCf6k/78t2cXkwqT8QraH5zuKoP/AqUEEBlqg/OE8bIQ5KqD8hnL118/6nP3rgECCvtKc/YusLBT9rpz9QIMANoSKnP2LsVifT2qY/rx0PQ9OTpj/WHTpWn02mPxQQOVo1CKY/E9R5TJPDpT9D7nMut3+lPzhWpQWfPKU/GiyP20j6pD/fVbK9srikP+8EjL3ad6Q/7ySS8L43pD+otC9wXfijP2MJwVm0uaM/jf2PzsF7oz+bC9Dzgz6jPy1VmvL4AaM/6Zfp9x7Goj/rD5Y09IqiP+9IUd12UKI/nt6hKqUWoj+iLN9Yfd2hP/ruLKj9pKE/YdN2XCRtoT8T/Gu97zWhP6B0ehZe/6A/apnKtm3JoD8kcjrxHJSgP/f/WBxqX6A/4X9hklMroD9DQ21ir++fP3pnu7TpiZ8/b4rz5VIlnz+yeo3H58GeP6rTKDKlX54/eAiDBYj+nT/wXG0ojZ6dP93OwoixP50/le9dG/LhnD/Krg7cS4WcP8oXkM27KZw/oAF++T7Pmz+rskpw0nWbPyl5NElzHZs/wDg7oh7Gmj/F7RWg0W+aP5wnKG6JGpo/KHp3PkPGmT8/56BJ/HKZPwBBzs6xIJk/UIWrE2HPmD9YM1xkB3+YP6ybcBOiL5g/nyvbeS7hlz8ntOX2qZOXP3etJvARR5c/QHd20WP7lj9VluQMnbCWP7jwrBq7ZpY/sgctebsdlj8iMdmsm9WVP3nQMUBZjpU/k4+4w/FHlT/ml+XNYgKVPxTNHPupvZQ/Vgij7cR5lD9PVpNNsTaUP7M21Mhs9JM/wd4ME/Wykz/1fprlR3KTPyqMhf9iMpM/ZAx3JUTzkj826K0h6bSSP4NA9MNPd5I/WsmU4XU6kj8eKlBVWf6RP0pjUv/3wpE/STooxU+IkT+Jq7SRXk6RP0xjJlUiFZE/Kj3tBJnckD8by6+bwKSQP7XjQBmXbZA/XjiVgho3kD9487jhSAGQP+u9iotAmI8/jiathT0vjz+PXgLkhMeOP04ykOISYY4/KJEkx+P7jT+/NEHh85eNP7RbB4o/NY0/VZgjJMPTjD9fs7kbe3OMP1ujUOZjFIw/SJm+Anq2iz9OIhX5uVmLP0RfjVog/oo/ZVJ0wamjij9KQxfRUkqKP405sDUY8ok/sI5SpPaaiT8Al9fa6kSJPytiy5/x74g/3JNZwgeciD9DVDoaKkmIP99Yn4dV94c/QQYh84amhz9bqqtNu1aHP8rPbJDvB4c/u6rAvCC6hj/Rnh/cS22GPynfCwBuIYY/zif/QYTWhT9gkVjDi4yFP9Z+Sq2BQ4U/qKXIMGP7hD81MHaGLbSEPxf7k+7dbYQ/5OzusHEohD//aM4c5uODP0jd4og4oIM/42o0U2Zdgz80qhHhbBuDPxqK/p5J2oI/hEqjAPqZgj9xkruAe1qCP4KhBaHLG4I/FZ0x6ufdgT/m+NDrzaCBP6L7RTx7ZIE/9V6zeO0ogT9dC+xEIu6APx7wYksXtIA/kPYaPcp6gD+8EZfROEKAP49pysZgCoA/CUQRwn+mfz+OfOzVpzl/P2k/8mo1zn4/O0FSLyRkfj+AloHdb/t9P3dYHDwUlH0/XoLHHQ0ufT9CBhNhVsl8Py0ZXPDrZXw/K7evwckDfD+2Xq3W66J7P8EDajxOQ3s/vTlTC+3kej88lRJnxId6P7BEcX7QK3o/+987iw3ReT89bybSd3d5P22osKILH3k/WGMKV8XHeD+vRPhToXF4Py6fuAicHHg/Jovo7rHIdz8ENGmK33V3P0xcRWkhJHc/3RaXI3TTdj8htm1b1IN2P8Pws7w+NXY/oTsW/a/ndT+0WOnbJJt1P14bESKaT3U/BWHnoQwFdT9uPiM3ebt0P2phwMbccnQ/r6bmPjQrdD+a49GWfORzP8fjuc6ynnM/85m679NZcz9ghLwL3RVzP0REXT3L0nI/yWfYp5uQcj8yZ/B2S09yP9vT197XDnI/uLkaHD7PcT9wMohze5BxP4UqHDKNUnE/YVfprHAVcT8oXwNBI9lwP/kwaVOinXA/Eo7vUOticD9lwyuu+yhwP28mvc6h328/Tp2+ANFubz8bPg4JgP9uP+z8OA2qkW4/r759QUolbj9dBqXoW7ptPxP/2FPaUG0/JuN94sDobD/nvgoCC4JsP0uP4i20HGw/ULst77e4az/n57PcEVZrP6oltpq99Go/QnjJ2raUaj8RtrFb+TVqP3PAPOmA2Gk/ixMeXEl8aT80rcqZTiFpPzdKVZSMx2g/I/pKSv9uaD/LB5DGohdoPzg3PSBzwWc/bVd9emxsZz9ZKGsEixhnP2aT7/jKxWY/Rjegnih0Zj8kRZ5HoCNmP7qvdVEu1GU/Aav8JM+FZT9QfDM2fzhlP0qaJAQ77GQ/5xvFGP+gZD8DdtUIyFZkPxaHwnOSDWQ/gvCGA1vFYz9cvIxsHn5jPxVQj23ZN2M/oqp9z4jyYj/G7VxlKa5iPz4yKwy4amI/3aXCqjEoYj8X87wxk+ZhP9XxVpvZpWE/ZqBU6wFmYT9RZOUuCSdhP5aSiHzs6GA/iT7y86irYD/cTvC9O29gP2jYTwyiM2A/z3uFM7LxXz+RKItTvH1fP/GVCxFdC18/5C6QFY+aXj8rSJ4bTSteP9MBhe6RvV0/06wralhRXT8Os+B6m+ZcP7QAKR1WfVw/H+6PXYMVXD//qHdYHq9bP9wb6jkiSls/e1JqPYrmWj/PWsatUYRaP7Wg6eRzI1o/3MOvS+zDWT+/5rdZtmVZP3t1OJXNCFk/s2PTki2tWD824Gr10VJYP9h99m22+Vc/tc9Yu9ahVz/seDWqLktXP8atxxS69VY/2SW54nShVj8nfvkIW05WP+wJlolo/FU/oxGSc5mrVT+afr/i6VtVP7vyl/9VDVU/KksW/9m/VD8OjZAicnNUPyI7krcaKFQ/uRO3F9DdUz+9NYaojpRTP9CrTdtSTFM/2Vz+LBkFUz/mYAgm3r5SP0y5N1qeeVI/sWuRaFY1Uj8q/jD7AvJRP3tUJsegr1E/w+xTjCxuUT9de00Voy1RP27kNjcB7lA/3pKj0UOvUD9TK3bOZ3FQP6aawCFqNFA/lf1Ik4/wTz970mec+3lPP/30pIISBU8/Wqotfc6RTj/L0FjWKSBOP40ga+sesE0/2xdcLKhBTT/Oj5sbwNRMPzH5101haUw/5j7FaYb/Sz+WTOQnKpdLPyc4S1JHMEs/PwxuxNjKSj8AMuhq2WZKPzJ5RkNEBEo/XrzRWxSjST+sH1rTRENJP2/pAtnQ5Eg/AfIOrLOHSD/mqa2b6CtIPwK1yAZr0Uc/sBjSWzZ4Rz+q+5IYRiBHP1f2+smVyUY/qfHvCyF0Rj/bkx6J4x9GP584y/rYzEU/CXSjKP16RT+fHpDoSypFPyHphx7B2kQ/XHZivFiMRD+N+qvBDj9EP6hdeTvf8kM/NeA8RManQz8mQZsDwF1DP+tiQa7IFEM/+m66hdzMQj8mdkbY94VCP8aMsQAXQEI/1mArZjb7QT9ySR98UrdBP/bNDMJndEE/mqNgw3IyQT+aIE4XcPFAPw4jqWBcsUA/tGrATTRyQD95ZDiY9DNAP23MzAk07T8/mLNYx0J0Pz9NrKkeD/0+P09K39qShz4/kmpd3McTPj9m64YYqKE9P4Y3eZktMT0/BKLIfVLCPD/fjz34EFU8Px9ukk9j6Ts/sHEy3kN/Oz/2HvkRrRY7P6mW8muZrzo/eKYcgANKOj/Ymij15eU5P3zPPYQ7gzk/sf28+P4hOT8ARQQwK8I4PwHtMxm7Yzg/jd7ztKkGOD8Y0TkV8qo3P6grEF2PUDc/SZZdwHz3Nj+XOq2DtZ82P+yx9/s0STY/q51sjvbzNT/v6Tyw9Z81P6e2ZeYtTTU/7+Z7xZr7ND+YU3jxN6s0P9ufhB0BXDQ//K3IC/INND8NsjiNBsEzP4HhY4E6dTM/9rxD1okqMz+D8wuI8OAyP/rc+qBqmDI/yIkqOfRQMj+nZmJ2iQoyP69y6YsmxTE/tQVZuseAMT+lJXBPaT0xP1Np56UH+zA/nWZFJZ+5MD8Kq7NBLHkwP2Y81HurOTA/rkEvwTL2Lz/31yYS5XovPzmgsjRnAS8/J2OdirKJLj80dgmNwBMuPzjjIcyKny0/Z4vM7gotLT94Q12yOrwsPxXmSeoTTSw/9Vjff5DfKz/GgvdxqnMrP1YusNRbCSs/09gi0Z6gKj8TaB2lbTkqP1bG26LC0yk/QmDCMJhvKT/MgxnJ6AwpP9+byfmuqyg/5EYYZOVLKD9VRma8hu0nPx1D7smNkCc/0WWEZvU0Jz+Xv1Z+uNomP+iArg/SgSY/7/yxKj0qJj/MdSfx9NMlPxqwOJb0fiU/OEs3XjcrJT/X22GeuNgkP6/GqbxzhyQ/L9l5L2Q3JD9enX19hegjPzpnaT3TmiM/ShnDFUlOIz/rnau84gIjP3ITqfebuCI//qhxm3BvIj+OKbeLXCciP+Iz87pb4CE/ORw0KmqaIT/Cdurog1UhP/hHtxSlESE/l9k62cnOID+RMeRv7owgP3UpwR8PTCA/NSRPPSgMID+KwJhUbJofP/rIE6tqHh8/FQt8dUSkHj+JBK/E8iseP8ZposJutR0/Oq8MsrFAHT/mtA7utM0cP3CR3ulxXBw/JHlzMOLsGz+WvDJk/34bP8/cnT7DEhs/obABkCeoGj+9lyY/Jj8aP1a5AUm51xk/mklnwNpxGT+b073NhA0ZP3KEsq6xqhg/RHTutVtJGD9k6cxKfekXP1yUEukQixc/Zr+lIBEuFz/7b0eVeNIWP+N2Tf5BeBY//GtdJmgfFj9Vkijr5ccVP7GiKD22cRU/ZnhdH9QcFT+YngunOskUP/O6e/vkdhQ/htK6Vc4lFD/cZlsA8tUTPypoN1dLhxM/fvkyx9U5Ez+RBQDOjO0SPwug4vlrohI/yDF26W5YEj+DbXNLkQ8SP20Jd97OxxE/YTzJcCOBET+j+yXgijsRP6f2hRkB9xA/5k7oGIKzED8ICR3pCXEQPx41kKOULxA/gpcr4DzeDz8Ke2wJR18PP8pl90pA4g4/rPN/SCFnDj8tP/bA4u0NPzVnJY59dg0/omRTpOoADT/QKeIRI40MP+AI8v4fGww/ilwFrdqqCz8fbqV2TDwLP56WCM9uzwo/KJW5QTtkCj8KGEByq/oJPyVzyhu5kgk/p4HYEF4sCT9orec6lMcIPyUZIJpVZAg/COoCRZwCCD+5qxloYqIHP53MpkWiQwc/6S1XNVbmBj/pw/SjeIoGP4pDGhMEMAY/59jnGPPWBT8w5LhfQH8FP++42qXmKAU/uVxEveDTBD/BQU+LKYAEP/f5cAi8LQQ/wt/1P5PcAz/TsLxPqowDP1AY82f8PQM/uCTTyoTwAj/MpmHMPqQCP1Z2LdIlWQI/35kPUzUPAj8NTuzWaMYBP3bqdPa7fgE/B6DqWio4AT/oDuK9r/IAP9ywB+lHrgA/DxXlte5qAD/T6qYNoCgAP1axx9Gvzv8+NjnIniRO/z775tOvls/+Pp+I9U/+Uv4+rxpS51PY/T5dIL76j1/9Pg11VCur6Pw+jJEONp5z/D77QF7zYQD8Poe/yFbvjvs+3j6Dbj8f+z7XyxBjS7H6PoaP4XYMRfo+f2jzBXza+T5c1nOFk3H5PnU0Y4NMCvk+3D05pqCk+D6C14qsiUD4PmsbsWwB3vc+w6Bx1AF99z7q/KfohB33Pt148MSEv/Y+QPdTm/ti9j73BvWz4wf2Po8dvmw3rvU+qvYQOfFV9T65E3ehC//0PgFYU0OBqfQ+6L2U0ExV9D44IWoPaQL0PkEa99nQsPM+TecJHn9g8z6TX9LcbhHzPq3smSqbw/I+Uod8Lv928j4QsyIilivyPiN2fFFb4fE+z0l9GkqY8T42ANnsXVDxPnabwUmSCfE+MRSmw+LD8D7aCvL9Sn/wPmxhzqzGO/A+h3TFKaPy7z6GsS8Wz2/vPtXBtegI7+4+zOXCikhw7j6ePt0EhvPtPq9iMX65eO0+X5gfPNv/7D5wsMqh44jsPoJ7qC/LE+w+XdQTg4qg6z74OeBVGi/rPsvy7n1zv+o+p7XF7I5R6j4i0SavZeXpPo/Nquzweuk+1INb5ykS6T54o1D7CavoPiikTZ6KReg+1xxhX6Xh5z4Ee4XmU3/nPjEXQ/SPHuc+hJ9TYVO/5j6o1UYemGHmPg6aKDNYBeY+jUAov42q5T7jKUH4MlHlPjed5CpC+eQ+td2kubWi5D5Ld+EciE3kPqq+dOKz+eM+d4BirTOn4z6p2oc1AlbjPgw9TEcaBuM++otTw3a34j59YTGeEmriPjppHeDoHeI+ptKopPTS4T4k1nQaMYnhPhVJ6oKZQOE+6jzyMSn54D6Ipa+N27LgPu0DOg6sbeA+IhBZPZYp4D6HwYJsK83fPn0VpEpMSd8+Km6mj4bH3j5EVWvX0UfePlZ5pt4lyt0+pHFggnpO3T6gUnu/x9TcPsoLObIFXdw+SYnDlSzn2z4rkrbDNHPbPuldq7MWAds+7dnF+sqQ2j7DmkNLSiLaPpdwDHSNtdk+eJtEYI1K2T6hl+AWQ+HYPnR9Orqnedg+1O6oh7QT2D7oixfXYq/XPq3qoBqsTNc+Cgsq3onr1j7QQv/G9YvWPjWbcpPpLdY+PZx7Gl/R1T4lf1hLUHbVPuPDMC23HNU+XSS53o3E1D5c4NiVzm3UPgVdUJ9zGNQ+JxRhXnfE0z4kzXZM1HHTPrsb0viEINM+5R80CITQ0j7+gYs0zIHSPvqmokxYNNI+JRjPMyPo0T7vGaLhJ53RPnltmmFhU9E+CjnX0soK0T5VEsxnX8PQPrEn9mUafdA+qoKSJfc30D4Pw6oi4ufPPi9ERUwHYs8+PneO5VTezj6ZhGcvwlzOPt/jb41G3c0+KHZ+hdlfzT6Ynhy/cuTMPgBSAwMKa8w+KBaaOpfzyz5L6XdvEn7LPtEL5spzCss+B6RklbOYyj4SNjE2yijKPuDozjKwusk+mJGQLl5OyT4=\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[1000]}},\"selected\":{\"id\":\"1565\"},\"selection_policy\":{\"id\":\"1564\"}},\"id\":\"1552\",\"type\":\"ColumnDataSource\"},{\"attributes\":{\"data_source\":{\"id\":\"1373\"},\"glyph\":{\"id\":\"1374\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1375\"},\"selection_glyph\":null,\"view\":{\"id\":\"1377\"}},\"id\":\"1376\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"data\":{\"x\":{\"__ndarray__\":\"AAAAAAAAAMD6/lt/me//v/P9t/4y3/+/7fwTfszO/7/m+2/9Zb7/v+D6y3z/rf+/2vkn/Jid/7/T+IN7Mo3/v8333/rLfP+/xvY7emVs/7/A9Zf5/lv/v7r083iYS/+/s/NP+DE7/7+t8qt3yyr/v6bxB/dkGv+/oPBjdv4J/7+a77/1l/n+v5PuG3Ux6f6/je139MrY/r+G7NNzZMj+v4DrL/P9t/6/euqLcpen/r9z6efxMJf+v23oQ3HKhv6/Zuef8GN2/r9g5vtv/WX+v1nlV++WVf6/U+SzbjBF/r9N4w/uyTT+v0bia21jJP6/QOHH7PwT/r854CNslgP+vzPff+sv8/2/Ld7basni/b8m3TfqYtL9vyDck2n8wf2/Gdvv6JWx/b8T2ktoL6H9vwzZp+fIkP2/BtgDZ2KA/b8A11/m+2/9v/nVu2WVX/2/89QX5S5P/b/s03NkyD79v+bSz+NhLv2/4NErY/sd/b/Z0IfilA39v9PP42Eu/fy/zM4/4cfs/L/GzZtgYdz8v8DM99/6y/y/uctTX5S7/L+zyq/eLav8v6zJC17Hmvy/pshn3WCK/L+gx8Nc+nn8v5nGH9yTafy/k8V7Wy1Z/L+MxNfaxkj8v4bDM1pgOPy/gMKP2fkn/L95wetYkxf8v3PAR9gsB/y/bL+jV8b2+79mvv/WX+b7v2C9W1b51fu/Wby31ZLF+79TuxNVLLX7v0y6b9TFpPu/RrnLU1+U+79AuCfT+IP7vzm3g1KSc/u/M7bf0Stj+78stTtRxVL7vya0l9BeQvu/ILPzT/gx+78Zsk/PkSH7vxOxq04rEfu/DLAHzsQA+78Gr2NNXvD6vwCuv8z33/q/+awbTJHP+r/zq3fLKr/6v+yq00rErvq/5qkvyl2e+r/gqItJ9436v9mn58iQffq/06ZDSCpt+r/MpZ/Hw1z6v8ak+0ZdTPq/wKNXxvY7+r+5orNFkCv6v7KhD8UpG/q/rKBrRMMK+r+mn8fDXPr5v6CeI0P26fm/mZ1/wo/Z+b+SnNtBKcn5v4ybN8HCuPm/hpqTQFyo+b+Ame+/9Zf5v3mYSz+Ph/m/cpenvih3+b9slgM+wmb5v2aVX71bVvm/X5S7PPVF+b9Zkxe8jjX5v1KSczsoJfm/TJHPusEU+b9GkCs6WwT5vz+Ph7n08/i/OY7jOI7j+L8yjT+4J9P4vyyMmzfBwvi/Jov3tlqy+L8filM29KH4vxmJr7WNkfi/EogLNSeB+L8Mh2e0wHD4vwaGwzNaYPi//4Qfs/NP+L/5g3syjT/4v/KC17EmL/i/7IEzMcAe+L/mgI+wWQ74v99/6y/z/fe/2X5Hr4zt97/SfaMuJt33v8x8/62/zPe/xntbLVm897+/eres8qv3v7l5EyyMm/e/snhvqyWL97+sd8sqv3r3v6Z2J6pYave/n3WDKfJZ97+ZdN+oi0n3v5JzOyglOfe/jHKXp74o97+GcfMmWBj3v39wT6bxB/e/eG+rJYv39r9ybgelJOf2v2xtYyS+1va/Zmy/o1fG9r9faxsj8bX2v1hqd6KKpfa/UmnTISSV9r9MaC+hvYT2v0ZniyBXdPa/P2bnn/Bj9r84ZUMfilP2vzJkn54jQ/a/LGP7Hb0y9r8mYledViL2vx9hsxzwEfa/GGAPnIkB9r8SX2sbI/H1vwxex5q84PW/Bl0jGlbQ9b//W3+Z77/1v/ha2xiJr/W/8lk3mCKf9b/sWJMXvI71v+ZX75ZVfvW/31ZLFu9t9b/YVaeViF31v9JUAxUiTfW/zFNflLs89b/GUrsTVSz1v79RF5PuG/W/uFBzEogL9b+yT8+RIfv0v6xOKxG76vS/pk2HkFTa9L+fTOMP7sn0v5hLP4+HufS/kkqbDiGp9L+MSfeNupj0v4ZIUw1UiPS/f0evjO139L94RgsMh2f0v3JFZ4sgV/S/bETDCrpG9L9lQx+KUzb0v19CewntJfS/WEHXiIYV9L9SQDMIIAX0v0w/j4e59PO/RT7rBlPk878/PUeG7NPzvzg8owWGw/O/Mjv/hB+z878sOlsEuaLzvyU5t4NSkvO/HzgTA+yB878YN2+ChXHzvxI2ywEfYfO/DDUngbhQ878FNIMAUkDzv/8y33/rL/O/+DE7/4Qf87/yMJd+Hg/zv+wv8/23/vK/5S5PfVHu8r/eLav86t3yv9gsB3yEzfK/0itj+x298r/MKr96t6zyv8UpG/pQnPK/vih3eeqL8r+4J9P4g3vyv7ImL3gda/K/rCWL97Za8r+lJOd2UEryv54jQ/bpOfK/mCKfdYMp8r+SIfv0HBnyv4wgV3S2CPK/hR+z80/48b9+Hg9z6efxv3gda/KC1/G/chzHcRzH8b9sGyPxtbbxv2Uaf3BPpvG/Xhnb7+iV8b9YGDdvgoXxv1IXk+4bdfG/TBbvbbVk8b9FFUvtTlTxvz4Up2zoQ/G/OBMD7IEz8b8yEl9rGyPxvywRu+q0EvG/JRAXak4C8b8eD3Pp5/HwvxgOz2iB4fC/Eg0r6BrR8L8MDIdntMDwvwUL4+ZNsPC//gk/Zuef8L/4CJvlgI/wv/IH92Qaf/C/7AZT5LNu8L/lBa9jTV7wv94EC+PmTfC/2ANnYoA98L/SAsPhGS3wv8sBH2GzHPC/xQB74EwM8L98/62/zPfvv3D9Zb7/1u+/ZPsdvTK2779W+dW7ZZXvv0r3jbqYdO+/PPVFuctT778w8/23/jLvvyTxtbYxEu+/Fu9ttWTx7r8K7SW0l9Duv/zq3bLKr+6/8OiVsf2O7r/k5k2wMG7uv9bkBa9jTe6/yuK9rZYs7r+84HWsyQvuv7DeLav86u2/pNzlqS/K7b+W2p2oYqntv4rYVaeViO2/fNYNpshn7b9w1MWk+0btv2TSfaMuJu2/VtA1omEF7b9Kzu2glOTsvzzMpZ/Hw+y/MMpdnvqi7L8iyBWdLYLsvxbGzZtgYey/CsSFmpNA7L/8wT2Zxh/sv/C/9Zf5/uu/4r2tlize67/Wu2WVX73rv8q5HZSSnOu/vLfVksV767+wtY2R+Frrv6KzRZArOuu/lrH9jl4Z67+Kr7WNkfjqv3ytbYzE1+q/cKsli/e26r9iqd2JKpbqv1anlYhddeq/SqVNh5BU6r88owWGwzPqvzChvYT2Euq/Ip91gyny6b8WnS2CXNHpvwqb5YCPsOm//Jidf8KP6b/wllV+9W7pv+KUDX0oTum/1pLFe1st6b/IkH16jgzpv7yONXnB6+i/sIztd/TK6L+iiqV2J6rov5aIXXVaiei/iIYVdI1o6L98hM1ywEfov3CChXHzJui/YoA9cCYG6L9WfvVuWeXnv0h8rW2MxOe/PHplbL+j578weB1r8oLnvyJ21WklYue/FnSNaFhB578IckVniyDnv/xv/WW+/+a/8G21ZPHe5r/ia21jJL7mv9ZpJWJXnea/yGfdYIp85r+8ZZVfvVvmv7BjTV7wOua/omEFXSMa5r+WX71bVvnlv4hddVqJ2OW/fFstWby35b9wWeVX75blv2JXnVYiduW/VlVVVVVV5b9IUw1UiDTlvzxRxVK7E+W/ME99Ue7y5L8iTTVQIdLkvxZL7U5UseS/CEmlTYeQ5L/8Rl1Mum/kv+5EFUvtTuS/4kLNSSAu5L/WQIVIUw3kv8g+PUeG7OO/vDz1RbnL47+uOq1E7Krjv6I4ZUMfiuO/ljYdQlJp47+INNVAhUjjv3wyjT+4J+O/bjBFPusG479iLv08Hubiv1YstTtRxeK/SCptOoSk4r88KCU5t4Pivy4m3TfqYuK/IiSVNh1C4r8WIk01UCHivwggBTSDAOK//B29Mrbf4b/uG3Ux6b7hv+IZLTAcnuG/1hflLk994b/IFZ0tglzhv7wTVSy1O+G/rhENK+ga4b+iD8UpG/rgv5QNfShO2eC/iAs1J4G44L98Ce0ltJfgv24HpSTnduC/YgVdIxpW4L9UAxUiTTXgv0gBzSCAFOC/eP4JP2bn379c+nk8zKXfv0T26TkyZN+/KPJZN5gi378Q7sk0/uDev/jpOTJkn96/3OWpL8pd3r/E4RktMBzev6jdiSqW2t2/kNn5J/yY3b941WklYlfdv1zR2SLIFd2/RM1JIC7U3L8oybkdlJLcvxDFKRv6UNy/+MCZGGAP3L/cvAkWxs3bv8S4eRMsjNu/qLTpEJJK27+QsFkO+Ajbv3isyQtex9q/XKg5CcSF2r9EpKkGKkTavyigGQSQAtq/EJyJAfbA2b/4l/n+W3/Zv9yTafzBPdm/xI/Z+Sf82L+oi0n3jbrYv5CHufTzeNi/dIMp8lk32L9cf5nvv/XXv0R7Ce0ltNe/KHd56oty178Qc+nn8TDXv/RuWeVX79a/3GrJ4r2t1r/EZjngI2zWv6hiqd2JKta/kF4Z2+/o1b90WonYVafVv1xW+dW7ZdW/RFJp0yEk1b8oTtnQh+LUvxBKSc7toNS/9EW5y1Nf1L/cQSnJuR3Uv8Q9mcYf3NO/qDkJxIWa07+QNXnB61jTv3Qx6b5RF9O/XC1ZvLfV0r9EKcm5HZTSvyglObeDUtK/ECGptOkQ0r/0HBmyT8/Rv9wYia+1jdG/wBT5rBtM0b+oEGmqgQrRv5AM2afnyNC/dAhJpU2H0L9cBLmis0XQv0AAKaAZBNC/UPgxO/+Ez78g8BE2ywHPv+jn8TCXfs6/uN/RK2P7zb+A17EmL3jNv1DPkSH79My/IMdxHMdxzL/ovlEXk+7Lv7i2MRJfa8u/gK4RDSvoyr9QpvEH92TKvyCe0QLD4cm/6JWx/Y5eyb+4jZH4WtvIv4CFcfMmWMi/UH1R7vLUx78gdTHpvlHHv+hsEeSKzsa/uGTx3lZLxr+AXNHZIsjFv1BUsdTuRMW/IEyRz7rBxL/oQ3HKhj7Ev7g7UcVSu8O/gDMxwB44w79QKxG76rTCvyAj8bW2McK/6BrRsIKuwb+4ErGrTivBv4AKkaYaqMC/UAJxoeYkwL8w9KE4ZUO/v9DjYS79PL6/cNMhJJU2vb8Aw+EZLTC8v6CyoQ/FKbu/MKJhBV0jur/QkSH79By5v3CB4fCMFri/AHGh5iQQt7+gYGHcvAm2vzBQIdJUA7W/0D/hx+z8s79wL6G9hPayvwAfYbMc8LG/oA4hqbTpsL9g/ME9mcavv6DbQSnJua2/4LrBFPmsq78AmkEAKaCpv0B5wetYk6e/YFhB14iGpb+gN8HCuHmjv+AWQa7obKG/AOyBMzHAnr+AqoEKkaaav8BogeHwjJa/QCeBuFBzkr8AywEfYbOMvwBIAc0ggIS/AIoB9sCZeL8ABgGkgGZgvwAIAaSAZmA/AIoB9sCZeD8ASAHNIICEPwDLAR9hs4w/ACeBuFBzkj8AaYHh8IyWP4CqgQqRppo/AOyBMzHAnj/AFkGu6GyhP4A3wcK4eaM/gFhB14iGpT9AecHrWJOnPwCaQQApoKk/wLrBFPmsqz+A20EpybmtP4D8wT2Zxq8/oA4hqbTpsD8AH2GzHPCxP2Avob2E9rI/wD/hx+z8sz9AUCHSVAO1P6BgYdy8CbY/AHGh5iQQtz9ggeHwjBa4P8CRIfv0HLk/QKJhBV0juj+gsqEPxSm7PwDD4RktMLw/YNMhJJU2vT/A42Eu/Ty+P0D0oThlQ78/UAJxoeYkwD+ACpGmGqjAP7ASsatOK8E/4BrRsIKuwT8gI/G1tjHCP1ArEbvqtMI/gDMxwB44wz+wO1HFUrvDP+BDccqGPsQ/IEyRz7rBxD9QVLHU7kTFP4Bc0dkiyMU/sGTx3lZLxj/gbBHkis7GPyB1Mem+Ucc/UH1R7vLUxz+AhXHzJljIP7CNkfha28g/8JWx/Y5eyT8gntECw+HJP1Cm8Qf3ZMo/gK4RDSvoyj+wtjESX2vLP/C+UReT7ss/IMdxHMdxzD9Qz5Eh+/TMP4DXsSYveM0/sN/RK2P7zT/w5/Ewl37OPyDwETbLAc8/UPgxO/+Ezz9AACmgGQTQP1gEuaKzRdA/eAhJpU2H0D+QDNmn58jQP6gQaaqBCtE/wBT5rBtM0T/YGImvtY3RP/gcGbJPz9E/ECGptOkQ0j8oJTm3g1LSP0ApybkdlNI/WC1ZvLfV0j94Mem+URfTP5A1ecHrWNM/qDkJxIWa0z/APZnGH9zTP9hBKcm5HdQ/+EW5y1Nf1D8QSknO7aDUPyhO2dCH4tQ/QFJp0yEk1T9YVvnVu2XVP3haidhVp9U/kF4Z2+/o1T+oYqndiSrWP8BmOeAjbNY/2GrJ4r2t1j/4blnlV+/WPxBz6efxMNc/KHd56oty1z9AewntJbTXP1h/me+/9dc/eIMp8lk32D+Qh7n083jYP6iLSfeNutg/wI/Z+Sf82D/Yk2n8wT3ZP/iX+f5bf9k/EJyJAfbA2T8ooBkEkALaP0CkqQYqRNo/WKg5CcSF2j94rMkLXsfaP5CwWQ74CNs/qLTpEJJK2z/AuHkTLIzbP+C8CRbGzds/+MCZGGAP3D8QxSkb+lDcPyjJuR2Uktw/QM1JIC7U3D9g0dkiyBXdP3jVaSViV90/kNn5J/yY3T+o3YkqltrdP8DhGS0wHN4/4OWpL8pd3j/46TkyZJ/ePxDuyTT+4N4/KPJZN5gi3z9A9uk5MmTfP2D6eTzMpd8/eP4JP2bn3z9IAc0ggBTgP1QDFSJNNeA/YAVdIxpW4D9wB6Uk53bgP3wJ7SW0l+A/iAs1J4G44D+UDX0oTtngP6APxSkb+uA/sBENK+ga4T+8E1UstTvhP8gVnS2CXOE/1BflLk994T/gGS0wHJ7hP/AbdTHpvuE//B29Mrbf4T8IIAU0gwDiPxQiTTVQIeI/ICSVNh1C4j8wJt036mLiPzwoJTm3g+I/SCptOoSk4j9ULLU7UcXiP2Au/Twe5uI/cDBFPusG4z98Mo0/uCfjP4g01UCFSOM/lDYdQlJp4z+gOGVDH4rjP7A6rUTsquM/vDz1RbnL4z/IPj1HhuzjP9RAhUhTDeQ/4ELNSSAu5D/wRBVL7U7kP/xGXUy6b+Q/CEmlTYeQ5D8US+1OVLHkPyBNNVAh0uQ/ME99Ue7y5D88UcVSuxPlP0hTDVSINOU/VFVVVVVV5T9gV51WInblP3BZ5VfvluU/fFstWby35T+IXXVaidjlP5RfvVtW+eU/oGEFXSMa5j+wY01e8DrmP7xllV+9W+Y/yGfdYIp85j/UaSViV53mP+RrbWMkvuY/8G21ZPHe5j/8b/1lvv/mPwhyRWeLIOc/FHSNaFhB5z8kdtVpJWLnPzB4HWvyguc/PHplbL+j5z9IfK1tjMTnP1R+9W5Z5ec/ZIA9cCYG6D9wgoVx8yboP3yEzXLAR+g/iIYVdI1o6D+UiF11WonoP6SKpXYnqug/sIztd/TK6D+8jjV5wevoP8iQfXqODOk/1JLFe1st6T/klA19KE7pP/CWVX71buk//Jidf8KP6T8Im+WAj7DpPxSdLYJc0ek/JJ91gyny6T8wob2E9hLqPzyjBYbDM+o/SKVNh5BU6j9Up5WIXXXqP2Sp3Ykqluo/cKsli/e26j98rW2MxNfqP4ivtY2R+Oo/lLH9jl4Z6z+ks0WQKzrrP7C1jZH4Wus/vLfVksV76z/IuR2UkpzrP9S7ZZVfves/5L2tlize6z/wv/WX+f7rP/zBPZnGH+w/CMSFmpNA7D8Uxs2bYGHsPyTIFZ0tguw/MMpdnvqi7D88zKWfx8PsP0jO7aCU5Ow/VNA1omEF7T9k0n2jLibtP3DUxaT7Ru0/fNYNpshn7T+I2FWnlYjtP5Tanahiqe0/pNzlqS/K7T+w3i2r/OrtP7zgdazJC+4/yOK9rZYs7j/Y5AWvY03uP+TmTbAwbu4/8OiVsf2O7j/86t2yyq/uPwjtJbSX0O4/GO9ttWTx7j8k8bW2MRLvPzDz/bf+Mu8/PPVFuctT7z9I9426mHTvP1j51btlle8/ZPsdvTK27z9w/WW+/9bvP3z/rb/M9+8/xAB74EwM8D/MAR9hsxzwP9ICw+EZLfA/2ANnYoA98D/eBAvj5k3wP+QFr2NNXvA/7AZT5LNu8D/yB/dkGn/wP/gIm+WAj/A//gk/Zuef8D8EC+PmTbDwPwwMh2e0wPA/Eg0r6BrR8D8YDs9ogeHwPx4Pc+nn8fA/JBAXak4C8T8sEbvqtBLxPzISX2sbI/E/OBMD7IEz8T8+FKds6EPxP0QVS+1OVPE/TBbvbbVk8T9SF5PuG3XxP1gYN2+ChfE/Xhnb7+iV8T9kGn9wT6bxP2wbI/G1tvE/chzHcRzH8T94HWvygtfxP34eD3Pp5/E/hB+z80/48T+MIFd0tgjyP5Ih+/QcGfI/mCKfdYMp8j+eI0P26TnyP6Qk53ZQSvI/rCWL97Za8j+yJi94HWvyP7gn0/iDe/I/vih3eeqL8j/EKRv6UJzyP8wqv3q3rPI/0itj+x298j/YLAd8hM3yP94tq/zq3fI/5C5PfVHu8j/sL/P9t/7yP/Iwl34eD/M/+DE7/4Qf8z/+Mt9/6y/zPwQ0gwBSQPM/DDUngbhQ8z8SNssBH2HzPxg3b4KFcfM/HjgTA+yB8z8mObeDUpLzPyw6WwS5ovM/Mjv/hB+z8z84PKMFhsPzPz49R4bs0/M/Rj7rBlPk8z9MP4+HufTzP1JAMwggBfQ/WEHXiIYV9D9eQnsJ7SX0P2ZDH4pTNvQ/bETDCrpG9D9yRWeLIFf0P3hGCwyHZ/Q/fkevjO139D+GSFMNVIj0P4xJ9426mPQ/kkqbDiGp9D+YSz+Ph7n0P55M4w/uyfQ/pk2HkFTa9D+sTisRu+r0P7JPz5Eh+/Q/uFBzEogL9T++UReT7hv1P8ZSuxNVLPU/zFNflLs89T/SVAMVIk31P9hVp5WIXfU/3lZLFu9t9T/mV++WVX71P+xYkxe8jvU/8lk3mCKf9T/4WtsYia/1P/5bf5nvv/U/Bl0jGlbQ9T8MXseavOD1PxJfaxsj8fU/GGAPnIkB9j8eYbMc8BH2PyZiV51WIvY/LGP7Hb0y9j8yZJ+eI0P2PzhlQx+KU/Y/Pmbnn/Bj9j9GZ4sgV3T2P0xoL6G9hPY/UmnTISSV9j9YaneiiqX2P15rGyPxtfY/Zmy/o1fG9j9sbWMkvtb2P3JuB6Uk5/Y/eG+rJYv39j9+cE+m8Qf3P4Zx8yZYGPc/jHKXp74o9z+SczsoJTn3P5h036iLSfc/oHWDKfJZ9z+mdieqWGr3P6x3yyq/evc/snhvqyWL9z+4eRMsjJv3P8B6t6zyq/c/xntbLVm89z/MfP+tv8z3P9J9oy4m3fc/2H5Hr4zt9z/gf+sv8/33P+aAj7BZDvg/7IEzMcAe+D/ygtexJi/4P/iDezKNP/g/AIUfs/NP+D8GhsMzWmD4PwyHZ7TAcPg/EogLNSeB+D8Yia+1jZH4PyCKUzb0ofg/Jov3tlqy+D8sjJs3wcL4PzKNP7gn0/g/OI7jOI7j+D9Aj4e59PP4P0aQKzpbBPk/TJHPusEU+T9SknM7KCX5P1iTF7yONfk/YJS7PPVF+T9mlV+9W1b5P2yWAz7CZvk/cpenvih3+T94mEs/j4f5P4CZ77/1l/k/hpqTQFyo+T+MmzfBwrj5P5Kc20Epyfk/mJ1/wo/Z+T+gniND9un5P6afx8Nc+vk/rKBrRMMK+j+yoQ/FKRv6P7iis0WQK/o/wKNXxvY7+j/GpPtGXUz6P8yln8fDXPo/0qZDSCpt+j/Yp+fIkH36P+Coi0n3jfo/5qkvyl2e+j/sqtNKxK76P/Krd8sqv/o/+KwbTJHP+j8Arr/M99/6PwavY01e8Po/DLAHzsQA+z8SsatOKxH7PxiyT8+RIfs/ILPzT/gx+z8mtJfQXkL7Pyy1O1HFUvs/Mrbf0Stj+z84t4NSknP7P0C4J9P4g/s/RrnLU1+U+z9Mum/UxaT7P1K7E1Ustfs/Wry31ZLF+z9gvVtW+dX7P2a+/9Zf5vs/bL+jV8b2+z9ywEfYLAf8P3rB61iTF/w/gMKP2fkn/D+GwzNaYDj8P4zE19rGSPw/ksV7Wy1Z/D+axh/ck2n8P6DHw1z6efw/pshn3WCK/D+syQtex5r8P7LKr94tq/w/ustTX5S7/D/AzPff+sv8P8bNm2Bh3Pw/zM4/4cfs/D/Sz+NhLv38P9rQh+KUDf0/4NErY/sd/T/m0s/jYS79P+zTc2TIPv0/8tQX5S5P/T/61btllV/9PwDXX+b7b/0/BtgDZ2KA/T8M2afnyJD9PxLaS2gvof0/Gtvv6JWx/T8g3JNp/MH9PybdN+pi0v0/LN7basni/T8y33/rL/P9PzrgI2yWA/4/QOHH7PwT/j9G4mttYyT+P0zjD+7JNP4/UuSzbjBF/j9a5VfvllX+P2Dm+2/9Zf4/Zuef8GN2/j9s6ENxyob+P3Lp5/Ewl/4/euqLcpen/j+A6y/z/bf+P4bs03NkyP4/jO139MrY/j+S7ht1Men+P5rvv/WX+f4/oPBjdv4J/z+m8Qf3ZBr/P6zyq3fLKv8/svNP+DE7/z+69PN4mEv/P8D1l/n+W/8/xvY7emVs/z/M99/6y3z/P9T4g3syjf8/2vkn/Jid/z/g+st8/63/P+b7b/1lvv8/7PwTfszO/z/0/bf+Mt//P/r+W3+Z7/8/AAAAAAAAAEA=\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[1000]},\"y\":{\"__ndarray__\":\"tbTA4piKMT+Bc469nhwyPxM2P5EVszI/k9gNPh1OMz8zPkBy1u0zP05Ipa5ikjQ/yXImS+Q7NT+fQm17fuo1PzOznFNVnjY/184ezY1XNz85nIbLTRY4P42LhiG82jg/Y4v7lQClOT8K7QzpQ3U6P2k/YdmvSzs/e0RoKW8oPD+ZJrqkrQs9PyoPjCWY9T0/UkA6mlzmPj/Y0ecKKt4/PyQXmk+YbkA/GzcD0tDxQD8IVrfI13hBP3S0TgjHA0I/6o34ALmSQj9v/4zByCVDP7QXqvoRvUM/AxncAbFYRD+M9dDUwvhEP/gLlxxlnUU/PyrnMLZGRj/a23kb1fRGP0gFaJvhp0c/eNCWKPxfSD/o6S73RR1JP0MOH/vg30k/Seep6++nSj/GM/9GlnVLP1k34FX4SEw/UWpPLzsiTT86ZEu8hAFOPyf2lLv75k4/q2qAxcfSTz9G8OiniGJQP9BX0tgA31A/meWuk+FeUT8Vh1RrQOJRP4SvQGkzaVI/esuhD9HzUj/GCWZbMIJTP3VuT8ZoFFQ/biENSZKqVD/96lldxURVP+jOHwAb41U/97Sgs6yFVj96DqSBlCxXPyFlqf3s11c/6b8fR9GHWD/RyaELXTxZP+OiNoms9Vk/NEaXkNyzWj/caniHCndbPw3H2GpUP1w/3ZpT0dgMXT9HZXfttt9dP56nIJAOuF4/gJfYKgCWXz+0zxtp1jxgP9DGJSCbsWA/WqaAa18pYT/FAUnRNKRhP+S6+S0tImI/C7+ltVqjYj9HPTP1zydjP+U/mNOfr2M/cpQYk906ZD8a64TSnMlkPzUWe47xW2U/pVKnIvDxZT81fwZLrYtmP2cqKSU+KWc/f1t3MbjKZz/6+3RUMXBoP7rFBti/GWk/Mpi3bHrHaT8CGP4qeHlqP4p5gpTQL2s/mldklZvqaz9FdoCF8alsP+VPtinrbW0/qksttaE2bj+qeZnKLgRvP2axf32s1m8/Sne8qRpXcD/vYroicsVwPwFmfWBqNnE/xmO1VBGqcT/Twp0sdSByPzgUnFGkmXI/xuLdaa0Vcz+1lPVYn5RzPwxKdkCJFnQ/SKGOgHqbdD/jS6K4giN1Pxxb4sexrnU/hC3kzRc9dj/65DYrxc52PzVN94HKY3c/wxhitjj8dz8zXGTvIJh4P4YsKpeUN3k/BEerW6XaeT/0pzUvZYF6Px709UjmK3s/e5p9JTvaez8NkUaHdox8P9WQNHerQn0/F7QTRe38fT/1WBSIT7t+P1grRB/mfX8/oBsCmWIigD+X8j2YAIiAPwdhBGrX74A/MXnVj/FZgT/ZGDewWcaBP9ee55YaNYI/J8YONT+mgj9zlmyh0hmDP79Yhhjgj4M/SIDR/HIIhD/pddzWloOEPxU1dVVXAYU/e6nNTcCBhT9Du5273QSGP9/4QsG7ioY/QMzdp2YThz/TKWzf6p6HP0qn4f5ULYg/wec8xLG+iD9vS5oUDlOJPxvQQ/x26ok/LBC+rvmEij9vTdKGoyKLP6B1lQaCw4s/0Axs16JnjD/t6wrKEw+NP/y/dNbiuY0/DTf0Gx5ojj+AyBLh0xmPP5cEjJMSz48/kaweZPRDkD/ZG4mdMqKQPzRFdmdLApE/N7LERkZkkT8s7bDTKsiRPxf4w7kALpI/pMS/t8+Vkj/Mo4mfn/+SP5CjElZ4a5M/KdE902HZkz+LVsQhZEmUP5VpF1+Hu5Q/yANAu9MvlT8pWbx4UaaVP+0EW+wIH5Y//OITfQKalj/ujN6jRheXP8Zxhuvdlpc/XX988NAYmD9gVKZgKJ2YP4byKvvsI5k/5uc8kCetmT9n5+EA4TiaP1THtz4ix5o/Gd62S/RXmz+2tPE5YOubPxUHUitvgZw/PwpTUSoanT/C8LjsmrWdP3GlRU3KU54/ZbVq0cH0nj+RYfjlipifP6Do5IKXH6A/MS+33Ft0oD9r+mdLl8qgPxU/a6BOIqE/EiqEs4Z7oT9c2ZNiRNahP5aSZpGMMqI/qXN/KWSQoj8Zm+IZ0O+iP6HF3VbVUKM/H17P2Xizoz8t/uugvxekP5tcAq+ufaQ/Gag9C0vlpD85TObAmU6lP5geId+fuaU/SfOseGImpj9Plp6j5pSmP0kpG3kxBac/WeQQFUh3pz+iOO6VL+unP3RUVxztYKg/ywfayoXYqD/tCKDF/lGpPzCZHzJdzak/XonKNqZKqj8Enrv63smqPxFUYqUMS6s/+AUtXjTOqz9ncjFMW1OsP0Gl05WG2qw/zkNrYLtjrT+sPefP/u6tP9/jbwZWfK4/3WcHJMYLrz9wxChGVJ2vPzGJssOCGLA/8aV/f29jsD8wQEPgcq+wP2g+t22P/LA/QHVTrcdKsT8GdBgiHpqxPyKQWUyV6rE/JTGGqS88sj/BX/Kz746yP5aZnuLX4rI/Eez+qOo3sz/sWMF2Ko6zP5GGk7eZ5bM/Qr/n0jo+tD+oQbkrEJi0P4rlTyAc87Q/7BcDCmFPtT+AMfw84ay1P9wq+AefC7Y/17EItJxrtj9Po1SE3My2P2/t17VgL7c/yN0ifyuTtz+O3xgQP/i3P/CtrpGdXrg/Y/6nJUnGuD+tp1TmQy+5P8hJTeaPmbk/VHsvMC8Fuj9/gVnGI3K6P7WWpaJv4Lo/fcUkthRQuz+vXNnoFMG7P8YBcRlyM7w/NWf+HC6nvD/Qq7K+Shy9Pwtplr/Jkr0/EnZC1qwKvj8AZZiu9YO+P9vAeuml/r4/ARKFHL96vz9Sr8PRQvi/P2axtUOZO8A/vnPI18d7wD8CJPDXrbzAP/oRqvBL/sA/ZnH2x6JAwT8Y7jP9soPBP7M9+yh9x8E/JbP63AEMwj8d19GjQVHCP04J7QA9l8I/bS5hcPTdwj9TbsdmaCXDP3wGGVGZbcM/kDSLlIe2wz/NPGuOMwDEP8OQ+pOdSsQ/uhlL8sWVxD+AqxvurOHEPy+jtMNSLsU/iLbEprd7xT+s9z3C28nFP54RMzi/GMY//sG0IWJoxj/Dk6+OxLjGP+/fyYXmCcc/CxhCBMhbxz8FX839aK7HPwN1dlzJAcg/I/p8AOlVyD88DTXAx6rIP3hK52dlAMk/qS6xucFWyT/Y42Vt3K3JP0F7bzC1Bco/wpmwpUteyj/QmmZln7fKP7IuDP2vEcs/wHg873xsyz+1sZazBcjLPz1TorZJJMw/zdCzWUiBzD9+4tHyAN/MP7hmm8xyPc0/oN4tJp2czT+Cigwzf/zNPwEqCBsYXc4/TWUn+ma+zj8V44/gaiDPPysQcNIig88/SJ3px43mzz9mW35WVSXQP9j9uTC8V9A/l5to3HqK0D/zcB29kL3QP2U3NTD98NA/0LPNjL8k0T/urr0j11jRP7pZjT9DjdE/9B9vJAPC0T/26jgQFvfRP3fWXTp7LNI/mVno0zFi0j/l5XQHOZjSPzL+LPmPztI/hMfCxjUF0z9gFW2HKTzTP7zz40tqc9M/FbBdHveq0z9xY4wCz+LTPyT/m/XwGtQ/tN0w7ltT1D/Q2WbcDozUP6Ls0KkIxdQ/IFV5OUj+1D/tSeJnzDfVP/Y2BwuUcdU/johe8p2r1T/zBNzm6OXVP9a186pzINY/CmOd+jxb1j9qn1iLQ5bWP1NpMQyG0dY/d1/FJQMN1z9ji0l6uUjXP2zCkKWnhNc/7J0SPczA1z/1C/PPJf3XP7t4CueyOdg/BJLuBHJ22D/JpPulYbPYP92VXkCA8Ng/PXYfRMwt2T8bsywbRGvZP5PiZinmqNk/4iytzLDm2T+tUupcoiTaP4ZQIiy5Yto/l5+AhvOg2j/nE2eyT9/aP8VXffDLHds/jgTBe2Zc2z+tWJaJHZvbP0SK2Unv2ds/tLbw5tkY3D8vbt6F21fcPxjbVEbyltw/wYTJQhzW3D+qrImQVxXdP+1Fzz+iVN0/t4XWW/qT3T9hDPTqXdPdP/Clq+7KEt4/KKHHYz9S3j8+vHBCuZHeP7ilRn420d4/yRB5BrUQ3z9MW+HFMlDfP3PEHKOtj98/oDKngCPP3z9gQ3seSQfgP+g9S9n7JuA/XIgi3KhG4D9dvYcQT2bgP3jPN17theA/Pwg1q4Kl4D8FSdbbDcXgPwKM1tKN5OA/6qRkcQEE4T/wPzOXZyPhP+UdiSK/QuE/j4xR8AZi4T/BGS3cPYHhPyCAgsBioOE/WsyPdnS/4T9VuXvWcd7hPztCZ7dZ/eE/0mh/7yoc4j/WLg9U5DriP+nAkbmEWeI/idHE8wp44j+sIrvVdZbiP2Y87zHEtOI/CU9W2vTS4j9KP3OgBvHiP5baaVX4DuM/KzISysgs4z8bGwzPdkrjP67R0jQBaOM/Rr7Qy2aF4z8aWnNkpqLjPwYyP8++v+M/iQXk3K7c4z9AAFFedfnjP+4LySQRFuQ/Njn3AYEy5D80PQPIw07kP/YBpknYauQ/+kc+Wr2G5D+6VuXNcaLkP0K6g3n0veQ/8AvmMkTZ5D9GxNHQX/TkP94TGitGD+U/dMG0GvYp5T/tCs95bkTlP3qH4iOuXuU/igjK9bN45T/Cd9bNfpLlP6mv44sNrOU/C01tEV/F5T8Ud6NBct7lP9ubfwFG9+U/cR/ZN9kP5j8u+3nNKijmP1hLM605QOY/ysjxwwRY5j+uLNIAi2/mPyR8NVXLhuY/rDnVtMSd5j9JetcVdrTmP0fc4nDeyuY/dl0ywfzg5j/jDqkE0PbmP9yj5TtXDOc/VdpVapEh5z9pukmWfTbnPx6rBskaS+c/SFraDmhf5z+CdS13ZHPnP1AylhQPh+c/UaPq/Gaa5z+Z2FJJa63nPzzJWhYbwOc/AwQEhHXS5z+FJde1eeTnP5kR9dIm9uc/Se4nBnwH6D9/3vN9eBjoP3R6p2wbKeg/LgRsCGQ56D8vVlWLUUnoP52KcTPjWOg/NVnYQhho6D8qKrr/73boP3vcbrRpheg/8D2Er4ST6D8vM8xDQKHoP2WOasibrug/1pLimJa76D/wIyQVMMjoP1CemKFn1Og/VFkvpzzg6D/Rz2mTruvoP39uZ9i89ug/5Qbx7GYB6T9X5YNMrAvpP96IXHeMFek/x/uA8gYf6T+yy8pHGyjpP/+f8AXJMOk/eW2PwA856T9MRjMQ70DpPx7FX5JmSOk/fxKY6XVP6T+rg2a9HFbpP7/RY7paXOk/q+g9ki9i6T/tTL77mmfpP4QX0LKcbOk/TYeFeDRx6T8+Jx0TYnXpP9SIBk4leek/NJLm+X186T+HX5vsa3/pPw+3PwHvgek/lg8uGAeE6T/oKAMXtIXpP/81oOj1huk/ppgsfcyH6T9bLhfKN4jpP1suF8o3iOk/ppgsfcyH6T//NaDo9YbpP+goAxe0hek/lg8uGAeE6T8Ptz8B74HpP4dfm+xrf+k/NJLm+X186T/UiAZOJXnpPz8nHRNidek/TYeFeDRx6T+EF9CynGzpP+1MvvuaZ+k/q+g9ki9i6T/A0WO6WlzpP6uDZr0cVuk/fxKY6XVP6T8exV+SZkjpP0xGMxDvQOk/em2PwA856T/+n/AFyTDpP7LLykcbKOk/x/uA8gYf6T/eiFx3jBXpP1flg0ysC+k/5Abx7GYB6T9/bmfYvPboP9HPaZOu6+g/VVkvpzzg6D9RnpihZ9ToP/AjJBUwyOg/1pLimJa76D9ljmrIm67oPzAzzENAoeg/8T2Er4ST6D973G60aYXoPyoquv/vdug/NVnYQhho6D+einEz41joPzBWVYtRSeg/LgRsCGQ56D90eqdsGynoP3/e8314GOg/Se4nBnwH6D+ZEfXSJvbnP4Ul17V55Oc/AwQEhHXS5z88yVoWG8DnP5rYUklrrec/UKPq/Gaa5z9QMpYUD4fnP4J1LXdkc+c/SFraDmhf5z8fqwbJGkvnP2i6SZZ9Nuc/VdpVapEh5z/co+U7VwznP+MOqQTQ9uY/d10ywfzg5j9G3OJw3srmP0l61xV2tOY/rDnVtMSd5j8kfDVVy4bmP68s0gCLb+Y/ycjxwwRY5j9YSzOtOUDmPy77ec0qKOY/cR/ZN9kP5j/dm38BRvflPxN3o0Fy3uU/C01tEV/F5T+pr+OLDazlP8R31s1+kuU/jAjK9bN45T94h+Ijrl7lP+0Kz3luROU/dMG0GvYp5T/gExorRg/lP0fE0dBf9OQ/7wvmMkTZ5D9CuoN59L3kP7pW5c1xouQ/+0c+Wr2G5D/3AaZJ2GrkPzM9A8jDTuQ/Njn3AYEy5D/uC8kkERbkP0EAUV51+eM/igXk3K7c4z8EMj/Pvr/jPxpac2SmouM/Rr7Qy2aF4z+v0dI0AWjjPx0bDM92SuM/KjISysgs4z+W2mlV+A7jP0o/c6AG8eI/Ck9W2vTS4j9nPO8xxLTiP6wiu9V1luI/idHE8wp44j/pwJG5hFniP9guD1TkOuI/1Gh/7yoc4j87Qme3Wf3hP1W5e9Zx3uE/WsyPdnS/4T8igILAYqDhP78ZLdw9geE/j4xR8AZi4T/lHYkiv0LhP/A/M5dnI+E/7KRkcQEE4T8AjNbSjeTgPwVJ1tsNxeA/Pwg1q4Kl4D94zzde7YXgP1+9hxBPZuA/Wogi3KhG4D/oPUvZ+ybgP2BDex5JB+A/oDKngCPP3z92xByjrY/fP0lb4cUyUN8/yRB5BrUQ3z+4pUZ+NtHePz68cEK5kd4/LKHHYz9S3j/tpavuyhLeP2EM9Opd090/t4XWW/qT3T/tRc8/olTdP66siZBXFd0/voTJQhzW3D8Y21RG8pbcPy9u3oXbV9w/t7bw5tkY3D9IitlJ79nbP6pYlokdm9s/jgTBe2Zc2z/FV33wyx3bP+oTZ7JP39o/mp+AhvOg2j+DUCIsuWLaP61S6lyiJNo/4iytzLDm2T+W4mYp5qjZPx+zLBtEa9k/OXYfRMwt2T/dlV5AgPDYP8mk+6Vhs9g/CJLuBHJ22D+/eArnsjnYP/IL888l/dc/7J0SPczA1z9swpClp4TXP2eLSXq5SNc/e1/FJQMN1z9QaTEMhtHWP2qfWItDltY/CmOd+jxb1j/ZtfOqcyDWP/cE3Obo5dU/johe8p2r1T/2NgcLlHHVP+1J4mfMN9U/JFV5OUj+1D+m7NCpCMXUP9DZZtwOjNQ/tN0w7ltT1D8k/5v18BrUP3VjjALP4tM/GbBdHveq0z+88+NLanPTP2AVbYcpPNM/hMfCxjUF0z81/iz5j87SP+HldAc5mNI/mVno0zFi0j931l06eyzSP/bqOBAW99E/9x9vJAPC0T+3WY0/Q43RP+6uvSPXWNE/0LPNjL8k0T9lNzUw/fDQP/ZwHb2QvdA/lJto3HqK0D/Y/bkwvFfQP2ZbflZVJdA/SJ3px43mzz8yEHDSIoPPPw7jj+BqIM8/TWUn+ma+zj8BKggbGF3OP4KKDDN//M0/pd4tJp2czT+zZpvMcj3NP37i0fIA38w/zdCzWUiBzD9CU6K2SSTMP7qxlrMFyMs/ung873xsyz+yLgz9rxHLP9CaZmWft8o/xpmwpUteyj9Ge28wtQXKP9PjZW3crck/qS6xucFWyT94SudnZQDJP0ANNcDHqsg/KPp8AOlVyD/9dHZcyQHIPwVfzf1orsc/CxhCBMhbxz/z38mF5gnHP8eTr47EuMY/+cG0IWJoxj+eETM4vxjGP6z3PcLbycU/jrbEprd7xT80o7TDUi7FP3qrG+6s4cQ/uhlL8sWVxD/DkPqTnUrEP9E8a44zAMQ/kzSLlIe2wz98BhlRmW3DP1Nux2ZoJcM/bS5hcPTdwj9SCe0APZfCPyHX0aNBUcI/JbP63AEMwj+zPfsofcfBPxjuM/2yg8E/anH2x6JAwT/2EarwS/7APwIk8NetvMA/vnPI18d7wD9msbVDmTvAP1qvw9FC+L8/+RGFHL96vz/bwHrppf6+PwBlmK71g74/EnZC1qwKvj8SaZa/yZK9P8mrsr5KHL0/NWf+HC6nvD/GAXEZcjO8P69c2egUwbs/g8UkthRQuz+tlqWib+C6P3+BWcYjcro/VHsvMC8Fuj/ISU3mj5m5P7OnVOZDL7k/Y/6nJUnGuD/wra6RnV64P47fGBA/+Lc/yN0ifyuTtz937de1YC+3P0+jVITczLY/17EItJxrtj/cKvgHnwu2P4Ax/DzhrLU/8hcDCmFPtT+K5U8gHPO0P6hBuSsQmLQ/Qr/n0jo+tD+RhpO3meWzP/FYwXYqjrM/Eez+qOo3sz+WmZ7i1+KyP8Ff8rPvjrI/JTGGqS88sj8nkFlMleqxPwZ0GCIemrE/QHVTrcdKsT9oPrdtj/ywPzBAQ+Byr7A/9aV/f29jsD8xibLDghiwP3DEKEZUna8/3WcHJMYLrz/f428GVnyuP7I958/+7q0/zkNrYLtjrT9BpdOVhtqsP2dyMUxbU6w/+AUtXjTOqz8ZVGKlDEurPwSeu/reyao/XonKNqZKqj8wmR8yXc2pP+0IoMX+Uak/0AfayoXYqD90VFcc7WCoP6I47pUv66c/WeQQFUh3pz9SKRt5MQWnP1iWnqPmlKY/SfOseGImpj+YHiHfn7mlPzlM5sCZTqU/Hqg9C0vlpD+UXAKvrn2kPy3+66C/F6Q/H17P2Xizoz+hxd1W1VCjPx6b4hnQ76I/oXN/KWSQoj+WkmaRjDKiP1zZk2JE1qE/EiqEs4Z7oT8cP2ugTiKhP2X6Z0uXyqA/MS+33Ft0oD+g6OSClx+gP5Fh+OWKmJ8/cLVq0cH0nj9xpUVNylOeP8LwuOyatZ0/PwpTUSoanT8VB1Irb4GcP8C08Tlg65s/Gd62S/RXmz9Ux7c+IseaP2fn4QDhOJo/5uc8kCetmT+M8ir77COZP2BUpmAonZg/XX988NAYmD/GcYbr3ZaXP+6M3qNGF5c/BOMTfQKalj/tBFvsCB+WPylZvHhRppU/yANAu9MvlT+VaRdfh7uUP5FWxCFkSZQ/KdE902HZkz+QoxJWeGuTP8yjiZ+f/5I/pMS/t8+Vkj8b+MO5AC6SPyztsNMqyJE/N7LERkZkkT80RXZnSwKRP9kbiZ0yopA/l6weZPRDkD+XBIyTEs+PP4DIEuHTGY8/DTf0Gx5ojj/8v3TW4rmNP/vrCsoTD40/0Axs16JnjD+gdZUGgsOLP29N0oajIos/LBC+rvmEij8o0EP8duqJP29LmhQOU4k/wec8xLG+iD9Kp+H+VC2IP9kpbN/qnoc/Oszdp2YThz/f+ELBu4qGP0O7nbvdBIY/e6nNTcCBhT8bNXVVVwGFP+N13NaWg4Q/SIDR/HIIhD+/WIYY4I+DP3OWbKHSGYM/L8YONT+mgj/TnueWGjWCP9kYN7BZxoE/MXnVj/FZgT8HYQRq1++AP5vyPZgAiIA/nBsCmWIigD9YK0Qf5n1/P/VYFIhPu34/F7QTRe38fT/dkDR3q0J9PwWRRod2jHw/e5p9JTvaez8e9PVI5it7P/SnNS9lgXo/EUerW6XaeT95LCqXlDd5PzNcZO8gmHg/wxhitjj8dz81TfeBymN3PwblNivFznY/fy3kzRc9dj8cW+LHsa51P+NLoriCI3U/SKGOgHqbdD8QSnZAiRZ0P7WU9ViflHM/xuLdaa0Vcz84FJxRpJlyP9PCnSx1IHI/ymO1VBGqcT8BZn1gajZxP+9iuiJyxXA/Sne8qRpXcD9msX99rNZvP7J5mcouBG8/qksttaE2bj/lT7Yp621tP0V2gIXxqWw/qFdklZvqaz+QeYKU0C9rPwIY/ip4eWo/Mpi3bHrHaT+6xQbYvxlpPwD8dFQxcGg/hFt3MbjKZz9nKiklPilnPzV/Bkuti2Y/pVKnIvDxZT8/FnuO8VtlPyTrhNKcyWQ/cpQYk906ZD/lP5jTn69jP0c9M/XPJ2M/Fb+ltVqjYj/tuvktLSJiP8UBSdE0pGE/WqaAa18pYT/QxiUgm7FgP7zPG2nWPGA/cJfYKgCWXz+epyCQDrheP0dld+22310/3ZpT0dgMXT8ax9hqVD9cP89qeIcKd1s/NEaXkNyzWj/jojaJrPVZP9HJoQtdPFk/9b8fR9GHWD8VZan97NdXP3oOpIGULFc/97Sgs6yFVj/ozh8AG+NVPwfrWV3FRFU/ZCENSZKqVD91bk/GaBRUP8YJZlswglM/esuhD9HzUj+Nr0BpM2lSPwyHVGtA4lE/meWuk+FeUT/QV9LYAN9QP0bw6KeIYlA/umqAxcfSTz8X9pS7++ZOPzpkS7yEAU4/UWpPLzsiTT9ZN+BV+EhMP9Qz/0aWdUs/Peep6++nSj9DDh/74N9JP+jpLvdFHUk/hNCWKPxfSD9UBWib4adHP8/beRvV9EY/PyrnMLZGRj/4C5ccZZ1FP5j10NTC+EQ/DRncAbFYRD+qF6r6Eb1DP2//jMHIJUM/6o34ALmSQj9+tE4IxwNCPxFWt8jXeEE/GzcD0tDxQD8kF5pPmG5AP9jR5woq3j8/YkA6mlzmPj84D4wlmPU9P5kmuqStCz0/e0RoKW8oPD9pP2HZr0s7PxftDOlDdTo/cIv7lQClOT+Ni4YhvNo4PzmchstNFjg/184ezY1XNz8+s5xTVZ42P5RCbXt+6jU/yXImS+Q7NT9OSKWuYpI0PzM+QHLW7TM/nNgNPh1OMz8JNj+RFbMyP4Fzjr2eHDI/tbTA4piKMT8=\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[1000]}},\"selected\":{\"id\":\"1391\"},\"selection_policy\":{\"id\":\"1390\"}},\"id\":\"1378\",\"type\":\"ColumnDataSource\"},{\"attributes\":{\"line_alpha\":0.7,\"line_color\":\"#ff8888\",\"line_width\":4,\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1553\",\"type\":\"Line\"},{\"attributes\":{\"line_alpha\":0.7,\"line_color\":\"orange\",\"line_width\":2,\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1569\",\"type\":\"Line\"},{\"attributes\":{\"line_alpha\":0.7,\"line_color\":\"#ff8888\",\"line_width\":4,\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1379\",\"type\":\"Line\"},{\"attributes\":{},\"id\":\"1409\",\"type\":\"Selection\"},{\"attributes\":{\"source\":{\"id\":\"1552\"}},\"id\":\"1556\",\"type\":\"CDSView\"},{\"attributes\":{\"line_alpha\":0.1,\"line_color\":\"#ff8888\",\"line_width\":4,\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1554\",\"type\":\"Line\"},{\"attributes\":{\"data\":{\"x\":{\"__ndarray__\":\"LUMc6+I2Gj8tdG364JqAP+pXgheqgJA/vfXNseOzmD/JyQymjnOgP7OYMnMrjaQ/nGdYQMimqD+GNn4NZcCsP7gCUu0AbbA/LerkU895sj+i0Xe6nYa0Pxe5CiFsk7Y/i6CdhzqguD8AiDDuCK26P3Vvw1TXubw/6lZWu6XGvj8vn/QQumnAP+kSPkQhcME/pIaHd4h2wj9e+tCq73zDPxluGt5Wg8Q/0+FjEb6JxT+OVa1EJZDGP0jJ9neMlsc/Aj1Aq/OcyD+9sIneWqPJP3ck0xHCqco/MpgcRSmwyz/sC2Z4kLbMP6d/r6v3vM0/YfP43l7Dzj8cZ0ISxsnPP2vtxaIWaNA/SKdqPErr0D8lYQ/WfW7RPwMbtG+x8dE/4NRYCeV00j+9jv2iGPjSP5pIojxMe9M/eAJH1n/+0z9VvOtvs4HUPzJ2kAnnBNU/DzA1oxqI1T/s6dk8TgvWP8qjftaBjtY/p10jcLUR1z+EF8gJ6ZTXP2HRbKMcGNg/PosRPVCb2D8cRbbWgx7ZP/n+WnC3odk/1rj/Cesk2j+zcqSjHqjaP5EsST1SK9s/bubt1oWu2z9LoJJwuTHcPyhaNwrttNw/BRTcoyA43T/jzYA9VLvdP8CHJdeHPt4/nUHKcLvB3j96+24K70TfP1i1E6QiyN8/mjfcHqsl4D+JlK7rRGfgP3jxgLjeqOA/Zk5ThXjq4D9VqyVSEizhP0MI+B6sbeE/MmXK60Wv4T8hwpy43/DhPw8fb4V5MuI//ntBUhN04j/s2BMfrbXiP9s15utG9+I/ypK4uOA44z+474qFenrjP6dMXVIUvOM/lqkvH6794z+EBgLsRz/kP3Nj1LjhgOQ/YcCmhXvC5D9QHXlSFQTlPz96Sx+vReU/Ldcd7EiH5T8cNPC44sjlPwqRwoV8CuY/+e2UUhZM5j/oSmcfsI3mP9anOexJz+Y/xQQMueMQ5z+zYd6FfVLnP6K+sFIXlOc/kRuDH7HV5z9/eFXsShfoP27VJ7nkWOg/XDL6hX6a6D9Lj8xSGNzoPzrsnh+yHek/KElx7Etf6T8XpkO55aDpPwYDFoZ/4uk/9F/oUhkk6j/jvLofs2XqP9EZjexMp+o/wHZfuebo6j+v0zGGgCrrP50wBFMabOs/jI3WH7St6z966qjsTe/rP2lHe7nnMOw/WKRNhoFy7D9GASBTG7TsPzVe8h+19ew/I7vE7E437T8SGJe56HjtPwF1aYaCuu0/79E7Uxz87T/eLg4gtj3uP82L4OxPf+4/u+iyuenA7j+qRYWGgwLvP5iiV1MdRO8/h/8pILeF7z92XPzsUMfvP7Jc51x1BPA/KYtQQ0Il8D+hubkpD0bwPxjoIhDcZvA/jxaM9qiH8D8HRfXcdajwP35zXsNCyfA/9aHHqQ/q8D9t0DCQ3ArxP+T+mXapK/E/Wy0DXXZM8T/SW2xDQ23xP0qK1SkQjvE/wbg+EN2u8T8456f2qc/xP7AVEd128PE/J0R6w0MR8j+ecuOpEDLyPxahTJDdUvI/jc+1dqpz8j8E/h5dd5TyP3ssiENEtfI/81rxKRHW8j9qiVoQ3vbyP+G3w/aqF/M/WeYs3Xc48z/QFJbDRFnzP0dD/6kRevM/v3FokN6a8z82oNF2q7vzP63OOl143PM/Jf2jQ0X98z+cKw0qEh70PxNadhDfPvQ/iojf9qtf9D8Ct0jdeID0P3nlscNFofQ/8BMbqhLC9D9oQoSQ3+L0P99w7XasA/U/Vp9WXXkk9T/Ozb9DRkX1P0X8KCoTZvU/vCqSEOCG9T8zWfv2rKf1P6uHZN15yPU/IrbNw0bp9T+Z5DaqEwr2PxEToJDgKvY/iEEJd61L9j//b3Jdemz2P3ee20NHjfY/7sxEKhSu9j9l+60Q4c72P90pF/et7/Y/VFiA3XoQ9z/LhunDRzH3P0K1UqoUUvc/uuO7kOFy9z8xEiV3rpP3P6hAjl17tPc/IG/3Q0jV9z+XnWAqFfb3Pw7MyRDiFvg/hvoy9643+D/9KJzde1j4P3RXBcRIefg/64VuqhWa+D9jtNeQ4rr4P9riQHev2/g/URGqXXz8+D/JPxNESR35P0BufCoWPvk/t5zlEONe+T8vy073r3/5P6b5t918oPk/HSghxEnB+T+VVoqqFuL5PwyF85DjAvo/g7Ncd7Aj+j/64cVdfUT6P3IQL0RKZfo/6T6YKheG+j9gbQER5Kb6P9ibavewx/o/T8rT3X3o+j/G+DzESgn7Pz4npqoXKvs/tVUPkeRK+z8shHh3sWv7P6Sy4V1+jPs/G+FKREut+z+SD7QqGM77Pwk+HRHl7vs/gWyG97EP/D/4mu/dfjD8P2/JWMRLUfw/5/fBqhhy/D9eJiuR5ZL8P9VUlHeys/w/TYP9XX/U/D/EsWZETPX8PzvgzyoZFv0/sg45EeY2/T8qPaL3slf9P6FrC95/eP0/GJp0xEyZ/T+QyN2qGbr9Pwf3RpHm2v0/fiWwd7P7/T/2UxlegBz+P22CgkRNPf4/5LDrKhpe/j9c31QR537+P9MNvvezn/4/Sjwn3oDA/j/BapDETeH+PzmZ+aoaAv8/sMdikeci/z8n9st3tEP/P58kNV6BZP8/FlOeRE6F/z+NgQcrG6b/PwWwcBHoxv8/fN7Z97Tn/z96hiHvQAQAQLYdVmKnFABA8bSK1Q0lAEAtTL9IdDUAQGnj87vaRQBApHooL0FWAEDgEV2ip2YAQBypkRUOdwBAV0DGiHSHAECT1/r72pcAQM9uL29BqABACgZk4qe4AEBGnZhVDskAQII0zch02QBAvcsBPNvpAED5YjavQfoAQDX6aiKoCgFAcJGflQ4bAUCsKNQIdSsBQOe/CHzbOwFAI1c970FMAUBf7nFiqFwBQJqFptUObQFA1hzbSHV9AUAStA+8240BQE1LRC9CngFAieJ4oqiuAUDFea0VD78BQAAR4oh1zwFAPKgW/NvfAUB4P0tvQvABQLPWf+KoAAJA7220VQ8RAkArBenIdSECQGacHTzcMQJAojNSr0JCAkDeyoYiqVICQBliu5UPYwJAVfnvCHZzAkCRkCR83IMCQMwnWe9ClAJACL+NYqmkAkBDVsLVD7UCQH/t9kh2xQJAu4QrvNzVAkD2G2AvQ+YCQDKzlKKp9gJAbkrJFRAHA0Cp4f2IdhcDQOV4MvzcJwNAIRBnb0M4A0Bcp5viqUgDQJg+0FUQWQNA1NUEyXZpA0APbTk83XkDQEsEbq9DigNAh5uiIqqaA0DCMteVEKsDQP7JCwl3uwNAOmFAfN3LA0B1+HTvQ9wDQLGPqWKq7ANA7Sbe1RD9A0AovhJJdw0EQGRVR7zdHQRAn+x7L0QuBEDbg7Ciqj4EQBcb5RURTwRAUrIZiXdfBECOSU783W8EQMrggm9EgARABXi34qqQBEBBD+xVEaEEQH2mIMl3sQRAuD1VPN7BBED01ImvRNIEQDBsviKr4gRAawPzlRHzBECnmicJeAMFQOMxXHzeEwVAHsmQ70QkBUBaYMViqzQFQJb3+dURRQVA0Y4uSXhVBUANJmO83mUFQEm9ly9FdgVAhFTMoquGBUDA6wAWEpcFQPuCNYl4pwVANxpq/N63BUBzsZ5vRcgFQK5I0+Kr2AVA6t8HVhLpBUAmdzzJePkFQGEOcTzfCQZAnaWlr0UaBkDZPNoirCoGQBTUDpYSOwZAUGtDCXlLBkCMAnh831sGQMeZrO9FbAZAAzHhYqx8BkA/yBXWEo0GQHpfSkl5nQZAtvZ+vN+tBkDyjbMvRr4GQC0l6KKszgZAabwcFhPfBkClU1GJee8GQODqhfzf/wZAHIK6b0YQB0BXGe/irCAHQJOwI1YTMQdAz0dYyXlBB0AK34w84FEHQEZ2wa9GYgdAgg32Iq1yB0C9pCqWE4MHQPk7Xwl6kwdANdOTfOCjB0BwasjvRrQHQKwB/WKtxAdA6Jgx1hPVB0AjMGZJeuUHQF/Hmrzg9QdAm17PL0cGCEDW9QOjrRYIQBKNOBYUJwhATiRtiXo3CECJu6H84EcIQMVS1m9HWAhAAeoK461oCEA8gT9WFHkIQHgYdMl6iQhAs6+oPOGZCEDvRt2vR6oIQCveESOuughAZnVGlhTLCECiDHsJe9sIQN6jr3zh6whAGTvk70f8CEBV0hhjrgwJQJFpTdYUHQlAzACCSXstCUAImLa84T0JQEQv6y9ITglAf8Yfo65eCUC7XVQWFW8JQPf0iIl7fwlAMoy9/OGPCUBuI/JvSKAJQKq6JuOusAlA5VFbVhXBCUAh6Y/Je9EJQF2AxDzi4QlAmBf5r0jyCUDUri0jrwIKQBBGYpYVEwpAS92WCXwjCkCHdMt84jMKQMILAPBIRApA/qI0Y69UCkA6OmnWFWUKQHXRnUl8dQpAsWjSvOKFCkDt/wYwSZYKQCiXO6OvpgpAZC5wFha3CkCgxaSJfMcKQNtc2fzi1wpAF/QNcEnoCkBTi0Ljr/gKQI4id1YWCQtAyrmryXwZC0AGUeA84ykLQEHoFLBJOgtAfX9JI7BKC0C5Fn6WFlsLQPStsgl9awtAMEXnfON7C0Bs3BvwSYwLQKdzUGOwnAtA4wqF1hatC0AeorlJfb0LQFo57rzjzQtAltAiMEreC0DRZ1ejsO4LQA3/ixYX/wtASZbAiX0PDECELfX84x8MQMDEKXBKMAxA/Fte47BADEA385JWF1EMQHOKx8l9YQxAryH8PORxDEDquDCwSoIMQCZQZSOxkgxAYueZlhejDECdfs4JfrMMQNkVA33kwwxAFa038ErUDEBQRGxjseQMQIzboNYX9QxAyHLVSX4FDUADCgq95BUNQD+hPjBLJg1Aejhzo7E2DUC2z6cWGEcNQPJm3Il+Vw1ALf4Q/eRnDUBplUVwS3gNQKUseuOxiA1A4MOuVhiZDUAcW+PJfqkNQFjyFz3luQ1Ak4lMsEvKDUDPIIEjstoNQAu4tZYY6w1ARk/qCX/7DUCC5h595QsOQL59U/BLHA5A+RSIY7IsDkA1rLzWGD0OQHFD8Ul/TQ5ArNolveVdDkDocVowTG4OQCQJj6Oyfg5AX6DDFhmPDkCbN/iJf58OQNbOLP3lrw5AEmZhcEzADkBO/ZXjstAOQImUylYZ4Q5AxSv/yX/xDkABwzM95gEPQDxaaLBMEg9AePGcI7MiD0C0iNGWGTMPQO8fBgqAQw9AK7c6feZTD0BnTm/wTGQPQKLlo2OzdA9A3nzY1hmFD0AaFA1KgJUPQFWrQb3mpQ9AkUJ2ME22D0DN2aqjs8YPQAhx3xYa1w9ARAgUioDnD0CAn0j95vcPQF2bPrgmBBBA++bY8VkMEECZMnMrjRQQQDd+DWXAHBBA1MmnnvMkEEByFULYJi0QQBBh3BFaNRBArqx2S409EEBM+BCFwEUQQOpDq77zTRBAh49F+CZWEEAl298xWl4QQMMmemuNZhBAYXIUpcBuEED/va7e83YQQJwJSRgnfxBAOlXjUVqHEEDYoH2LjY8QQHbsF8XAlxBAFDiy/vOfEECyg0w4J6gQQE/P5nFasBBA7RqBq424EECLZhvlwMAQQCmytR70yBBAx/1PWCfREEBlSeqRWtkQQAKVhMuN4RBAoOAeBcHpEEA+LLk+9PEQQNx3U3gn+hBAesPtsVoCEUAYD4jrjQoRQLVaIiXBEhFAU6a8XvQaEUDx8VaYJyMRQI898dFaKxFALYmLC44zEUDK1CVFwTsRQGggwH70QxFABmxauCdMEUCkt/TxWlQRQEIDjyuOXBFA4E4pZcFkEUB9msOe9GwRQBvmXdgndRFAuTH4EVt9EUBXfZJLjoURQPXILIXBjRFAkxTHvvSVEUAwYGH4J54RQM6r+zFbphFAbPeVa46uEUAKQzClwbYRQKiOyt70vhFARtpkGCjHEUDjJf9RW88RQIFxmYuO1xFAH70zxcHfEUC9CM7+9OcRQFtUaDgo8BFA+J8Cclv4EUCW65yrjgASQDQ3N+XBCBJA0oLRHvUQEkBwzmtYKBkSQA4aBpJbIRJAq2Wgy44pEkBJsToFwjESQOf81D71ORJAhUhveChCEkAjlAmyW0oSQMHfo+uOUhJAXis+JcJaEkD8dthe9WISQJrCcpgoaxJAOA4N0ltzEkDWWacLj3sSQHSlQUXCgxJAEfHbfvWLEkCvPHa4KJQSQE2IEPJbnBJA69OqK4+kEkCJH0VlwqwSQCZr3571tBJAxLZ52Ci9EkBiAhQSXMUSQABOrkuPzRJAnplIhcLVEkA85eK+9d0SQNkwffgo5hJAd3wXMlzuEkAVyLFrj/YSQLMTTKXC/hJAUV/m3vUGE0DvqoAYKQ8TQIz2GlJcFxNAKkK1i48fE0DIjU/FwicTQGbZ6f71LxNABCWEOCk4E0CicB5yXEATQD+8uKuPSBNA3QdT5cJQE0B7U+0e9lgTQBmfh1gpYRNAt+ohklxpE0BUNrzLj3ETQPKBVgXDeRNAkM3wPvaBE0AuGYt4KYoTQMxkJbJckhNAarC/64+aE0AH/Fklw6ITQKVH9F72qhNAQ5OOmCmzE0Dh3ijSXLsTQH8qwwuQwxNAHXZdRcPLE0C6wfd+9tMTQFgNkrgp3BNA9lgs8lzkE0CUpMYrkOwTQDLwYGXD9BNA0Dv7nvb8E0Bth5XYKQUUQAvTLxJdDRRAqR7KS5AVFEBHamSFwx0UQOW1/r72JRRAggGZ+CkuFEAgTTMyXTYUQL6YzWuQPhRAXORnpcNGFED6LwLf9k4UQJh7nBgqVxRANcc2Ul1fFEDTEtGLkGcUQHFea8XDbxRAD6oF//Z3FECt9Z84KoAUQEtBOnJdiBRA6IzUq5CQFECG2G7lw5gUQCQkCR/3oBRAwm+jWCqpFEBguz2SXbEUQP4G2MuQuRRAm1JyBcTBFEA5ngw/98kUQNfppngq0hRAdTVBsl3aFEATgdvrkOIUQLDMdSXE6hRAThgQX/fyFEDsY6qYKvsUQIqvRNJdAxVAKPveC5ELFUDGRnlFxBMVQGOSE3/3GxVAAd6tuCokFUCfKUjyXSwVQD114iuRNBVA28B8ZcQ8FUB5DBef90QVQBZYsdgqTRVAtKNLEl5VFUBS7+VLkV0VQPA6gIXEZRVAjoYav/dtFUAs0rT4KnYVQMkdTzJefhVAZ2npa5GGFUAFtYOlxI4VQKMAHt/3lhVAQUy4GCufFUDel1JSXqcVQHzj7IuRrxVAGi+HxcS3FUC4eiH/978VQFbGuzgryBVA9BFWcl7QFUCRXfCrkdgVQC+piuXE4BVAzfQkH/joFUBrQL9YK/EVQAmMWZJe+RVAp9fzy5EBFkBEI44FxQkWQOJuKD/4ERZAgLrCeCsaFkAeBl2yXiIWQLxR9+uRKhZAWp2RJcUyFkD36Ctf+DoWQJU0xpgrQxZAM4Bg0l5LFkDRy/oLklMWQG8XlUXFWxZADGMvf/hjFkCqrsm4K2wWQEj6Y/JedBZA5kX+K5J8FkCEkZhlxYQWQCLdMp/4jBZAvyjN2CuVFkBddGcSX50WQPu/AUySpRZAmQuchcWtFkA3Vza/+LUWQNWi0PgrvhZAcu5qMl/GFkAQOgVsks4WQK6Fn6XF1hZATNE53/jeFkDqHNQYLOcWQIhoblJf7xZAJbQIjJL3FkDD/6LFxf8WQGFLPf/4BxdA/5bXOCwQF0Cd4nFyXxgXQDouDKySIBdA2Hmm5cUoF0B2xUAf+TAXQBQR21gsORdAslx1kl9BF0BQqA/MkkkXQO3zqQXGURdAiz9EP/lZF0Api954LGIXQMfWeLJfahdAZSIT7JJyF0ADbq0lxnoXQKC5R1/5ghdAPgXimCyLF0DcUHzSX5MXQHqcFgyTmxdAGOiwRcajF0C2M0t/+asXQFN/5bgstBdA8cp/8l+8F0CPFhosk8QXQC1itGXGzBdAy61On/nUF0Bo+ejYLN0XQAZFgxJg5RdApJAdTJPtF0BC3LeFxvUXQOAnUr/5/RdAfnPs+CwGGEAbv4YyYA4YQLkKIWyTFhhAV1a7pcYeGED1oVXf+SYYQJPt7xgtLxhAMTmKUmA3GEDOhCSMkz8YQGzQvsXGRxhAChxZ//lPGECoZ/M4LVgYQEazjXJgYBhA5P4nrJNoGECBSsLlxnAYQB+WXB/6eBhAveH2WC2BGEBbLZGSYIkYQPl4K8yTkRhAlsTFBceZGEA0EGA/+qEYQNJb+ngtqhhAcKeUsmCyGEAO8y7sk7oYQKw+ySXHwhhASYpjX/rKGEDn1f2YLdMYQIUhmNJg2xhAI20yDJTjGEDBuMxFx+sYQF8EZ3/68xhA/E8BuS38GECam5vyYAQZQDjnNSyUDBlA1jLQZccUGUB0fmqf+hwZQBLKBNktJRlArxWfEmEtGUBNYTlMlDUZQOus04XHPRlAifhtv/pFGUAnRAj5LU4ZQMWPojJhVhlAYts8bJReGUAAJ9elx2YZQJ5ycd/6bhlAPL4LGS53GUDaCaZSYX8ZQHdVQIyUhxlAFaHaxcePGUCz7HT/+pcZQFE4DzkuoBlA74OpcmGoGUCNz0OslLAZQCob3uXHuBlAyGZ4H/vAGUBmshJZLskZQAT+rJJh0RlAoklHzJTZGUBAleEFyOEZQN3gez/76RlAeywWeS7yGUAZeLCyYfoZQLfDSuyUAhpAVQ/lJcgKGkDzWn9f+xIaQJCmGZkuGxpALvKz0mEjGkDMPU4MlSsaQGqJ6EXIMxpACNWCf/s7GkClIB25LkQaQENst/JhTBpA4bdRLJVUGkB/A+xlyFwaQB1Php/7ZBpAu5og2S5tGkBY5roSYnUaQPYxVUyVfRpAlH3vhciFGkAyyYm/+40aQNAUJPkulhpAbmC+MmKeGkALrFhslaYaQKn38qXIrhpAR0ON3/u2GkDljicZL78aQIPawVJixxpAISZcjJXPGkC+cfbFyNcaQFy9kP/73xpA+ggrOS/oGkCYVMVyYvAaQDagX6yV+BpA0+v55cgAG0BxN5Qf/AgbQA+DLlkvERtArc7IkmIZG0BLGmPMlSEbQOll/QXJKRtAhrGXP/wxG0Ak/TF5LzobQMJIzLJiQhtAYJRm7JVKG0D+3wAmyVIbQJwrm1/8WhtAOXc1mS9jG0DXws/SYmsbQHUOagyWcxtAE1oERsl7G0CxpZ5//IMbQE/xOLkvjBtA7DzT8mKUG0CKiG0slpwbQCjUB2bJpBtAxh+in/ysG0BkazzZL7UbQAG31hJjvRtAnwJxTJbFG0A9TguGyc0bQNuZpb/81RtAeeU/+S/eG0AXMdoyY+YbQLR8dGyW7htAUsgOpsn2G0DwE6nf/P4bQI5fQxkwBxxALKvdUmMPHEDK9neMlhccQGdCEsbJHxxABY6s//wnHECj2UY5MDAcQEEl4XJjOBxA33B7rJZAHEB9vBXmyUgcQBoIsB/9UBxAuFNKWTBZHEBWn+SSY2EcQPTqfsyWaRxAkjYZBspxHEAvgrM//XkcQM3NTXkwghxAaxnosmOKHEAJZYLslpIcQKewHCbKmhxARfy2X/2iHEDiR1GZMKscQICT69JjsxxAHt+FDJe7HEC8KiBGysMcQFp2un/9yxxA+MFUuTDUHECVDe/yY9wcQDNZiSyX5BxA0aQjZsrsHEBv8L2f/fQcQA08WNkw/RxAq4fyEmQFHUBI04xMlw0dQOYeJ4bKFR1AhGrBv/0dHUAitlv5MCYdQMAB9jJkLh1AXU2QbJc2HUD7mCqmyj4dQJnkxN/9Rh1ANzBfGTFPHUDVe/lSZFcdQHPHk4yXXx1AEBMuxspnHUCuXsj//W8dQEyqYjkxeB1A6vX8cmSAHUCIQZesl4gdQCaNMebKkB1Aw9jLH/6YHUBhJGZZMaEdQP9vAJNkqR1AnbuazJexHUA7BzUGy7kdQNlSzz/+wR1Adp5peTHKHUAU6gOzZNIdQLI1nuyX2h1AUIE4JsviHUDuzNJf/uodQIsYbZkx8x1AKWQH02T7HUDHr6EMmAMeQGX7O0bLCx5AA0fWf/4THkChknC5MRweQD7eCvNkJB5A3CmlLJgsHkB6dT9myzQeQBjB2Z/+PB5Atgx02TFFHkBUWA4TZU0eQPGjqEyYVR5Aj+9ChstdHkAtO92//mUeQMuGd/kxbh5AadIRM2V2HkAHHqxsmH4eQKRpRqbLhh5AQrXg3/6OHkDgAHsZMpceQH5MFVNlnx5AHJivjJinHkC540nGy68eQFcv5P/+tx5A9Xp+OTLAHkCTxhhzZcgeQDESs6yY0B5Az11N5svYHkBsqecf/+AeQAr1gVky6R5AqEAck2XxHkBGjLbMmPkeQOTXUAbMAR9AgiPrP/8JH0Afb4V5MhIfQL26H7NlGh9AWwa67JgiH0D5UVQmzCofQJed7l//Mh9ANemImTI7H0DSNCPTZUMfQHCAvQyZSx9ADsxXRsxTH0CsF/J//1sfQEpjjLkyZB9A564m82VsH0CF+sAsmXQfQCNGW2bMfB9AwZH1n/+EH0Bf3Y/ZMo0fQP0oKhNmlR9AmnTETJmdH0A4wF6GzKUfQNYL+b//rR9AdFeT+TK2H0ASoy0zZr4fQLDux2yZxh9ATTpipszOH0Drhfzf/9YfQInRlhkz3x9AJx0xU2bnH0DFaMuMme8fQGO0ZcbM9x9AAAAAAAAAIEA=\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[1000]},\"y\":{\"__ndarray__\":\"AACtqa745D4AlQ/qGOhjPwDg2k6zc3c/gOGxW+xggz+AJYWmG6yLPwBN+TrGO5I/gOAIiCDWlj8AXdKF+ZybPyDrZVwXRaA/0BRzmnXMoj8ghC1voGKlP9CYz3D0Bag/0PyDDg21qj+Ahk9Utm6tP2gyRWjxGLA/QLYoGNJ+sT9weYPakuiyP5D9xfrTVbQ/KGQJxz7GtT8ADLE/hDm3P6A/zQhcr7g/uBmgjYMnuj9gvfBKvaG7PwD60DfQHb0/mF6RRoebvj+gMJB8WA3AP1zblIKPzcA/NDiNAlOOwT/w/uSZjk/CP9wVfxgvEcM/EF+tZiLTwz/UtUluV5XEP+zvdga+V8U/tF+m4UYaxj8YkY9949zGP/TN1RSGn8c/6CAikiFiyD9UoYGEqSTJP+hA3xQS58k/gHB2/E+pyj8QASF8WGvLP1TcZlQhLcw/VLU5vqDuzD9kx0lkza/NP/A441yecM4/oNVFJAsxzz+AoGqXC/HPP5QklvdLWNA/PHDkXdS30D9eJlpwGxfRP9j7WcgddtE/koUeJdjU0T+OpgdqRzPSP/KoA51okdI/AqUR5Tjv0j9CGNuItUzTP0rGYu3bqdM/0C3HlKkG1D9kBxcdHGPUP8JpNj8xv9Q/LFHTzeYa1T+0ZWi0OnbVP972TPYq0dU/OjvRrbUr1j/E92UL2YXWP0LGzlST39Y/6EJe5OI41z8oeTsoxpHXP3T1r6E76tc/Zu595EFC2D8WAz6W15nYP8YWxG378Ng/XtuKMqxH2T+cpCW86J3ZP8QluPGv89k/dsJzyQBJ2j/QIRpI2p3aP9S4hIA78to/dAYxkyNG2z90QNGtkZnbP9g04QqF7Ns/zCc/8fw+3D+Ueciz+JDcP5bj+bB34tw/9h6TUnkz3T/eyT0N/YPdP5BjN2AC1N0/pjn+1Igj3j98IwH/j3LeP5rqUXsXwd4/OkFa8B4P3z+yKZMNplzfP0qzPousqd8/rPIjKjL23z/MjqZZGyHgP1rZ4/vcRuA/CUwz6F1s4D/BDcMOnpHgP9LgaGOdtuA/nOiF3Vvb4D+iROt32f/gP9Z4vzAWJOE/TJtkCRJI4T/rP18GzWvhPwwbPi9Hj+E/bFSCjoCy4T/yg4gxedXhP29Scigx+OE/YLgQhqga4j9k1c5f3zziPw5bnc3VXuI/IYbe6YuA4j97oVLRAaLiPxgOBaM3w+I/2Ms5gC3k4j/tfluM4wTjP+vt6exZJeM/svRoyZBF4z+Y6E9LiGXjP0Bq+Z1AheM/7qGT7rmk4z/y4hBs9MPjP0SzGEfw4uM/RDT5sa0B5D/P6ZjgLCDkP/LcaAhuPuQ/nxdXYHFc5D/QdsEgN3rkP8PQaIO/l+Q/6mxkwwq15D9RyxUdGdLkP1S5HM7q7uQ/jbFLFYAL5T/8hJwy2SflP2NLJWf2Q+U/GZkN9ddf5T9i+IMffnvlP6iksyrpluU/xoW6Wxmy5T/saZ/4Ds3lP1x8SEjK5+U/lvdxkksC5j91EaUfkxzmP7wfLzmhNuY/wPMYKXZQ5j/iax46EmrmP2Y5prd1g+Y/itm57aCc5j+YwP0olLXmP7C1qbZPzuY/Pl6B5NPm5j/y98wAIf/mPxxAUlo3F+c/cIdNQBcv5z8U8WoCwUbnPxXcv/A0Xuc/NHbEW3N15z8Yd02UfIznPx4DhutQo+c/rrTpsvC55z9kyz48XNDnPxiAkNmT5uc/B30p3Zf85z89eY6ZaBLoP4r2eGEGKOg/MSHSh3E96D+c0K1fqlLoP1eoRTyxZ+g/rVj0cIZ86D8V/jBRKpHoP++eijCdpeg/w8ajYt+56D+CPi478c3oPwTh5g3T4eg/SouRLoX16D/eJ/XwBwnpP63U16hbHOk/7SL7qYAv6T9kcBhId0LpP5BZ3dY/Vek/LUToqdpn6T+QAcUUSHrpP1mI6WqIjOk/+MSy/5ue6T+RgGEmg7DpP8ddFzI+wuk/7urTdc3T6T89yXFEMeXpP4foo/Bp9uk/EdfyzHcH6j8VJborWxjqP47bJV8UKeo/3gUwuaM56j/1TZ6LCUrqP4Cq/ydGWuo/3x6q31lq6j9gjLgDRXrqP3yUCOUHiuo/tIs41KKZ6j+ofKUhFqnqPyU7aR1iuOo/xoZYF4fH6j/aPAFfhdbqPziZqENd5eo/toVJFA/06j/195IfmwLrPypd5rMBEes/oxNWH0Mf6z/A8aOvXy3rPwfaP7JXO+s/GFxGdCtJ6z9BYn9C21brP17rXGlnZOs/yND5NNBx6z8WmBjxFX/rP2hQIuk4jOs/AnslaDmZ6z/2/tS4F6brP5onhyXUsus/o600+G6/6z+Kynd66MvrPyNWi/VA2Os/Eu5Jsnjk6z/1Ji35j/DrPxTHTBKH/Os/RwpeRV4I7D/47rLZFRTsPweMORauH+w/UW97QScr7D+5BJ2hgTbsP3gFXXy9Qew/je8TF9tM7D8WhbO22lfsP2NTxp+8Yuw/qEFvFoFt7D8HJ2leKHjsP9tnBruyguw/FJowbyCN7D92MGi9cZfsP5ksxOemoew/etfxL8Cr7D+BgDTXvbXsP8VCZR6gv+w/e9DyRWfJ7D9eROGNE9PsP+34yTWl3Ow/XmXbfBzm7D8mANmhee/sP+0mG+O8+Ow/yQuPfuYB7T+zp7ax9grtP/qxqLntE+0/opwQ08sc7T+flS46kSXtP6OM1yo+Lu0/lD114NI27T9hPwaWTz/tPzkXHoa0R+0/7k/l6gFQ7T9+lRn+N1jtP5jUDflWYO0/A16qFF9o7T/ZDW2JUHDtP2p2aY8reO0/wA5JXvB/7T+YZEstn4ftP81RRjM4j+0/BTWmpruW7T+iLW69KZ7tP8haOK2Cpe0/cx02q8as7T+AXTDs9bPtP4/Rh6QQu+0/skk1CBfC7T/L/MlKCcntP5DYb5/nz+0/ENTpOLLW7T+2RJRJad3tP6k1ZQMN5O0/icHsl53q7T9ablU4G/HtP6eLZBWG9+0/uZJ6X9797T/XiJNGJATuP4FjR/pXCu4/jG7KqXkQ7j8atO2DiRbuP09mH7eHHO4/ykprcXQi7j+yJ3vgTyjuP2wylzEaLu4/0H+mkdMz7j/YdS8tfDnuP7w+WDAUP+4/bj3nxptE7j9hg0McE0ruP5ZHdVt6T+4/3l4mr9FU7j8/taJBGVruP4LI2DxRX+4/vSNaynlk7j/z21sTk2nuP6INt0Cdbu4/OFvpephz7j95bBXqhHjuP6luA7Zife4/i5UhBjKC7j8cnYQB84buPwRM6M6li+4/t/avlEqQ7j8uA+d44ZTuP0FtQaFqme4/i0scM+ad7j/QVH5TVKLuP+llGCe1pu4/FghG0gir7j/D9w15T6/uP62rIj+Js+4/XdziR7a37j/4C1q21rvuP1sOQa3qv+4/bJH+TvLD7j+4pae97cfuPzJHABvdy+4/KeZ7iMDP7j9c8D0nmNPuPy9aGhhk1+4/9SeWeyTb7j9L9+dx2d7uP3yI+BqD4u4/6EdjliHm7j9u13YDtenuP8OXNYE97e4/xDFWLrvw7j+vH0QpLvTuP0U2IJCW9+4/zi3BgPT67j/2KrQYSP7uP39HPXWRAe8/zBpYs9AE7z82QrjvBQjvPyPpyUYxC+8/61Cy1FIO7z90WFC1ahHvP5ADPQR5FO8/BwLM3H0X7z9kNgxaeRrvP148yJZrHe8/++6GrVQg7z9R7ou4NCPvP+wk2NELJu8/2UwqE9oo7z9CdP+VnyvvP7GBk3NcLu8/3LfhxBAx7z8NOaWivDPvPxGKWSVgNu8/vhQ7Zfs47z/0qUd6jjvvPzYDP3wZPu8/t0OjgpxA7z/1eLmkF0PvP8saivmKRe8/Aovhl/ZH7z9flFCWWkrvPyTpLAu3TO8/CaGRDAxP7z+rtl+wWVHvP2mEPgygU+8/r0CcNd9V7z+3ea5BF1jvP6uQckVIWu8/PDSuVXJc7z+U2u+GlV7vP8A6j+2xYO8/bcWtncdi7z8aHTer1mTvP52N4SnfZu8/FIMuLeFo7z8wAGvI3GrvP+ETsA7SbO8/Xk7jEsFu7z+JNbfnqXDvP6+4q5+Mcu8/oaMOTWl07z8oEfwBQHbvP83cXtAQeO8//hPxydt57z+FZjwAoXvvP1eWmoRgfe8/s+Y1aBp/7z+iigm8zoDvP7sS4pB9gu8/RNpd9yaE7z+kc+3/yoXvPyQU1Lpph+8/BP8nOAOJ7z/l79KHl4rvP3uEkrkmjO8/lqX43LCN7z9872sBNo/vP48ZKDa2kO8/RF0+ijGS7z9s3JUMqJPvP8wG7MsZle8//f7U1oaW7z+q/rs775fvPxC64whTme8/0MJmTLKa7z8Y6jcUDZzvPxGiIm5jne8/oV7LZ7We7z+A9a8OA6DvP5b9J3BMoe8/rC1lmZGi7z9uunOX0qPvP7mzOncPpe8/QmF8RUim7z+BntYOfafvP/o1w9+tqO8/zDuYxNqp7z+bZ4jJA6vvP8Vto/oorO8/7lfWY0qt7z/b3OsQaK7vP6G3jA2Cr+8/LP4/ZZiw7z8Ud2sjq7HvP8fuU1O6su8/DowdAMaz7z/gI8w0zrTvP5CMQ/zSte8/UPBHYdS27z8JH35u0rfvP43fay7NuO8/JUB4q8S57z9s5uvvuLrvP5Re8QWqu+8/82mV95e87z/9TMfOgr3vP4ocWZVqvu8/gAoAVU+/7z/bsVQXMcDvPwxi0+UPwe8/umncyevB7z/lYLTMxMLvP2FyhPeaw+8/uKRaU27E7z9sIirpPsXvP5KBy8EMxu8/4Qr95dfG7z8RAGNeoMfvP6/hhzNmyO8/SLTcbSnJ7z8CRbkV6snvP5ttXDOoyu8/y1fszmPL7z8QwHbwHMzvP+k38Z/TzO8/bWc55YfN7z9cThXIOc7vP5GEM1Dpzu8/4nkrhZbP7z9ztX1uQdDvP2wUlBPq0O8/KwjCe5DR7z/c00SuNNLvP4LJQ7LW0u8/d4bQjnbT7z9bL+dKFNTvP3Orbu2v1O8/g984fUnV7z8W6AIB4dXvP0BTdX921u8/1lkk/wnX7z8ZGJCGm9fvP+XFJBwr2O8/Se46xrjY7z+mpheLRNnvP0TF7HDO2e8/ZhfZfVba7z/Ului33NrvP+ueFCVh2+8/JSFEy+Pb7z8n2UuwZNzvP0iA7tnj3O8/oQDdTWHd7z+Zp7YR3d3vP/RXCStX3u8/cbtRn8/e7z/ac/tzRt/vP6tLYa673+8/NmbNUy/g7z9Tb3lpoeDvP5XKjvQR4e8/DMIm+oDh7z+NtEp/7uHvP4lD9Iha4u8/cYANHMXi7z+dGXE9LuPvP9CG6vGV4+8/QDU2Pvzj7z8rswEnYeTvPwvb67DE5O8/S/6E4Cbl7z+VD0+6h+XvP7bMvULn5e8/E+g2fkXm7z+uMRJxoubvP8i/mR/+5u8/GBcKjljn7z+TUpLAsefvP9ZKVLsJ6O8/H71kgmDo7z/pccsZtujvPxljg4UK6e8/0OF6yV3p7z/Uu5Ppr+nvP5Zgo+kA6u8/1wVzzVDq7z/ty7+Yn+rvP6fhOk/t6u8/zqeJ9Dnr7z9O1EWMhevvP/mU/RnQ6+8/9bEzoRns7z/Ir18lYuzvPwvx7amp7O8/vtc/MvDs7z9L5qvBNe3vPybgfVt67e8/Gur2Ar7t7z9Aqk27AO7vP5hnrodC7u8/Uik7a4Pu7z/C1Qtpw+7vP/tQLoQC7+8/HJumv0Dv7z9B7m4efu/vPyzcd6O67+8/mWuoUfbv7z86Nd4rMfDvP3CA7TRr8O8/p1+hb6Tw7z9wzLve3PDvP0PD9YQU8e8/+V7/ZEvx7z/583+BgfHvPxkrFt228e8/NBxYeuvx7z9xaNNbH/LvP0tUDYRS8u8/R+GC9YTy7z9i56iytvLvPz4u7L3n8u8/AYaxGRjz7z/w31XIR/PvP8tmLsx28+8/1ZaIJ6Xz7z+oVarc0vPvP70J0u3/8+8/rrE2XSz07z9C+wctWPTvPyZabl+D9O8/dh6L9q307z/7inj01/TvPyzrSVsB9e8/76gLLSr17z8fYsNrUvXvP9L9bxl69e8/XMEJOKH17z8iZYLJx/XvPyMpxc/t9e8/Uem2TBP27z+mMTZCOPbvPwZSG7Jc9u8/43E4noD27z+mo1kIpPbvP+f3RPLG9u8/ZpC6Xen27z/MsnRMC/fvPz3bJ8As9+8/rM6Cuk337z/5rC49bvfvP+MCz0mO9+8/t9sB4q337z/a0l8HzffvPxElfLvr9+8/o8Hk/wn47z89WyLWJ/jvP654uD9F+O8/aIUlPmL47z/Y4eLSfvjvP4nzZP+a+O8/FzUbxbb47z/3RXAl0vjvPwb6ySHt+O8/+GiJuwf57z+J/Qr0IfnvP5CEpsw7+e8/1zuvRlX57z/Q4HNjbvnvPxm/PiSH+e8/1r5Vip/57z/icvqWt/nvP88makvP+e8/wezdqOb57z8fq4qw/fnvPxkqoWMU+u8/AyFOwyr67z+KQ7rQQPrvP8ZOCo1W+u8/GBZf+Wv67z/rj9UWgfrvP0rihuaV+u8/U2+Iaar67z9/4eugvvrvP8Y3v43S+u8/pNEMMeb67z/setuL+frvP4h3Lp8M++8/Ao8FbB/77z/9F13zMfvvP3kDLjZE++8/AehtNVb77z+tDA/yZ/vvPw50AG15++8/6uYtp4r77z/g/n+hm/vvP+0w3Fys++8/xdck2rz77z8YPjkazfvvP7Ko9R3d++8/eGAz5uz77z9QvMhz/PvvP90qiccL/O8/KTxF4hr87z8mq8rEKfzvPxxn5G84/O8/8Jxa5Eb87z9SwPIiVfzvP9GUbyxj/O8/zzaRAXH87z9WJBWjfvzvP9hFthGM/O8/0vYsTpn87z9ODi9ZpvzvP07nbzOz/O8/Immg3b/87z+YD29YzPzvPxzzh6TY/O8/u9CUwuT87z8KEj2z8PzvP/bUJXf8/O8/fvPxDgj97z9QC0J7E/3vP1GFtLwe/e8/Cp3l0yn97z//Z2/BNP3vP+/c6YU//e8//trqIUr97z/EMAaWVP3vP0qjzeJe/e8/6/TQCGn97z8o7J0Ic/3vP1xawOJ8/e8/YSLCl4b97z8dPysokP3vP/vJgZSZ/e8/TwFK3aL97z+mTgYDrP3vP/1MNwa1/e8/7s5b57397z++5PCmxv3vP13icUXP/e8/U2VYw9f97z+YWhwh4P3vP1sENF/o/e8/s/8TfvD97z8/Si9++P3vP7lH918A/u8/asfbIwj+7z+cCUvKD/7vP+3EsVMX/u8/nCt7wB7+7z+28BARJv7vP0VN20Ut/u8/XgVBXzT+7z8jbaddO/7vP7xtckFC/u8/NYoEC0n+7z9U5L66T/7vP1dBAVFW/u8/rQ4qzlz+7z+XZpYyY/7vP7wUon5p/u8/sJqnsm/+7z9pNADPdf7vP6jcA9R7/u8/VFEJwoH+7z+/F2aZh/7vP+mAblqN/u8/rK11BZP+7z/cks2amP7vP1z9xhqe/u8/IpaxhaP+7z8x5tvbqP7vP4Nakx2u/u8/5kckS7P+7z/P7tlkuP7vPxx//mq9/u8/0RvbXcL+7z+93rc9x/7vPx3c2wrM/u8/LyaNxdD+7z+30BBu1f7vP3/0qgTa/u8/v7Keid7+7z+JOC794v7vPx7Cml/n/u8/PJ4ksev+7z9fMQvy7/7vP/34jCL0/u8/rY7nQvj+7z9Oq1dT/P7vPxoqGVQA/+8/uAtnRQT/7z84eXsnCP/vPxTHj/oL/+8/F3jcvg//7z9HQJl0E//vP7oH/RsX/+8/b+09tRr/7z8OSpFAHv/vP6uyK74h/+8/ePtALiX/7z91OgSRKP/vPwvKp+Yr/+8/rktdLy//7z9pqlVrMv/vP2YdwZo1/+8/cCrPvTj/7z9oqK7UO//vP7TBjd8+/+8/o/aZ3kH/7z/RHwDSRP/vP3Zw7LlH/+8/uHiKlkr/7z/wJwVoTf/vP+jOhi5Q/+8/ESI56lL/7z+0O0WbVf/vPxae00FY/+8/nTUM3lr/7z/iWhZwXf/vP8rUGPhf/+8/ido5dmL/7z+uFZ/qZP/vPxWkbVVn/+8/5RnKtmn/7z98g9gObP/vP1ZnvF1u/+8/78eYo3D/7z+fJZDgcv/vP3CAxBR1/+8/51lXQHf/7z/Qtmljef/vPwIhHH57/+8/FamOkH3/7z8b6OCaf//vP1ABMp2B/+8/wqOgl4P/7z/5C0uKhf/vP48FT3WH/+8/0OzJWIn/7z9GsNg0i//vP07SlwmN/+8/mWoj147/7z+2J5edkP/vP4pQDl2S/+8/ysWjFZT/7z9xA3LHlf/vPyoik3KX/+8/u9ggF5n/7z9sfTS1mv/vP2EH50yc/+8/+A9R3p3/7z8f1Ippn//vP6Q1rO6g/+8/f7zMbaL/7z8hmAPno//vP66gZ1ql/+8/RVgPyKb/7z8z7BAwqP/vPy82gpKp/+8/h71476r/7z9TuAlHrP/vP5gMSpmt/+8/dFFO5q7/7z880CousP/vP5mF83Cx/+8/oSK8rrL/7z/xDZjns//vP7dkmhu1/+8/yvvVSrb/7z+oYF11t//vP4faQpu4/+8/U2uYvLn/7z+t0G/Zuv/vP+iE2vG7/+8/AMDpBb3/7z+QeK4Vvv/vP8JkOSG//+8/P/uaKMD/7z8WdOMrwf/vP6bJIivC/+8/hLloJsP/7z9VxcQdxP/vP7YzRhHF/+8/CxH8AMb/7z9hMPXsxv/vPzwsQNXH/+8/bGfrucj/7z/YDQWbyf/vP1AVm3jK/+8/UD67Usv/7z/HFHMpzP/vP97wz/zM/+8/tvfezM3/7z8kHK2Zzv/vP3AfR2PP/+8/C5K5KdD/7z9G1BDt0P/vPwYXWa3R/+8/cVyeatL/7z+keOwk0//vP1YST9zT/+8/iKPRkNT/7z8qen9C1f/vP724Y/HV/+8//FaJndb/7z92IvtG1//vPyy/w+3X/+8/Majtkdj/7z9AMIMz2f/vP1WCjtLZ/+8/QKIZb9r/7z84bS4J2//vP3Ca1qDb/+8/oLsbNtz/7z+WPQfJ3P/vP75oolnd/+8/rmH2593/7z+oKQx03v/vPyWf7P3e/+8/Un6ghd//7z+WYTAL4P/vPw7CpI7g/+8/DPgFEOH/7z+UO1yP4f/vP9Kkrwzi/+8/liwIiOL/7z/JrG0B4//vP+Hg53jj/+8/VmZ+7uP/7z8RvThi5P/vP99HHtTk/+8/3Ew2ROX/7z/i9Yey5f/vP/FQGh/m/+8/nVD0ieb/7z9zzBzz5v/vP2CBmlrn/+8/FRJ0wOf/7z9uB7Ak6P/vP9HQVIfo/+8/j8Ro6Oj/7z9EIPJH6f/vPzcJ96Xp/+8/sox9Aur/7z9ioItd6v/vP60iJ7fq/+8/DdtVD+v/7z9peh1m6//vP2abg7vr/+8/wcKND+z/7z+eX0Fi7P/vP+DLo7Ps/+8/dUy6A+3/7z+pEYpS7f/vP3M3GKDt/+8/xsVp7O3/7z/ZsIM37v/vP3XZaoHu/+8/Qw0kyu7/7z8MB7QR7//vPwtvH1jv/+8/L9tqne//7z9iz5rh7//vP869syTw/+8/IQe6ZvD/7z/T+rGn8P/vP2TXn+fw/+8/n8qHJvH/7z/a8W1k8f/vPzdaVqHx/+8/4ABF3fH/7z9E0z0Y8v/vP1evRFLy/+8/y2Ndi/L/7z9LsIvD8v/vP7VF0/ry/+8/VMY3MfP/7z8Yxrxm8//vP83KZZvz/+8/UEw2z/P/7z/JtDEC9P/vP9xgWzT0/+8/35+2ZfT/7z8OtEaW9P/vP7vSDsb0/+8/hCQS9fT/7z+CxVMj9f/vP3nF1lD1/+8/ByieffX/7z/X5Kyp9f/vP8znBdX1/+8/LxGs//X/7z/eNaIp9v/vP3Uf61L2/+8/foyJe/b/7z+XMICj9v/vP6O00cr2/+8/67aA8fb/7z9Sy48X9//vP3J7AT33/+8/zkbYYff/7z/0ohaG9//vP6L7vqn3/+8/9LLTzPf/7z+AIVfv9//vP4OWSxH4/+8/AVizMvj/7z/ropBT+P/vP0Cr5XP4/+8/NZy0k/j/7z9RmP+y+P/vP5O5yNH4/+8/kxES8Pj/7z+iqd0N+f/vP+uCLSv5/+8/kZYDSPn/7z/T1WFk+f/vPyQqSoD5/+8/UnW+m/n/7z+ckcC2+f/vP9ZRUtH5/+8/gYF16/n/7z/r5CsF+v/vP0s5dx76/+8/3DRZN/r/7z/4htNP+v/vPzTY52f6/+8/fMqXf/r/7z8o+eSW+v/vPx350K36/+8/4VhdxPr/7z+3oIva+v/vP7dSXfD6/+8/5OrTBfv/7z9I3/Aa+//vPwmgtS/7/+8/gJcjRPv/7z9SKjxY+//vP4S3AGz7/+8/lJhyf/v/7z+MIZOS+//vPxmhY6X7/+8/oGDlt/v/7z9VpBnK+//vP0urAdz7/+8/i6+e7fv/7z8q5vH++//vP1l//A/8/+8/eqa/IPz/7z8ygjwx/P/vP340dEH8/+8/xNpnUfz/7z/mjRhh/P/vP1Fih3D8/+8/E2i1f/z/7z/sqqOO/P/vP1kyU538/+8/rQHFq/z/7z8eGPq5/P/vP9Rw88f8/+8/+wKy1fz/7z/SwTbj/P/vP76cgvD8/+8/UX+W/fz/7z8=\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[1000]}},\"selected\":{\"id\":\"1583\"},\"selection_policy\":{\"id\":\"1582\"}},\"id\":\"1568\",\"type\":\"ColumnDataSource\"},{\"attributes\":{\"source\":{\"id\":\"1378\"}},\"id\":\"1382\",\"type\":\"CDSView\"},{\"attributes\":{\"line_alpha\":0.1,\"line_color\":\"#ff8888\",\"line_width\":4,\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1380\",\"type\":\"Line\"},{\"attributes\":{\"source\":{\"id\":\"1568\"}},\"id\":\"1572\",\"type\":\"CDSView\"},{\"attributes\":{\"label\":{\"value\":\"PDF\"},\"renderers\":[{\"id\":\"1555\"}]},\"id\":\"1567\",\"type\":\"LegendItem\"},{\"attributes\":{\"line_alpha\":0.1,\"line_color\":\"orange\",\"line_width\":2,\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1570\",\"type\":\"Line\"},{\"attributes\":{},\"id\":\"1408\",\"type\":\"UnionRenderers\"},{\"attributes\":{},\"id\":\"1506\",\"type\":\"UnionRenderers\"},{\"attributes\":{\"label\":{\"value\":\"PDF\"},\"renderers\":[{\"id\":\"1381\"}]},\"id\":\"1393\",\"type\":\"LegendItem\"},{\"attributes\":{},\"id\":\"1507\",\"type\":\"Selection\"},{\"attributes\":{\"background_fill_color\":\"#fefefe\",\"items\":[{\"id\":\"1567\"},{\"id\":\"1584\"}],\"location\":\"center_right\"},\"id\":\"1566\",\"type\":\"Legend\"},{\"attributes\":{\"background_fill_color\":\"#fefefe\",\"items\":[{\"id\":\"1393\"},{\"id\":\"1410\"}],\"location\":\"center_right\"},\"id\":\"1392\",\"type\":\"Legend\"},{\"attributes\":{\"label\":{\"value\":\"CDF\"},\"renderers\":[{\"id\":\"1571\"}]},\"id\":\"1584\",\"type\":\"LegendItem\"},{\"attributes\":{},\"id\":\"1559\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{},\"id\":\"1385\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{},\"id\":\"1582\",\"type\":\"UnionRenderers\"},{\"attributes\":{\"bottom\":{\"value\":0},\"fill_alpha\":{\"value\":0.5},\"fill_color\":{\"value\":\"navy\"},\"left\":{\"field\":\"left\"},\"line_alpha\":{\"value\":0.5},\"line_color\":{\"value\":\"white\"},\"right\":{\"field\":\"right\"},\"top\":{\"field\":\"top\"}},\"id\":\"1490\",\"type\":\"Quad\"},{\"attributes\":{},\"id\":\"1583\",\"type\":\"Selection\"},{\"attributes\":{\"text\":\"Log Normal Distribution (\\u03bc=0, \\u03c3=0.5)\"},\"id\":\"1412\",\"type\":\"Title\"},{\"attributes\":{\"data\":{\"left\":{\"__ndarray__\":\"KqYf47TW1DmTQ8IrApnpP5NDwisCmfk/rrLRoMEyA0CTQ8IrApkJQHjUsrZC/w9ArrLRoMEyE0Ah+0nm4WUWQJNDwisCmRlABYw6cSLMHEB41LK2Qv8fQHWOFX4xmSFArrLRoMEyI0Dn1o3DUcwkQCH7SebhZSZAWh8GCXL/J0CTQ8IrApkpQMxnfk6SMitABYw6cSLMLEA/sPaTsmUuQHjUsrZC/y9AWHy3bGnMMEB1jhV+MZkxQJKgc4/5ZTJArrLRoMEyM0DLxC+yif8zQOfWjcNRzDRABOnr1BmZNUAh+0nm4WU2QD0NqPepMjdAWh8GCXL/N0B2MWQaOsw4QJNDwisCmTlAsFUgPcplOkDMZ35OkjI7QOl53F9a/ztABYw6cSLMPEAinpiC6pg9QD+w9pOyZT5AW8JUpXoyP0B41LK2Qv8/QEpzCGQFZkBAWHy3bGnMQEBnhWZ1zTJBQHWOFX4xmUFAg5fEhpX/QUCSoHOP+WVCQKCpIphdzEJArrLRoMEyQ0C9u4CpJZlDQA==\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[50]},\"right\":{\"__ndarray__\":\"k0PCKwKZ6T+TQ8IrApn5P66y0aDBMgNAk0PCKwKZCUB41LK2Qv8PQK6y0aDBMhNAIftJ5uFlFkCTQ8IrApkZQAWMOnEizBxAeNSytkL/H0B1jhV+MZkhQK6y0aDBMiNA59aNw1HMJEAh+0nm4WUmQFofBgly/ydAk0PCKwKZKUDMZ35OkjIrQAWMOnEizCxAP7D2k7JlLkB41LK2Qv8vQFh8t2xpzDBAdY4VfjGZMUCSoHOP+WUyQK6y0aDBMjNAy8Qvson/M0Dn1o3DUcw0QATp69QZmTVAIftJ5uFlNkA9Daj3qTI3QFofBgly/zdAdjFkGjrMOECTQ8IrApk5QLBVID3KZTpAzGd+TpIyO0DpedxfWv87QAWMOnEizDxAIp6YguqYPUA/sPaTsmU+QFvCVKV6Mj9AeNSytkL/P0BKcwhkBWZAQFh8t2xpzEBAZ4Vmdc0yQUB1jhV+MZlBQIOXxIaV/0FAkqBzj/llQkCgqSKYXcxCQK6y0aDBMkNAvbuAqSWZQ0DLxC+yif9DQA==\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[50]},\"top\":{\"__ndarray__\":\"07gFI/BJ8D+aF/xRaCGpPz2cRyd+CqI/yWSZXpommz9AbrbbPjCVP83LHEWikZA/4pCYDHgEij9LX6t+eUmFP7LFks6HFYI/yKNNd3kbfj9rsPKY5357P0AVlhYRnnY/6aoEucahdT/Selv9rJNyP/EOAT427m8/yMzEgI2faT/tAyV+9DNkP8/xkXxl82A/y+1i3+HGXD9ggEndzXBYP1lfq355SVU/TgLhqw+HUj+zD6g28MBQP7QI8fSiOkk/Lrx1UeMLSD8T1wNnpH9EPz5fq355STU/+dYDZ6R/ND8T1wNnpH80PzI63oKh9S0/tAjx9KI6KT+6Si2yS4kfP4PnUpZOEyY/tAjx9KI6KT+6Si2yS4kPP4jGtDf66xI/cMa0N/rrEj+VCPH0ojoZP4jGtDf66xI/qCmPU/dhHD/iSi2yS4kPP4jGtDf66xI/dQjx9KI6+T6IxrQ3+usCP4jGtDf66wI/dQjx9KI66T60CPH0ojrpPrQI8fSiOvk+dQjx9KI66T60CPH0ojrpPg==\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[50]}},\"selected\":{\"id\":\"1447\"},\"selection_policy\":{\"id\":\"1446\"}},\"id\":\"1431\",\"type\":\"ColumnDataSource\"},{\"attributes\":{},\"id\":\"1423\",\"type\":\"BasicTicker\"},{\"attributes\":{},\"id\":\"1414\",\"type\":\"DataRange1d\"},{\"attributes\":{\"axis_label\":\"Pr(x)\",\"formatter\":{\"id\":\"1445\"},\"ticker\":{\"id\":\"1427\"}},\"id\":\"1426\",\"type\":\"LinearAxis\"},{\"attributes\":{},\"id\":\"1449\",\"type\":\"Selection\"},{\"attributes\":{\"start\":0},\"id\":\"1416\",\"type\":\"DataRange1d\"},{\"attributes\":{},\"id\":\"1418\",\"type\":\"LinearScale\"},{\"attributes\":{\"axis_label\":\"x\",\"formatter\":{\"id\":\"1443\"},\"ticker\":{\"id\":\"1423\"}},\"id\":\"1422\",\"type\":\"LinearAxis\"},{\"attributes\":{},\"id\":\"1387\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{},\"id\":\"1446\",\"type\":\"UnionRenderers\"},{\"attributes\":{},\"id\":\"1420\",\"type\":\"LinearScale\"},{\"attributes\":{},\"id\":\"1447\",\"type\":\"Selection\"},{\"attributes\":{\"axis\":{\"id\":\"1422\"},\"grid_line_color\":\"white\",\"ticker\":null},\"id\":\"1425\",\"type\":\"Grid\"},{\"attributes\":{\"axis\":{\"id\":\"1426\"},\"dimension\":1,\"grid_line_color\":\"white\",\"ticker\":null},\"id\":\"1429\",\"type\":\"Grid\"},{\"attributes\":{},\"id\":\"1427\",\"type\":\"BasicTicker\"},{\"attributes\":{\"active_drag\":\"auto\",\"active_inspect\":\"auto\",\"active_multi\":null,\"active_scroll\":\"auto\",\"active_tap\":\"auto\"},\"id\":\"1430\",\"type\":\"Toolbar\"},{\"attributes\":{\"bottom\":{\"value\":0},\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"navy\"},\"left\":{\"field\":\"left\"},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"white\"},\"right\":{\"field\":\"right\"},\"top\":{\"field\":\"top\"}},\"id\":\"1433\",\"type\":\"Quad\"},{\"attributes\":{},\"id\":\"1448\",\"type\":\"UnionRenderers\"},{\"attributes\":{\"background_fill_color\":\"#fafafa\",\"below\":[{\"id\":\"1538\"}],\"center\":[{\"id\":\"1541\"},{\"id\":\"1545\"},{\"id\":\"1566\"}],\"left\":[{\"id\":\"1542\"}],\"plot_height\":400,\"plot_width\":400,\"renderers\":[{\"id\":\"1550\"},{\"id\":\"1555\"},{\"id\":\"1571\"}],\"title\":{\"id\":\"1528\"},\"toolbar\":{\"id\":\"1546\"},\"toolbar_location\":null,\"x_range\":{\"id\":\"1530\"},\"x_scale\":{\"id\":\"1534\"},\"y_range\":{\"id\":\"1532\"},\"y_scale\":{\"id\":\"1536\"}},\"id\":\"1527\",\"subtype\":\"Figure\",\"type\":\"Plot\"},{\"attributes\":{},\"id\":\"1467\",\"type\":\"Selection\"},{\"attributes\":{\"line_alpha\":0.1,\"line_color\":\"orange\",\"line_width\":2,\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1454\",\"type\":\"Line\"},{\"attributes\":{\"label\":{\"value\":\"CDF\"},\"renderers\":[{\"id\":\"1455\"}]},\"id\":\"1468\",\"type\":\"LegendItem\"},{\"attributes\":{\"data_source\":{\"id\":\"1436\"},\"glyph\":{\"id\":\"1437\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1438\"},\"selection_glyph\":null,\"view\":{\"id\":\"1440\"}},\"id\":\"1439\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"source\":{\"id\":\"1431\"}},\"id\":\"1435\",\"type\":\"CDSView\"},{\"attributes\":{},\"id\":\"1388\",\"type\":\"UnionRenderers\"},{\"attributes\":{\"data_source\":{\"id\":\"1431\"},\"glyph\":{\"id\":\"1432\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1433\"},\"selection_glyph\":null,\"view\":{\"id\":\"1435\"}},\"id\":\"1434\",\"type\":\"GlyphRenderer\"},{\"attributes\":{},\"id\":\"1389\",\"type\":\"Selection\"},{\"attributes\":{\"data_source\":{\"id\":\"1452\"},\"glyph\":{\"id\":\"1453\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1454\"},\"selection_glyph\":null,\"view\":{\"id\":\"1456\"}},\"id\":\"1455\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"data\":{\"x\":{\"__ndarray__\":\"LUMc6+I2Gj8tdG364JqAP+pXgheqgJA/vfXNseOzmD/JyQymjnOgP7OYMnMrjaQ/nGdYQMimqD+GNn4NZcCsP7gCUu0AbbA/LerkU895sj+i0Xe6nYa0Pxe5CiFsk7Y/i6CdhzqguD8AiDDuCK26P3Vvw1TXubw/6lZWu6XGvj8vn/QQumnAP+kSPkQhcME/pIaHd4h2wj9e+tCq73zDPxluGt5Wg8Q/0+FjEb6JxT+OVa1EJZDGP0jJ9neMlsc/Aj1Aq/OcyD+9sIneWqPJP3ck0xHCqco/MpgcRSmwyz/sC2Z4kLbMP6d/r6v3vM0/YfP43l7Dzj8cZ0ISxsnPP2vtxaIWaNA/SKdqPErr0D8lYQ/WfW7RPwMbtG+x8dE/4NRYCeV00j+9jv2iGPjSP5pIojxMe9M/eAJH1n/+0z9VvOtvs4HUPzJ2kAnnBNU/DzA1oxqI1T/s6dk8TgvWP8qjftaBjtY/p10jcLUR1z+EF8gJ6ZTXP2HRbKMcGNg/PosRPVCb2D8cRbbWgx7ZP/n+WnC3odk/1rj/Cesk2j+zcqSjHqjaP5EsST1SK9s/bubt1oWu2z9LoJJwuTHcPyhaNwrttNw/BRTcoyA43T/jzYA9VLvdP8CHJdeHPt4/nUHKcLvB3j96+24K70TfP1i1E6QiyN8/mjfcHqsl4D+JlK7rRGfgP3jxgLjeqOA/Zk5ThXjq4D9VqyVSEizhP0MI+B6sbeE/MmXK60Wv4T8hwpy43/DhPw8fb4V5MuI//ntBUhN04j/s2BMfrbXiP9s15utG9+I/ypK4uOA44z+474qFenrjP6dMXVIUvOM/lqkvH6794z+EBgLsRz/kP3Nj1LjhgOQ/YcCmhXvC5D9QHXlSFQTlPz96Sx+vReU/Ldcd7EiH5T8cNPC44sjlPwqRwoV8CuY/+e2UUhZM5j/oSmcfsI3mP9anOexJz+Y/xQQMueMQ5z+zYd6FfVLnP6K+sFIXlOc/kRuDH7HV5z9/eFXsShfoP27VJ7nkWOg/XDL6hX6a6D9Lj8xSGNzoPzrsnh+yHek/KElx7Etf6T8XpkO55aDpPwYDFoZ/4uk/9F/oUhkk6j/jvLofs2XqP9EZjexMp+o/wHZfuebo6j+v0zGGgCrrP50wBFMabOs/jI3WH7St6z966qjsTe/rP2lHe7nnMOw/WKRNhoFy7D9GASBTG7TsPzVe8h+19ew/I7vE7E437T8SGJe56HjtPwF1aYaCuu0/79E7Uxz87T/eLg4gtj3uP82L4OxPf+4/u+iyuenA7j+qRYWGgwLvP5iiV1MdRO8/h/8pILeF7z92XPzsUMfvP7Jc51x1BPA/KYtQQ0Il8D+hubkpD0bwPxjoIhDcZvA/jxaM9qiH8D8HRfXcdajwP35zXsNCyfA/9aHHqQ/q8D9t0DCQ3ArxP+T+mXapK/E/Wy0DXXZM8T/SW2xDQ23xP0qK1SkQjvE/wbg+EN2u8T8456f2qc/xP7AVEd128PE/J0R6w0MR8j+ecuOpEDLyPxahTJDdUvI/jc+1dqpz8j8E/h5dd5TyP3ssiENEtfI/81rxKRHW8j9qiVoQ3vbyP+G3w/aqF/M/WeYs3Xc48z/QFJbDRFnzP0dD/6kRevM/v3FokN6a8z82oNF2q7vzP63OOl143PM/Jf2jQ0X98z+cKw0qEh70PxNadhDfPvQ/iojf9qtf9D8Ct0jdeID0P3nlscNFofQ/8BMbqhLC9D9oQoSQ3+L0P99w7XasA/U/Vp9WXXkk9T/Ozb9DRkX1P0X8KCoTZvU/vCqSEOCG9T8zWfv2rKf1P6uHZN15yPU/IrbNw0bp9T+Z5DaqEwr2PxEToJDgKvY/iEEJd61L9j//b3Jdemz2P3ee20NHjfY/7sxEKhSu9j9l+60Q4c72P90pF/et7/Y/VFiA3XoQ9z/LhunDRzH3P0K1UqoUUvc/uuO7kOFy9z8xEiV3rpP3P6hAjl17tPc/IG/3Q0jV9z+XnWAqFfb3Pw7MyRDiFvg/hvoy9643+D/9KJzde1j4P3RXBcRIefg/64VuqhWa+D9jtNeQ4rr4P9riQHev2/g/URGqXXz8+D/JPxNESR35P0BufCoWPvk/t5zlEONe+T8vy073r3/5P6b5t918oPk/HSghxEnB+T+VVoqqFuL5PwyF85DjAvo/g7Ncd7Aj+j/64cVdfUT6P3IQL0RKZfo/6T6YKheG+j9gbQER5Kb6P9ibavewx/o/T8rT3X3o+j/G+DzESgn7Pz4npqoXKvs/tVUPkeRK+z8shHh3sWv7P6Sy4V1+jPs/G+FKREut+z+SD7QqGM77Pwk+HRHl7vs/gWyG97EP/D/4mu/dfjD8P2/JWMRLUfw/5/fBqhhy/D9eJiuR5ZL8P9VUlHeys/w/TYP9XX/U/D/EsWZETPX8PzvgzyoZFv0/sg45EeY2/T8qPaL3slf9P6FrC95/eP0/GJp0xEyZ/T+QyN2qGbr9Pwf3RpHm2v0/fiWwd7P7/T/2UxlegBz+P22CgkRNPf4/5LDrKhpe/j9c31QR537+P9MNvvezn/4/Sjwn3oDA/j/BapDETeH+PzmZ+aoaAv8/sMdikeci/z8n9st3tEP/P58kNV6BZP8/FlOeRE6F/z+NgQcrG6b/PwWwcBHoxv8/fN7Z97Tn/z96hiHvQAQAQLYdVmKnFABA8bSK1Q0lAEAtTL9IdDUAQGnj87vaRQBApHooL0FWAEDgEV2ip2YAQBypkRUOdwBAV0DGiHSHAECT1/r72pcAQM9uL29BqABACgZk4qe4AEBGnZhVDskAQII0zch02QBAvcsBPNvpAED5YjavQfoAQDX6aiKoCgFAcJGflQ4bAUCsKNQIdSsBQOe/CHzbOwFAI1c970FMAUBf7nFiqFwBQJqFptUObQFA1hzbSHV9AUAStA+8240BQE1LRC9CngFAieJ4oqiuAUDFea0VD78BQAAR4oh1zwFAPKgW/NvfAUB4P0tvQvABQLPWf+KoAAJA7220VQ8RAkArBenIdSECQGacHTzcMQJAojNSr0JCAkDeyoYiqVICQBliu5UPYwJAVfnvCHZzAkCRkCR83IMCQMwnWe9ClAJACL+NYqmkAkBDVsLVD7UCQH/t9kh2xQJAu4QrvNzVAkD2G2AvQ+YCQDKzlKKp9gJAbkrJFRAHA0Cp4f2IdhcDQOV4MvzcJwNAIRBnb0M4A0Bcp5viqUgDQJg+0FUQWQNA1NUEyXZpA0APbTk83XkDQEsEbq9DigNAh5uiIqqaA0DCMteVEKsDQP7JCwl3uwNAOmFAfN3LA0B1+HTvQ9wDQLGPqWKq7ANA7Sbe1RD9A0AovhJJdw0EQGRVR7zdHQRAn+x7L0QuBEDbg7Ciqj4EQBcb5RURTwRAUrIZiXdfBECOSU783W8EQMrggm9EgARABXi34qqQBEBBD+xVEaEEQH2mIMl3sQRAuD1VPN7BBED01ImvRNIEQDBsviKr4gRAawPzlRHzBECnmicJeAMFQOMxXHzeEwVAHsmQ70QkBUBaYMViqzQFQJb3+dURRQVA0Y4uSXhVBUANJmO83mUFQEm9ly9FdgVAhFTMoquGBUDA6wAWEpcFQPuCNYl4pwVANxpq/N63BUBzsZ5vRcgFQK5I0+Kr2AVA6t8HVhLpBUAmdzzJePkFQGEOcTzfCQZAnaWlr0UaBkDZPNoirCoGQBTUDpYSOwZAUGtDCXlLBkCMAnh831sGQMeZrO9FbAZAAzHhYqx8BkA/yBXWEo0GQHpfSkl5nQZAtvZ+vN+tBkDyjbMvRr4GQC0l6KKszgZAabwcFhPfBkClU1GJee8GQODqhfzf/wZAHIK6b0YQB0BXGe/irCAHQJOwI1YTMQdAz0dYyXlBB0AK34w84FEHQEZ2wa9GYgdAgg32Iq1yB0C9pCqWE4MHQPk7Xwl6kwdANdOTfOCjB0BwasjvRrQHQKwB/WKtxAdA6Jgx1hPVB0AjMGZJeuUHQF/Hmrzg9QdAm17PL0cGCEDW9QOjrRYIQBKNOBYUJwhATiRtiXo3CECJu6H84EcIQMVS1m9HWAhAAeoK461oCEA8gT9WFHkIQHgYdMl6iQhAs6+oPOGZCEDvRt2vR6oIQCveESOuughAZnVGlhTLCECiDHsJe9sIQN6jr3zh6whAGTvk70f8CEBV0hhjrgwJQJFpTdYUHQlAzACCSXstCUAImLa84T0JQEQv6y9ITglAf8Yfo65eCUC7XVQWFW8JQPf0iIl7fwlAMoy9/OGPCUBuI/JvSKAJQKq6JuOusAlA5VFbVhXBCUAh6Y/Je9EJQF2AxDzi4QlAmBf5r0jyCUDUri0jrwIKQBBGYpYVEwpAS92WCXwjCkCHdMt84jMKQMILAPBIRApA/qI0Y69UCkA6OmnWFWUKQHXRnUl8dQpAsWjSvOKFCkDt/wYwSZYKQCiXO6OvpgpAZC5wFha3CkCgxaSJfMcKQNtc2fzi1wpAF/QNcEnoCkBTi0Ljr/gKQI4id1YWCQtAyrmryXwZC0AGUeA84ykLQEHoFLBJOgtAfX9JI7BKC0C5Fn6WFlsLQPStsgl9awtAMEXnfON7C0Bs3BvwSYwLQKdzUGOwnAtA4wqF1hatC0AeorlJfb0LQFo57rzjzQtAltAiMEreC0DRZ1ejsO4LQA3/ixYX/wtASZbAiX0PDECELfX84x8MQMDEKXBKMAxA/Fte47BADEA385JWF1EMQHOKx8l9YQxAryH8PORxDEDquDCwSoIMQCZQZSOxkgxAYueZlhejDECdfs4JfrMMQNkVA33kwwxAFa038ErUDEBQRGxjseQMQIzboNYX9QxAyHLVSX4FDUADCgq95BUNQD+hPjBLJg1Aejhzo7E2DUC2z6cWGEcNQPJm3Il+Vw1ALf4Q/eRnDUBplUVwS3gNQKUseuOxiA1A4MOuVhiZDUAcW+PJfqkNQFjyFz3luQ1Ak4lMsEvKDUDPIIEjstoNQAu4tZYY6w1ARk/qCX/7DUCC5h595QsOQL59U/BLHA5A+RSIY7IsDkA1rLzWGD0OQHFD8Ul/TQ5ArNolveVdDkDocVowTG4OQCQJj6Oyfg5AX6DDFhmPDkCbN/iJf58OQNbOLP3lrw5AEmZhcEzADkBO/ZXjstAOQImUylYZ4Q5AxSv/yX/xDkABwzM95gEPQDxaaLBMEg9AePGcI7MiD0C0iNGWGTMPQO8fBgqAQw9AK7c6feZTD0BnTm/wTGQPQKLlo2OzdA9A3nzY1hmFD0AaFA1KgJUPQFWrQb3mpQ9AkUJ2ME22D0DN2aqjs8YPQAhx3xYa1w9ARAgUioDnD0CAn0j95vcPQF2bPrgmBBBA++bY8VkMEECZMnMrjRQQQDd+DWXAHBBA1MmnnvMkEEByFULYJi0QQBBh3BFaNRBArqx2S409EEBM+BCFwEUQQOpDq77zTRBAh49F+CZWEEAl298xWl4QQMMmemuNZhBAYXIUpcBuEED/va7e83YQQJwJSRgnfxBAOlXjUVqHEEDYoH2LjY8QQHbsF8XAlxBAFDiy/vOfEECyg0w4J6gQQE/P5nFasBBA7RqBq424EECLZhvlwMAQQCmytR70yBBAx/1PWCfREEBlSeqRWtkQQAKVhMuN4RBAoOAeBcHpEEA+LLk+9PEQQNx3U3gn+hBAesPtsVoCEUAYD4jrjQoRQLVaIiXBEhFAU6a8XvQaEUDx8VaYJyMRQI898dFaKxFALYmLC44zEUDK1CVFwTsRQGggwH70QxFABmxauCdMEUCkt/TxWlQRQEIDjyuOXBFA4E4pZcFkEUB9msOe9GwRQBvmXdgndRFAuTH4EVt9EUBXfZJLjoURQPXILIXBjRFAkxTHvvSVEUAwYGH4J54RQM6r+zFbphFAbPeVa46uEUAKQzClwbYRQKiOyt70vhFARtpkGCjHEUDjJf9RW88RQIFxmYuO1xFAH70zxcHfEUC9CM7+9OcRQFtUaDgo8BFA+J8Cclv4EUCW65yrjgASQDQ3N+XBCBJA0oLRHvUQEkBwzmtYKBkSQA4aBpJbIRJAq2Wgy44pEkBJsToFwjESQOf81D71ORJAhUhveChCEkAjlAmyW0oSQMHfo+uOUhJAXis+JcJaEkD8dthe9WISQJrCcpgoaxJAOA4N0ltzEkDWWacLj3sSQHSlQUXCgxJAEfHbfvWLEkCvPHa4KJQSQE2IEPJbnBJA69OqK4+kEkCJH0VlwqwSQCZr3571tBJAxLZ52Ci9EkBiAhQSXMUSQABOrkuPzRJAnplIhcLVEkA85eK+9d0SQNkwffgo5hJAd3wXMlzuEkAVyLFrj/YSQLMTTKXC/hJAUV/m3vUGE0DvqoAYKQ8TQIz2GlJcFxNAKkK1i48fE0DIjU/FwicTQGbZ6f71LxNABCWEOCk4E0CicB5yXEATQD+8uKuPSBNA3QdT5cJQE0B7U+0e9lgTQBmfh1gpYRNAt+ohklxpE0BUNrzLj3ETQPKBVgXDeRNAkM3wPvaBE0AuGYt4KYoTQMxkJbJckhNAarC/64+aE0AH/Fklw6ITQKVH9F72qhNAQ5OOmCmzE0Dh3ijSXLsTQH8qwwuQwxNAHXZdRcPLE0C6wfd+9tMTQFgNkrgp3BNA9lgs8lzkE0CUpMYrkOwTQDLwYGXD9BNA0Dv7nvb8E0Bth5XYKQUUQAvTLxJdDRRAqR7KS5AVFEBHamSFwx0UQOW1/r72JRRAggGZ+CkuFEAgTTMyXTYUQL6YzWuQPhRAXORnpcNGFED6LwLf9k4UQJh7nBgqVxRANcc2Ul1fFEDTEtGLkGcUQHFea8XDbxRAD6oF//Z3FECt9Z84KoAUQEtBOnJdiBRA6IzUq5CQFECG2G7lw5gUQCQkCR/3oBRAwm+jWCqpFEBguz2SXbEUQP4G2MuQuRRAm1JyBcTBFEA5ngw/98kUQNfppngq0hRAdTVBsl3aFEATgdvrkOIUQLDMdSXE6hRAThgQX/fyFEDsY6qYKvsUQIqvRNJdAxVAKPveC5ELFUDGRnlFxBMVQGOSE3/3GxVAAd6tuCokFUCfKUjyXSwVQD114iuRNBVA28B8ZcQ8FUB5DBef90QVQBZYsdgqTRVAtKNLEl5VFUBS7+VLkV0VQPA6gIXEZRVAjoYav/dtFUAs0rT4KnYVQMkdTzJefhVAZ2npa5GGFUAFtYOlxI4VQKMAHt/3lhVAQUy4GCufFUDel1JSXqcVQHzj7IuRrxVAGi+HxcS3FUC4eiH/978VQFbGuzgryBVA9BFWcl7QFUCRXfCrkdgVQC+piuXE4BVAzfQkH/joFUBrQL9YK/EVQAmMWZJe+RVAp9fzy5EBFkBEI44FxQkWQOJuKD/4ERZAgLrCeCsaFkAeBl2yXiIWQLxR9+uRKhZAWp2RJcUyFkD36Ctf+DoWQJU0xpgrQxZAM4Bg0l5LFkDRy/oLklMWQG8XlUXFWxZADGMvf/hjFkCqrsm4K2wWQEj6Y/JedBZA5kX+K5J8FkCEkZhlxYQWQCLdMp/4jBZAvyjN2CuVFkBddGcSX50WQPu/AUySpRZAmQuchcWtFkA3Vza/+LUWQNWi0PgrvhZAcu5qMl/GFkAQOgVsks4WQK6Fn6XF1hZATNE53/jeFkDqHNQYLOcWQIhoblJf7xZAJbQIjJL3FkDD/6LFxf8WQGFLPf/4BxdA/5bXOCwQF0Cd4nFyXxgXQDouDKySIBdA2Hmm5cUoF0B2xUAf+TAXQBQR21gsORdAslx1kl9BF0BQqA/MkkkXQO3zqQXGURdAiz9EP/lZF0Api954LGIXQMfWeLJfahdAZSIT7JJyF0ADbq0lxnoXQKC5R1/5ghdAPgXimCyLF0DcUHzSX5MXQHqcFgyTmxdAGOiwRcajF0C2M0t/+asXQFN/5bgstBdA8cp/8l+8F0CPFhosk8QXQC1itGXGzBdAy61On/nUF0Bo+ejYLN0XQAZFgxJg5RdApJAdTJPtF0BC3LeFxvUXQOAnUr/5/RdAfnPs+CwGGEAbv4YyYA4YQLkKIWyTFhhAV1a7pcYeGED1oVXf+SYYQJPt7xgtLxhAMTmKUmA3GEDOhCSMkz8YQGzQvsXGRxhAChxZ//lPGECoZ/M4LVgYQEazjXJgYBhA5P4nrJNoGECBSsLlxnAYQB+WXB/6eBhAveH2WC2BGEBbLZGSYIkYQPl4K8yTkRhAlsTFBceZGEA0EGA/+qEYQNJb+ngtqhhAcKeUsmCyGEAO8y7sk7oYQKw+ySXHwhhASYpjX/rKGEDn1f2YLdMYQIUhmNJg2xhAI20yDJTjGEDBuMxFx+sYQF8EZ3/68xhA/E8BuS38GECam5vyYAQZQDjnNSyUDBlA1jLQZccUGUB0fmqf+hwZQBLKBNktJRlArxWfEmEtGUBNYTlMlDUZQOus04XHPRlAifhtv/pFGUAnRAj5LU4ZQMWPojJhVhlAYts8bJReGUAAJ9elx2YZQJ5ycd/6bhlAPL4LGS53GUDaCaZSYX8ZQHdVQIyUhxlAFaHaxcePGUCz7HT/+pcZQFE4DzkuoBlA74OpcmGoGUCNz0OslLAZQCob3uXHuBlAyGZ4H/vAGUBmshJZLskZQAT+rJJh0RlAoklHzJTZGUBAleEFyOEZQN3gez/76RlAeywWeS7yGUAZeLCyYfoZQLfDSuyUAhpAVQ/lJcgKGkDzWn9f+xIaQJCmGZkuGxpALvKz0mEjGkDMPU4MlSsaQGqJ6EXIMxpACNWCf/s7GkClIB25LkQaQENst/JhTBpA4bdRLJVUGkB/A+xlyFwaQB1Php/7ZBpAu5og2S5tGkBY5roSYnUaQPYxVUyVfRpAlH3vhciFGkAyyYm/+40aQNAUJPkulhpAbmC+MmKeGkALrFhslaYaQKn38qXIrhpAR0ON3/u2GkDljicZL78aQIPawVJixxpAISZcjJXPGkC+cfbFyNcaQFy9kP/73xpA+ggrOS/oGkCYVMVyYvAaQDagX6yV+BpA0+v55cgAG0BxN5Qf/AgbQA+DLlkvERtArc7IkmIZG0BLGmPMlSEbQOll/QXJKRtAhrGXP/wxG0Ak/TF5LzobQMJIzLJiQhtAYJRm7JVKG0D+3wAmyVIbQJwrm1/8WhtAOXc1mS9jG0DXws/SYmsbQHUOagyWcxtAE1oERsl7G0CxpZ5//IMbQE/xOLkvjBtA7DzT8mKUG0CKiG0slpwbQCjUB2bJpBtAxh+in/ysG0BkazzZL7UbQAG31hJjvRtAnwJxTJbFG0A9TguGyc0bQNuZpb/81RtAeeU/+S/eG0AXMdoyY+YbQLR8dGyW7htAUsgOpsn2G0DwE6nf/P4bQI5fQxkwBxxALKvdUmMPHEDK9neMlhccQGdCEsbJHxxABY6s//wnHECj2UY5MDAcQEEl4XJjOBxA33B7rJZAHEB9vBXmyUgcQBoIsB/9UBxAuFNKWTBZHEBWn+SSY2EcQPTqfsyWaRxAkjYZBspxHEAvgrM//XkcQM3NTXkwghxAaxnosmOKHEAJZYLslpIcQKewHCbKmhxARfy2X/2iHEDiR1GZMKscQICT69JjsxxAHt+FDJe7HEC8KiBGysMcQFp2un/9yxxA+MFUuTDUHECVDe/yY9wcQDNZiSyX5BxA0aQjZsrsHEBv8L2f/fQcQA08WNkw/RxAq4fyEmQFHUBI04xMlw0dQOYeJ4bKFR1AhGrBv/0dHUAitlv5MCYdQMAB9jJkLh1AXU2QbJc2HUD7mCqmyj4dQJnkxN/9Rh1ANzBfGTFPHUDVe/lSZFcdQHPHk4yXXx1AEBMuxspnHUCuXsj//W8dQEyqYjkxeB1A6vX8cmSAHUCIQZesl4gdQCaNMebKkB1Aw9jLH/6YHUBhJGZZMaEdQP9vAJNkqR1AnbuazJexHUA7BzUGy7kdQNlSzz/+wR1Adp5peTHKHUAU6gOzZNIdQLI1nuyX2h1AUIE4JsviHUDuzNJf/uodQIsYbZkx8x1AKWQH02T7HUDHr6EMmAMeQGX7O0bLCx5AA0fWf/4THkChknC5MRweQD7eCvNkJB5A3CmlLJgsHkB6dT9myzQeQBjB2Z/+PB5Atgx02TFFHkBUWA4TZU0eQPGjqEyYVR5Aj+9ChstdHkAtO92//mUeQMuGd/kxbh5AadIRM2V2HkAHHqxsmH4eQKRpRqbLhh5AQrXg3/6OHkDgAHsZMpceQH5MFVNlnx5AHJivjJinHkC540nGy68eQFcv5P/+tx5A9Xp+OTLAHkCTxhhzZcgeQDESs6yY0B5Az11N5svYHkBsqecf/+AeQAr1gVky6R5AqEAck2XxHkBGjLbMmPkeQOTXUAbMAR9AgiPrP/8JH0Afb4V5MhIfQL26H7NlGh9AWwa67JgiH0D5UVQmzCofQJed7l//Mh9ANemImTI7H0DSNCPTZUMfQHCAvQyZSx9ADsxXRsxTH0CsF/J//1sfQEpjjLkyZB9A564m82VsH0CF+sAsmXQfQCNGW2bMfB9AwZH1n/+EH0Bf3Y/ZMo0fQP0oKhNmlR9AmnTETJmdH0A4wF6GzKUfQNYL+b//rR9AdFeT+TK2H0ASoy0zZr4fQLDux2yZxh9ATTpipszOH0Drhfzf/9YfQInRlhkz3x9AJx0xU2bnH0DFaMuMme8fQGO0ZcbM9x9AAAAAAAAAIEA=\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[1000]},\"y\":{\"__ndarray__\":\"iNNHxCBLcjG5Yv7yIn4qPMzpEzNCDDY9H6AkEbY6wD1+UXn7PR4XPlIFrFfHV1Y+dwTVrUCdhj4LEg2XEuetPqSIPh1QUs0+Wh8s+xkT5z5j8MxI97X+Pu6Ulex+6xE/RLGwkzPSIj+BdWTKKCMyP5XDZdQZRkA/ahZDgnyASz8MYmZr6RRWP44HE88P+GA/L4l/JpAbaT8RkAyk9/dxPzkLVc2y+ng/NcN8AonrgD9ZonLZw2aGP6rS/8YoDo0/H+XhEoN/kj8nX+YFHSqXP3nXpRvWkpw/pW3I0fhhoT8bNA1d7eKkP5Z3fPmEz6g/zIN2uvsprT/cnH8YxvmwP6QCc445lrM/nm1Bs/tptj++MS/VOnS5PxRTZlK3s7w/bK1N9WUTwD8SBnxvu+XBP/QWLM2xz8M/CiYFUvrPxT85IsbTJuXHPzEo6rGuDco/gc41rvNHzD8RAOWWRpLOP6n9Ott1ddA/DEX+fw+o0T9MkL/4C+DSP+jpD5SGHNQ/N2zg0Ztc1T9TY7rcap/WP1g7stoW5Nc/LtP2Fsgp2T9AzE4FrW/aPzkkLCH7tNs/Qg4/qu/43D8cqp5A0DreP/myu2Lred8/To+wZ8xa4D9KnAXnnPbgP6CM7K8ckOE/tx+oLQYn4j9PEIy6GLviP2uL3psYTOM/Wys49s7Z4z8XRk+7CWTkP8iaDJKb6uQ/I0O4uVtt5T/Hiv7oJezlP2QsfSnaZuY/R6J6sFzd5j+Y2Fq1lU/nP/rBVkZxvec/pCXvG98m6D9xh4Zr0ovoP7hQgrlB7Og/jGZIqyZI6T8PI2TZfZ/pP/YvFKJG8uk/MQV6/IJA6j+vyptMN4rqP20HYjhqz+o/1NqzfSQQ6z/2b87JcEzrPyXi7pFbhOs/gd9g7fK36z/Y7v9wRufrP+dQNQxnEuw/gvl452Y57D/LCVlEWVzsP96BCF9Se+w/GYVzUWeW7D8bgtX3ra3sP/jNy9Y8wew/5cPdAivR7D9tN3IJkN3sP2j7KNuD5uw/s2OOtx7s7D+v9x0aee7sP1ICiair7ew/nkU1Is/p7D9Mz+dQ/OLsPz6/j/pL2ew/ibok1NbM7D8oxYx1tb3sPwBNfU4ArOw/YFFLnM+X7D94v55gO4HsP8VU/VhbaOw/eZoh90ZN7D9m1hJaFTDsP7Yd80fdEOw/4Qp5KLXv6z+H8AoAs8zrP8C+cWvsp+s/fC0anHaB6z9yHdtUZlnrP8t/OOfPL+s/8nMaMccE6z/zqPCaX9jqPzptOhasquo/KTNsHL976j/xqiuuqkvqP1rq21KAGuo/lnBzGFHo6T/BJ5aTLbXpP6rW7d8lgek/VsO7oElM6T+Ckp4BqBbpP/K4h7dP4Og/PxncAU+p6D8RrLurs3HoPwVRbA2LOeg/7CPkDeIA6D8K7W8kxcfnPxR7clpAjuc/JOs5TV9U5z/DFegvLRrnP6aIa8203+Y/t6KGigCl5j9ek+JnGmrmP7onLAQML+Y/SXc4nt7z5T97pi8Xm7jlP8MYvPRJfeU/pYw8Y/NB5T8cu/c3nwblP00xUPNUy+Q/1jb3whuQ5D/urB2E+lTkP8fqocX3GeQ/wrI5yhnf4z8QcZeKZqTjP3oIirfjaeM/3oQWvJYv4z9yHIu/hPXiP+z4iqeyu+I/YFESGiWC4j+Ba3J/4EjiPzYoRQTpD+I/6ctXm0LX4T8lvoz/8J7hP9EGtLX3ZuE//FhaDlov4T91hI4nG/jgP3gvne49weA/tMHCIcWK4D/ScNNRs1TgP1ll2eMKH+A/9OhRJZzT3z9l4tXg/WnfP243OtA+Ad8/NnYRfmKZ3j+Q4V4sbDLeP3qzXNdezN0/aygvOD1n3T/Qh4THCQPdP0xjIsDGn9w/ykpgIXY93D8TOJCxGdzbP5D4VACze9s/wd7maEMc2z8PCEcUzL3aPzuGYftNYNo/ib0e6ckD2j/ESmR8QKjZPzDFBSqyTdk/erKlPh/02D+eAofgh5vYP+pqTxHsQ9g/sPe6r0vt1z8FLEF5ppfXPysHrAv8Qtc/Ckeh5kvv1j+7Ph5tlZzWP4aX5ubXStY/V1LmgRL61T+cXodTRKrVP/ca+1lsW9U/0xJ4fYkN1T9YS2yRmsDUP7pwpFWedNQ/wjNod5Mp1D98JoySeN/TPz5leTJMltM/KFgr0wxO0z/K1yPiuAbTP0f+Vb9OwNI/v+wHvsx60j9Qy6slMTbSP9RIsDJ68tE/lt1IF6av0T8KEy78sm3RP/kQVgGfLNE/PK+lPmjs0D86SZrEDK3QP3mP7JyKbtA/npEsy98w0D/Ec66aFOjPP43jyjgQcM8/DkyqWa75zj9hvVje6oTOPwA97aDBEc4/i3d5dS6gzT9mxu4qLTDNP5zn+Iu5wcw/ScTOX89UzD9wnvlqaunLP/X8EnCGf8s/Hqp5MB8Xyz8XFv5sMLDKPwhthua1Sso/VK2qXqvmyT8DCUmYDITJP4baEljVIsk/6XISZQHDyD+kBSqJjGTIP9fzi5FyB8g/qLYsT6+rxz/Cpi6XPlHHP8TcR0Mc+MY/UmQiMkSgxj9O+rZHsknGPwaMom1i9MU/K6x2k1CgxT8IMAWveE3FP2gmp7zW+8Q/XVd/v2arxD/CerjBJFzEPxpSv9QMDsQ/UdB4ERvBwz/ceHSYS3XDP04eG5KaKsM/yCbaLgThwj+ee0unhJjCP0dIWjwYUcI/E6tkN7sKwj9IeVrqacXBPxg32a8ggcE/SWJF69s9wT/kLeEImPvAP+HL4H1RusA/nWB8yAR6wD8fu/9vrjrAP27YrwmW+L8/nKo9Qa59vz8xjknMngS/P9SO8AJhjb4/1ijYT+4Xvj9Y9TYwQKS9PxIm2jNQMr0/2vcn/RfCvD8lQx9BkVO8P4BOVMe15rs/LgfraX97uz/swY4V6BG7P22kZ8npqbo/J9cNl35Duj9TnnqioN65P0t29yFKe7k/FFALXnUZuT/BCGaxHLm4Pys1yog6Wrg/H1v1Ysn8tz/0r4bQw6C3P8hy5HMkRrc/wfgfAebstj9ngNg9A5W2P7vfHAF3PrY/1yBMMzzptT96H/XNTZW1P/04tdumQrU/CSAWeELxtD8V5GrPG6G0P0A8rB4uUrQ/syRUs3QEtD9P3Djr6rezP8FQZzSMbLM/2gX9DFQisz+EhAEDPtmyP1VdP7RFkbI/Q8oczmZKsj8I+nMNnQSyP8QPaz7kv7E/0uBLPDh8sT/weVvxlDmxPwR1sVb297A/6icPdFi3sD9xtLZft3ewPzcBQj4PObA/FUbzhLj2rz/LeldaNX2vPxTCBZqNBa8//N25/LmPrj+CC0RWsxuuPwP9NpVyqa0/4/+VwvA4rT+tVoMBJ8qsP4XS7o4OXaw/CrREwaDxqz/R3BwI14erP79Z6uuqH6s/bU2rDRa5qj8qQpkmElSqP5Pq2QeZ8Kk/t1YwmqSOqT/lo67dLi6pPzUtaOkxz6g/ZkEk66dxqD9BYxEnixWoP2UZeffVuqc/LFF0zIJhpz/gWKArjAmnP0Z11K/ssqY/GxXYCJ9dpj8wphn7nQmmPyAPZl/ktqU/nM+gIm1lpT8xynxFMxWlP7a5NdwxxqQ/6lNKDmR4pD92GzcWxSukP5XiMUFQ4KM/xP/l7gCWoz/tNTGR0kyjP75Q4avABKM/EXZy1Ma9oj+NLc6x4HeiP1UeC/wJM6I/uYMtfD7voT8sWegLeqyhP3Y9X5W4aqE/DQ3pEvYpoT8zNNOOLuqgP9K3JSNeq6A/T/Vn+YBtoD8HGWZKkzCgP1eV7rsi6Z8/Kx6JFe9ynz9dviBshP6eP7jl/abbi54/nn6+ye0anj8gUOnzs6udP+7CgmAnPp0/AAijZUHSnD+ong10+2ecP143yhZP/5s/BPK+8jWYmz+S9EvGqTKbP81X6Gikzpo/32fAyh9smj8ANlX0FQuaP0x4HQaBq5k/yrUnOFtNmT/iur3ZnvCYPzhUCVFGlZg/3Uy6Gkw7mD9mrK3JquKXP7cylgZdi5c/+g2mj101lz/Zxzk4p+CWP+FmhOg0jZY/RcE8nQE7lj8u/UtnCOqVP0g8fWtEmpU/tG4u4rBLlT+gSgIXSf6UP0Flk2gIspQ/nWkoSOpmlD+Famk56hyUPzZMFtID1JM/UEK+uTKMkz8tX3ipckWTP0oxnWu//5I/iWuB2xS7kj/jlDHlbneSP+28LoXJNJI/PjEsyCDzkT8LMc7KcLKRP8mbabm1cpE/YpfEz+szkT8KK9hYD/aQP6PLkq4cuZA/fdabORB9kD859xdx5kGQPwh2btqbB5A/7tUeElqcjz+apnU8LSuPP1AMkZGqu44/2QniictNjj83Si64ieGNPzogJcnedo0/0yz2gsQNjT/ypenENKaMP2Y4+oYpQIw/5H5w2Zzbiz+xCIDkiHiLPyTq5efnFos/0dGIOrS2ij9QnBpK6FeKP81hu5p++ok/Y/edxnGeiT+G3619vEOJP6ajNoVZ6og/RJKMt0OSiD/x27YDdjuIP4kKG23r5Yc/DM0pC5+Rhz+hEw0JjD6HP4l2V6Wt7IY/EeO0Mf+bhj/diZwSfEyGP9oJBL8f/oU/lNITwOWwhT81utywyWSFP4DBDj7HGYU/RQKxJdrPhD/1wto2/oaEP2urbVEvP4Q/cBbRZWn4gz+Ke650qLKDP9rsro7obYM//6Q51CUqgz+CoDN1XOeCP/8+wLCIpYI/7ucC1aZkgj/eruE+sySCP13zyFmq5YE/yfhvn4ingT/AcZ6XSmqBP+j78tfsLYE/JYiqA2zygD9aq2jLxLeAP0/UAO3zfYA/PWNAM/ZEgD89n7l1yAyAP0AMHzHPqn8/EOeEGKE9fz/1NvuaANJ+P0qrysnnZ34/wGrMzVD/fT881wnnNZh9P2HfXWyRMn0/ndYXy13OfD9Fzp+GlWt8P2tpHDgzCnw/SiUajjGqez9tEDRMi0t7P/3qvUo77no/7alvdjySej+tVxLQiTd6Pw1NLmwe3nk/S7y6cvWFeT8Hic4eCi95P1doUr5X2Xg/h0K0sdmEeD/G0ptrizF4P4t+oHBo33c/TGAAV2yOdz8RgFjGkj53P8U1XnfX73Y/qa+ZMzaidj+4mCHVqlV2P0PaV0YxCnY/4XOngcW/dT+qZUORY3Z1Pwmo5o4HLnU/piyVo63mdD+R5F0HUqB0P+rGHQHxWnQ/P9RD5oYWdD9bEpYaENNzP4189w+JkHM/YOQuRu5Ocz/svq5KPA5zP+3aXbhvznI/hvtgN4WPcj/AVOV8eVFyPwzl60pJFHI/+KgVcPHXcT9KpXDHbpxxPwbERTi+YXE/moDntdwncT+gYIE/x+5wP/s06N96tnA/hiBrrfR+cD8FYaXJMUhwP1bXUGEvEnA/WZYyWNW5bz870ODYwVBvP53gxN4e6W4/AETXGOeCbj9mmpxKFR5uP+Ys00ukum0/B8chCI9YbT8d4Md+0PdsPzQNT8JjmGw/mLc9+EM6bD/4EctYbN1rPyFHlC7YgWs/FN1S1oInaz+4R5S+Z85qP4ylcmeCdmo/U6JOYs4faj8teopRR8ppP+wYRujodWk/lFAc6q4iaT+dIuEqldBoP6QXYY6Xf2g/0aAhCLIvaD/gfiKb4OBnP1UqoFkfk2c/hTjXZGpGZz/UucjsvfpmP1+M/y8WsGY/xJ9We29mZj92JcApxh1mP0aqDaQW1mU/4BS5YF2PZT/iha7jlkllP14VF76/BGU/42okjtTAZD+BK93+0X1kP2Q76se0O2Q/SM5krXn6Yz/0RKV/HbpjP4jSEhudemM/bOjzZ/U7Yz97Yz9aI/5iPzl5bvEjwWI/YWBPOPSEYj/GsthEkUliP+KE/Tf4DmI/lzCCPSbVYT/Cz9GLGJxhP+lj1GPMY2E/eKjFED8sYT9bjAzobfVgP0hQE0lWv2A/hEcgnfWJYD/VNy9XSVVgP15Wy/NOIWA/u73T8QfcXz9shYrry3ZfP4XacQXlEl8/JTY7gk6wXj87g0y2A09eP3oKewcA710/eHXH7D6QXT995RruuzJdP5YYBaRy1lw/FJl7t157XD/P8pnheyFcPzHqYuvFyFs/obCCrThxWz8+EhIQ0BpbPzyZWgqIxVo/CaKbolxxWj80XdDtSR5aP+m6dg9MzFk/8TtXOV97WT/WpE2rfytZP6WPErOp3Fg/A9gFrNmOWD/F3vn+C0JYP2ah/yE99lc/P6EzmGmrVz91mIvxjWFXP/T3pMqmGFc/AiyUzLDQVj/ko7SsqIlWP7yZeSyLQ1Y/75Y/GVX+VT/msh5MA7pVPzSIvamSdlU/8t0kIgA0VT8IApSwSPJUP4PRVVtpsVQ/XmyWM19xVD8dkjlVJzJUP9Wjsea+81M/mUnXGCO2Uz/DuMEmUXlTP9WXn1VGPVM/+H2Q9P8BUz+oC39ce8dSP4KZ+++1jVI/YHsXG61UUj9J1UBTXhxSP27/HhfH5FE/nndv7uStUT9KXeNptXdRPyN2/SI2QlE/Trnwu2QNUT+/Xn/fPtlQP5tw2kDCpVA/5tyBm+xyUD8kBSWzu0BQP9TJg1MtD1A/UyCgoH68Tz8wfx8K31tPP7Fr/ql3/E4/D17oVUSeTj8zQILyQEFOP1gEMnNp5U0/vRjn2bmKTT8HtuM2LjFNP2sDh6jC2Ew/Ow8YW3OBTD89lpGIPCtMPwOYbnga1ks/vLR3fwmCSz+7UJH/BS9LP0x7imcM3Uo/W5XsMhmMSj/ftMvpKDxKP/rBlyA47Uk/bEvud0OfST+mDm2cR1JJP2AxhUZBBkk/FylPOi27SD/ATl9HCHFIP9Qam0jPJ0g/EggPJH/fRz9nGcXKFJhHP28BnDiNUUc/8+cedOULRz/ay12OGsdGPy5+xqIpg0Y/tTT+1g9ARj8Fsbtayv1FP0L6oWdWvEU/uKYbQbF7RT+JszY02DtFP9/ngJfI/EQ/dsHkyn++RD/y6IY3+4BEP6cqpE84REQ/+vJvjjQIRD/FS/N37cxDP3hY7JhgkkM/dE+uhotYQz+C7gHfax9DP3loBkj/5kI/58kScEOvQj9/05cNNnhCP9NHAt/UQUI/AKudqh0MQj88cnc+DtdBP9ihQnCkokE/lNc7Hd5uQT/fvw0quTtBP5L0tYIzCUE/uEJqGkvXQD/HVn7r/aVAP/XMSfdJdUA/eqQORi1FQD8NFODmpRVAP3B8E99jzT8/CIju+J5wPz+3aDhh+RQ/P76tuGpvuj4/xKHodP1gPj+4RcXrnwg+P/n5oUdTsT0/BNT7DBRbPT9wnE3M3gU9P/Rz5CGwsTw/Xxy1tYRePD/V4jE7WQw8PwQpIXEquzs/FYt0IfVqOz+LnyAhths7P/pO9U9qzTo/IMF2mA6AOj8Z3bbvnzM6P3BaL1Ub6Dk/FGGc0n2dOT9+tdd7xFM5PxhvtG7sCjk/Yjfb0vLCOD+VDqfZ1Hs4P6yUAr6PNTg/mNRFxCDwNz8kjxQ6has3P4MEPXa6Zzc/jzmX2L0kNz+xt+TJjOI2P/HEsLskoTY/NRMxKINgNj9/4yaSpSA2P8+cwISJ4TU/SNR7kyyjNT+SxAdajGU1P3czKHymKDU/hMOYpXjsND9YsPCJALE0P9LzhuQ7djQ/ytJWeCg8ND9Hz+QPxAI0P5j/I30MyjM/Wsdbmf+RMz+M8g1Fm1ozP/Qv3WfdIzM/9+lz8MPtMj+ffGvUTLgyP8DGMxB2gzI/zhX7pj1PMj/saZaioRsyP94RahOg6DE/D51SEDe2MT84Io62ZIQxP/rZpSknUzE/kwtYk3wiMT+ZSoIjY/IwPwcFDBDZwjA/L1/RlNyTMD82Xo7za2UwPwJeynOFNzA/6NLDYicKMD+GqrgmoLovPxXsCbz7YS8/mrZVQV4KLz/sRkh9xLMuPyMdOkErXi4/2NcKaY8JLj9tl/za7bUtP0nmj4dDYy0/JyVgaY0RLT8JeACFyMAsP1Qz2ejxcCw/TsYFrQYiLD+RITPzA9QrPziXfubmhis/ejNVu6w6Kz9mi1OvUu8qP40AJgnWpCo/HXdpGDRbKj/SfYw1ahIqP6TksMF1yik/MMKNJlSDKT+45FHWAj0pP1quhkt/9yg/1VnzCMeyKD9Up4CZ124oP/fuHJCuKyg/Jpigh0npJz+g87IipqcnP3N3rwvCZic/9VqL9JomJz91kbuWLucmP2oiG7N6qCY/rd3REX1qJj8qajuCMy0mPwuuztqb8CU/7o4F+bO0JT+cCEXBeXklP62ZxR7rPiU/9AN8AwYFJT8nYAJoyMskPzCDgUswkyQ/SLSasztbJD9BslGs6CMkP00H90c17SM/tqkSnx+3Iz/H6E7QpYEjP3GkYwDGTCM/+s4BWn4YIz8NN78NzeQiP+6ZAlKwsSI/JfzvYiZ/Ij+MR1WCLU0iP3Eul/fDGyI/G1KeD+jqIT/Sq8QcmLohPwg4w3bSiiE/yuGfepVbIT9RrpuK3ywhP1EnIQ6v/iA/UgOzcQLRID8mC9sm2KMgP4Q7GaQudyA/JCLTZARLID8QdUPpVx8gPy/I02xP6B8/20T2q+SSHz/zUaKsbD4fP9Vet5Tk6h4/17chk0mYHj+qULzfmEYeP/H4MrvP9R0/dvjkbuulHT+7EshM6VYdP5bvS6/GCB0/VOc9+YC7HD/VMa2VFW8cP112z/eBIxw/xrrlmsPYGz+rsSEC2I4bP5xki7i8RRs/yjrnUG/9Gj9XWZxl7bUaP95cm5g0bxo/CWtFk0IpGj9EmlMGFeQZP8+uvqmpnxk/KSynPP5bGT/ouD2FEBkZP6TUq1De1hg/e978cmWVGD+OagfHo1QYP2nmVi6XFBg//IkVkT3VFz88lfbdlJYXP0zYIAqbWBc/HoYZEU4bFz+vT6/0q94WPxnH5byyohY/8Anhd2BnFj8csdE5sywWP8MF4Ryp8hU/THodQUC5FT8oZmfMdoAVP7gDXupKSBU/da9MzLoQFT8WZxipxNkUP2SILb1moxQ/AM5tSp9tFD8eih6YbDgUP+0d1/LMAxQ/gqxvrL7PEz8dCfAbQJwTP7bffp1PaRM/dhZRkus2Ez85aJlgEgUTP7w2eHPC0xI/r5PrOvqiEj8PgL8ruHISP2Jhfr/6QhI/CqthdMATEj9OvELNB+URPxvxi1HPthE/6OUpjRWJET8C7XwQ2VsRP3W1SnAYLxE/ICKwRdICET8PURMuBdcQP4rRFcuvqxA//wiHwtCAED/sxVa+ZlYQP6z/h2xwLBA/KcMjf+wCED9Xl1hYs7MPP5yNIFttYg8/8oY8ggQSDz9ClvBQdsIOP+JID1LAcw4/yn7hF+AlDj/ukg4809gNP4LUhF+XjA0/QU5iKipBDT/n291LifYMP0CMMHqyrAw/A09/cqNjDD+m7MT4WRsMP7xIvNfT0ws/GezK4A6NCz8I1+vrCEcLP/eZmte/AQs/tbO+iDG9Cj9yNJfqW3kKP6mkpu48Ngo/cC6fjNLzCT9/CU/CGrIJP4MnjZMTcQk/yyAmCrswCT+BYMk1D/EIPyCP9isOsgg/bzrrB7ZzCD8yupDqBDYIPztRavr4+Ac/4YiDY5C8Bz9jx15XyYAHP2Af5AyiRQc/elhQwBgLBz+RLySzK9EGP4jOEyzZlwY/QXr2dh9fBj+Xdrbk/CYGPwwfQctv7wU/PTR3hXa4BT+PXB1zD4IFP73XzPg4TAU/J2Xkf/EWBT/xWnl2N+IEP5buSE8JrgQ/l62pgWV6BD9iJX2JSkcEP+S6Iee2FAQ/qK9kH6niAz87VXS7H7EDP0Nt0kgZgAM/i7ZGWZRPAz9JpdGCjx8DP21Hn18J8AI/AFP6jQDBAj88Xz+wc5ICP+lG0GxhZAI/7bMHbsg2Aj8B0yxipwkCPw4wZ/v83AE/Ubmy78ewAT+o6dP4BoUBPzIZTNS4WQE/N/RNQ9wuAT+cFrIKcAQBP/HM6/Jy2gA/vfn9x+OwAD9sHnBZwYcAPwOIQ3oKXwA/hZ7oAL42AD9IVzTH2g4APyGRq1S/zv8+TL+XFZeA/z45b7aYOjP/PpQhCKyn5v4+JNHwI9ya/j4cYyTb1U/+Pi1Uk7KSBf4+3KVXkRC8/T7IB6JkTXP9Pjs+px9HK/0+F8ONu/vj/D46o1s3aZ38PgKV5JeNV/w+FUi452YS/D5C7hA38837PlT8wZswivs+AyEnMR1H+z56cxMYtwT7PpjWwHb8wvo+KZK/eOuB+j6SH+ZOgkH6PiUqQS+/Afo++8IDVaDC+T73xncAJIT5Pm917nZIRvk+QjmxAgwJ+T4SofLybMz4PkuIv5tpkPg+6m3wVQBV+D4m+xp/Lxr4Ps+2g3n13/c+seYPrFCm9z57nTeCP233Prb092vANPc+BHLF3dH89j4VmH5QcsX2Ps6gXkGgjvY+ImPwMVpY9j47YAGoniL2PgT7lC1s7fU+UdfXUMG49T48YBOknIT1PlV3ob38UPU+3kjgN+Ad9T4wRyaxRev0PtRLtssrufQ+0d2zLZGH9D79mxeBdFb0PmbNo3PUJfQ+hRPZtq/18z5dQev/BMbzPu1UtgfTlvM+6ZKzihho8z74xO5I1DnzPn6Z+wUFDPM+GCTriKne8j5gf0GcwLHyPviO6w1JhfI+V+E0r0FZ8j4=\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[1000]}},\"selected\":{\"id\":\"1449\"},\"selection_policy\":{\"id\":\"1448\"}},\"id\":\"1436\",\"type\":\"ColumnDataSource\"},{\"attributes\":{\"line_alpha\":0.7,\"line_color\":\"#ff8888\",\"line_width\":4,\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1437\",\"type\":\"Line\"},{\"attributes\":{\"line_alpha\":0.7,\"line_color\":\"orange\",\"line_width\":2,\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1453\",\"type\":\"Line\"},{\"attributes\":{\"source\":{\"id\":\"1436\"}},\"id\":\"1440\",\"type\":\"CDSView\"},{\"attributes\":{\"line_alpha\":0.1,\"line_color\":\"#ff8888\",\"line_width\":4,\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1438\",\"type\":\"Line\"},{\"attributes\":{\"data\":{\"x\":{\"__ndarray__\":\"LUMc6+I2Gj8tdG364JqAP+pXgheqgJA/vfXNseOzmD/JyQymjnOgP7OYMnMrjaQ/nGdYQMimqD+GNn4NZcCsP7gCUu0AbbA/LerkU895sj+i0Xe6nYa0Pxe5CiFsk7Y/i6CdhzqguD8AiDDuCK26P3Vvw1TXubw/6lZWu6XGvj8vn/QQumnAP+kSPkQhcME/pIaHd4h2wj9e+tCq73zDPxluGt5Wg8Q/0+FjEb6JxT+OVa1EJZDGP0jJ9neMlsc/Aj1Aq/OcyD+9sIneWqPJP3ck0xHCqco/MpgcRSmwyz/sC2Z4kLbMP6d/r6v3vM0/YfP43l7Dzj8cZ0ISxsnPP2vtxaIWaNA/SKdqPErr0D8lYQ/WfW7RPwMbtG+x8dE/4NRYCeV00j+9jv2iGPjSP5pIojxMe9M/eAJH1n/+0z9VvOtvs4HUPzJ2kAnnBNU/DzA1oxqI1T/s6dk8TgvWP8qjftaBjtY/p10jcLUR1z+EF8gJ6ZTXP2HRbKMcGNg/PosRPVCb2D8cRbbWgx7ZP/n+WnC3odk/1rj/Cesk2j+zcqSjHqjaP5EsST1SK9s/bubt1oWu2z9LoJJwuTHcPyhaNwrttNw/BRTcoyA43T/jzYA9VLvdP8CHJdeHPt4/nUHKcLvB3j96+24K70TfP1i1E6QiyN8/mjfcHqsl4D+JlK7rRGfgP3jxgLjeqOA/Zk5ThXjq4D9VqyVSEizhP0MI+B6sbeE/MmXK60Wv4T8hwpy43/DhPw8fb4V5MuI//ntBUhN04j/s2BMfrbXiP9s15utG9+I/ypK4uOA44z+474qFenrjP6dMXVIUvOM/lqkvH6794z+EBgLsRz/kP3Nj1LjhgOQ/YcCmhXvC5D9QHXlSFQTlPz96Sx+vReU/Ldcd7EiH5T8cNPC44sjlPwqRwoV8CuY/+e2UUhZM5j/oSmcfsI3mP9anOexJz+Y/xQQMueMQ5z+zYd6FfVLnP6K+sFIXlOc/kRuDH7HV5z9/eFXsShfoP27VJ7nkWOg/XDL6hX6a6D9Lj8xSGNzoPzrsnh+yHek/KElx7Etf6T8XpkO55aDpPwYDFoZ/4uk/9F/oUhkk6j/jvLofs2XqP9EZjexMp+o/wHZfuebo6j+v0zGGgCrrP50wBFMabOs/jI3WH7St6z966qjsTe/rP2lHe7nnMOw/WKRNhoFy7D9GASBTG7TsPzVe8h+19ew/I7vE7E437T8SGJe56HjtPwF1aYaCuu0/79E7Uxz87T/eLg4gtj3uP82L4OxPf+4/u+iyuenA7j+qRYWGgwLvP5iiV1MdRO8/h/8pILeF7z92XPzsUMfvP7Jc51x1BPA/KYtQQ0Il8D+hubkpD0bwPxjoIhDcZvA/jxaM9qiH8D8HRfXcdajwP35zXsNCyfA/9aHHqQ/q8D9t0DCQ3ArxP+T+mXapK/E/Wy0DXXZM8T/SW2xDQ23xP0qK1SkQjvE/wbg+EN2u8T8456f2qc/xP7AVEd128PE/J0R6w0MR8j+ecuOpEDLyPxahTJDdUvI/jc+1dqpz8j8E/h5dd5TyP3ssiENEtfI/81rxKRHW8j9qiVoQ3vbyP+G3w/aqF/M/WeYs3Xc48z/QFJbDRFnzP0dD/6kRevM/v3FokN6a8z82oNF2q7vzP63OOl143PM/Jf2jQ0X98z+cKw0qEh70PxNadhDfPvQ/iojf9qtf9D8Ct0jdeID0P3nlscNFofQ/8BMbqhLC9D9oQoSQ3+L0P99w7XasA/U/Vp9WXXkk9T/Ozb9DRkX1P0X8KCoTZvU/vCqSEOCG9T8zWfv2rKf1P6uHZN15yPU/IrbNw0bp9T+Z5DaqEwr2PxEToJDgKvY/iEEJd61L9j//b3Jdemz2P3ee20NHjfY/7sxEKhSu9j9l+60Q4c72P90pF/et7/Y/VFiA3XoQ9z/LhunDRzH3P0K1UqoUUvc/uuO7kOFy9z8xEiV3rpP3P6hAjl17tPc/IG/3Q0jV9z+XnWAqFfb3Pw7MyRDiFvg/hvoy9643+D/9KJzde1j4P3RXBcRIefg/64VuqhWa+D9jtNeQ4rr4P9riQHev2/g/URGqXXz8+D/JPxNESR35P0BufCoWPvk/t5zlEONe+T8vy073r3/5P6b5t918oPk/HSghxEnB+T+VVoqqFuL5PwyF85DjAvo/g7Ncd7Aj+j/64cVdfUT6P3IQL0RKZfo/6T6YKheG+j9gbQER5Kb6P9ibavewx/o/T8rT3X3o+j/G+DzESgn7Pz4npqoXKvs/tVUPkeRK+z8shHh3sWv7P6Sy4V1+jPs/G+FKREut+z+SD7QqGM77Pwk+HRHl7vs/gWyG97EP/D/4mu/dfjD8P2/JWMRLUfw/5/fBqhhy/D9eJiuR5ZL8P9VUlHeys/w/TYP9XX/U/D/EsWZETPX8PzvgzyoZFv0/sg45EeY2/T8qPaL3slf9P6FrC95/eP0/GJp0xEyZ/T+QyN2qGbr9Pwf3RpHm2v0/fiWwd7P7/T/2UxlegBz+P22CgkRNPf4/5LDrKhpe/j9c31QR537+P9MNvvezn/4/Sjwn3oDA/j/BapDETeH+PzmZ+aoaAv8/sMdikeci/z8n9st3tEP/P58kNV6BZP8/FlOeRE6F/z+NgQcrG6b/PwWwcBHoxv8/fN7Z97Tn/z96hiHvQAQAQLYdVmKnFABA8bSK1Q0lAEAtTL9IdDUAQGnj87vaRQBApHooL0FWAEDgEV2ip2YAQBypkRUOdwBAV0DGiHSHAECT1/r72pcAQM9uL29BqABACgZk4qe4AEBGnZhVDskAQII0zch02QBAvcsBPNvpAED5YjavQfoAQDX6aiKoCgFAcJGflQ4bAUCsKNQIdSsBQOe/CHzbOwFAI1c970FMAUBf7nFiqFwBQJqFptUObQFA1hzbSHV9AUAStA+8240BQE1LRC9CngFAieJ4oqiuAUDFea0VD78BQAAR4oh1zwFAPKgW/NvfAUB4P0tvQvABQLPWf+KoAAJA7220VQ8RAkArBenIdSECQGacHTzcMQJAojNSr0JCAkDeyoYiqVICQBliu5UPYwJAVfnvCHZzAkCRkCR83IMCQMwnWe9ClAJACL+NYqmkAkBDVsLVD7UCQH/t9kh2xQJAu4QrvNzVAkD2G2AvQ+YCQDKzlKKp9gJAbkrJFRAHA0Cp4f2IdhcDQOV4MvzcJwNAIRBnb0M4A0Bcp5viqUgDQJg+0FUQWQNA1NUEyXZpA0APbTk83XkDQEsEbq9DigNAh5uiIqqaA0DCMteVEKsDQP7JCwl3uwNAOmFAfN3LA0B1+HTvQ9wDQLGPqWKq7ANA7Sbe1RD9A0AovhJJdw0EQGRVR7zdHQRAn+x7L0QuBEDbg7Ciqj4EQBcb5RURTwRAUrIZiXdfBECOSU783W8EQMrggm9EgARABXi34qqQBEBBD+xVEaEEQH2mIMl3sQRAuD1VPN7BBED01ImvRNIEQDBsviKr4gRAawPzlRHzBECnmicJeAMFQOMxXHzeEwVAHsmQ70QkBUBaYMViqzQFQJb3+dURRQVA0Y4uSXhVBUANJmO83mUFQEm9ly9FdgVAhFTMoquGBUDA6wAWEpcFQPuCNYl4pwVANxpq/N63BUBzsZ5vRcgFQK5I0+Kr2AVA6t8HVhLpBUAmdzzJePkFQGEOcTzfCQZAnaWlr0UaBkDZPNoirCoGQBTUDpYSOwZAUGtDCXlLBkCMAnh831sGQMeZrO9FbAZAAzHhYqx8BkA/yBXWEo0GQHpfSkl5nQZAtvZ+vN+tBkDyjbMvRr4GQC0l6KKszgZAabwcFhPfBkClU1GJee8GQODqhfzf/wZAHIK6b0YQB0BXGe/irCAHQJOwI1YTMQdAz0dYyXlBB0AK34w84FEHQEZ2wa9GYgdAgg32Iq1yB0C9pCqWE4MHQPk7Xwl6kwdANdOTfOCjB0BwasjvRrQHQKwB/WKtxAdA6Jgx1hPVB0AjMGZJeuUHQF/Hmrzg9QdAm17PL0cGCEDW9QOjrRYIQBKNOBYUJwhATiRtiXo3CECJu6H84EcIQMVS1m9HWAhAAeoK461oCEA8gT9WFHkIQHgYdMl6iQhAs6+oPOGZCEDvRt2vR6oIQCveESOuughAZnVGlhTLCECiDHsJe9sIQN6jr3zh6whAGTvk70f8CEBV0hhjrgwJQJFpTdYUHQlAzACCSXstCUAImLa84T0JQEQv6y9ITglAf8Yfo65eCUC7XVQWFW8JQPf0iIl7fwlAMoy9/OGPCUBuI/JvSKAJQKq6JuOusAlA5VFbVhXBCUAh6Y/Je9EJQF2AxDzi4QlAmBf5r0jyCUDUri0jrwIKQBBGYpYVEwpAS92WCXwjCkCHdMt84jMKQMILAPBIRApA/qI0Y69UCkA6OmnWFWUKQHXRnUl8dQpAsWjSvOKFCkDt/wYwSZYKQCiXO6OvpgpAZC5wFha3CkCgxaSJfMcKQNtc2fzi1wpAF/QNcEnoCkBTi0Ljr/gKQI4id1YWCQtAyrmryXwZC0AGUeA84ykLQEHoFLBJOgtAfX9JI7BKC0C5Fn6WFlsLQPStsgl9awtAMEXnfON7C0Bs3BvwSYwLQKdzUGOwnAtA4wqF1hatC0AeorlJfb0LQFo57rzjzQtAltAiMEreC0DRZ1ejsO4LQA3/ixYX/wtASZbAiX0PDECELfX84x8MQMDEKXBKMAxA/Fte47BADEA385JWF1EMQHOKx8l9YQxAryH8PORxDEDquDCwSoIMQCZQZSOxkgxAYueZlhejDECdfs4JfrMMQNkVA33kwwxAFa038ErUDEBQRGxjseQMQIzboNYX9QxAyHLVSX4FDUADCgq95BUNQD+hPjBLJg1Aejhzo7E2DUC2z6cWGEcNQPJm3Il+Vw1ALf4Q/eRnDUBplUVwS3gNQKUseuOxiA1A4MOuVhiZDUAcW+PJfqkNQFjyFz3luQ1Ak4lMsEvKDUDPIIEjstoNQAu4tZYY6w1ARk/qCX/7DUCC5h595QsOQL59U/BLHA5A+RSIY7IsDkA1rLzWGD0OQHFD8Ul/TQ5ArNolveVdDkDocVowTG4OQCQJj6Oyfg5AX6DDFhmPDkCbN/iJf58OQNbOLP3lrw5AEmZhcEzADkBO/ZXjstAOQImUylYZ4Q5AxSv/yX/xDkABwzM95gEPQDxaaLBMEg9AePGcI7MiD0C0iNGWGTMPQO8fBgqAQw9AK7c6feZTD0BnTm/wTGQPQKLlo2OzdA9A3nzY1hmFD0AaFA1KgJUPQFWrQb3mpQ9AkUJ2ME22D0DN2aqjs8YPQAhx3xYa1w9ARAgUioDnD0CAn0j95vcPQF2bPrgmBBBA++bY8VkMEECZMnMrjRQQQDd+DWXAHBBA1MmnnvMkEEByFULYJi0QQBBh3BFaNRBArqx2S409EEBM+BCFwEUQQOpDq77zTRBAh49F+CZWEEAl298xWl4QQMMmemuNZhBAYXIUpcBuEED/va7e83YQQJwJSRgnfxBAOlXjUVqHEEDYoH2LjY8QQHbsF8XAlxBAFDiy/vOfEECyg0w4J6gQQE/P5nFasBBA7RqBq424EECLZhvlwMAQQCmytR70yBBAx/1PWCfREEBlSeqRWtkQQAKVhMuN4RBAoOAeBcHpEEA+LLk+9PEQQNx3U3gn+hBAesPtsVoCEUAYD4jrjQoRQLVaIiXBEhFAU6a8XvQaEUDx8VaYJyMRQI898dFaKxFALYmLC44zEUDK1CVFwTsRQGggwH70QxFABmxauCdMEUCkt/TxWlQRQEIDjyuOXBFA4E4pZcFkEUB9msOe9GwRQBvmXdgndRFAuTH4EVt9EUBXfZJLjoURQPXILIXBjRFAkxTHvvSVEUAwYGH4J54RQM6r+zFbphFAbPeVa46uEUAKQzClwbYRQKiOyt70vhFARtpkGCjHEUDjJf9RW88RQIFxmYuO1xFAH70zxcHfEUC9CM7+9OcRQFtUaDgo8BFA+J8Cclv4EUCW65yrjgASQDQ3N+XBCBJA0oLRHvUQEkBwzmtYKBkSQA4aBpJbIRJAq2Wgy44pEkBJsToFwjESQOf81D71ORJAhUhveChCEkAjlAmyW0oSQMHfo+uOUhJAXis+JcJaEkD8dthe9WISQJrCcpgoaxJAOA4N0ltzEkDWWacLj3sSQHSlQUXCgxJAEfHbfvWLEkCvPHa4KJQSQE2IEPJbnBJA69OqK4+kEkCJH0VlwqwSQCZr3571tBJAxLZ52Ci9EkBiAhQSXMUSQABOrkuPzRJAnplIhcLVEkA85eK+9d0SQNkwffgo5hJAd3wXMlzuEkAVyLFrj/YSQLMTTKXC/hJAUV/m3vUGE0DvqoAYKQ8TQIz2GlJcFxNAKkK1i48fE0DIjU/FwicTQGbZ6f71LxNABCWEOCk4E0CicB5yXEATQD+8uKuPSBNA3QdT5cJQE0B7U+0e9lgTQBmfh1gpYRNAt+ohklxpE0BUNrzLj3ETQPKBVgXDeRNAkM3wPvaBE0AuGYt4KYoTQMxkJbJckhNAarC/64+aE0AH/Fklw6ITQKVH9F72qhNAQ5OOmCmzE0Dh3ijSXLsTQH8qwwuQwxNAHXZdRcPLE0C6wfd+9tMTQFgNkrgp3BNA9lgs8lzkE0CUpMYrkOwTQDLwYGXD9BNA0Dv7nvb8E0Bth5XYKQUUQAvTLxJdDRRAqR7KS5AVFEBHamSFwx0UQOW1/r72JRRAggGZ+CkuFEAgTTMyXTYUQL6YzWuQPhRAXORnpcNGFED6LwLf9k4UQJh7nBgqVxRANcc2Ul1fFEDTEtGLkGcUQHFea8XDbxRAD6oF//Z3FECt9Z84KoAUQEtBOnJdiBRA6IzUq5CQFECG2G7lw5gUQCQkCR/3oBRAwm+jWCqpFEBguz2SXbEUQP4G2MuQuRRAm1JyBcTBFEA5ngw/98kUQNfppngq0hRAdTVBsl3aFEATgdvrkOIUQLDMdSXE6hRAThgQX/fyFEDsY6qYKvsUQIqvRNJdAxVAKPveC5ELFUDGRnlFxBMVQGOSE3/3GxVAAd6tuCokFUCfKUjyXSwVQD114iuRNBVA28B8ZcQ8FUB5DBef90QVQBZYsdgqTRVAtKNLEl5VFUBS7+VLkV0VQPA6gIXEZRVAjoYav/dtFUAs0rT4KnYVQMkdTzJefhVAZ2npa5GGFUAFtYOlxI4VQKMAHt/3lhVAQUy4GCufFUDel1JSXqcVQHzj7IuRrxVAGi+HxcS3FUC4eiH/978VQFbGuzgryBVA9BFWcl7QFUCRXfCrkdgVQC+piuXE4BVAzfQkH/joFUBrQL9YK/EVQAmMWZJe+RVAp9fzy5EBFkBEI44FxQkWQOJuKD/4ERZAgLrCeCsaFkAeBl2yXiIWQLxR9+uRKhZAWp2RJcUyFkD36Ctf+DoWQJU0xpgrQxZAM4Bg0l5LFkDRy/oLklMWQG8XlUXFWxZADGMvf/hjFkCqrsm4K2wWQEj6Y/JedBZA5kX+K5J8FkCEkZhlxYQWQCLdMp/4jBZAvyjN2CuVFkBddGcSX50WQPu/AUySpRZAmQuchcWtFkA3Vza/+LUWQNWi0PgrvhZAcu5qMl/GFkAQOgVsks4WQK6Fn6XF1hZATNE53/jeFkDqHNQYLOcWQIhoblJf7xZAJbQIjJL3FkDD/6LFxf8WQGFLPf/4BxdA/5bXOCwQF0Cd4nFyXxgXQDouDKySIBdA2Hmm5cUoF0B2xUAf+TAXQBQR21gsORdAslx1kl9BF0BQqA/MkkkXQO3zqQXGURdAiz9EP/lZF0Api954LGIXQMfWeLJfahdAZSIT7JJyF0ADbq0lxnoXQKC5R1/5ghdAPgXimCyLF0DcUHzSX5MXQHqcFgyTmxdAGOiwRcajF0C2M0t/+asXQFN/5bgstBdA8cp/8l+8F0CPFhosk8QXQC1itGXGzBdAy61On/nUF0Bo+ejYLN0XQAZFgxJg5RdApJAdTJPtF0BC3LeFxvUXQOAnUr/5/RdAfnPs+CwGGEAbv4YyYA4YQLkKIWyTFhhAV1a7pcYeGED1oVXf+SYYQJPt7xgtLxhAMTmKUmA3GEDOhCSMkz8YQGzQvsXGRxhAChxZ//lPGECoZ/M4LVgYQEazjXJgYBhA5P4nrJNoGECBSsLlxnAYQB+WXB/6eBhAveH2WC2BGEBbLZGSYIkYQPl4K8yTkRhAlsTFBceZGEA0EGA/+qEYQNJb+ngtqhhAcKeUsmCyGEAO8y7sk7oYQKw+ySXHwhhASYpjX/rKGEDn1f2YLdMYQIUhmNJg2xhAI20yDJTjGEDBuMxFx+sYQF8EZ3/68xhA/E8BuS38GECam5vyYAQZQDjnNSyUDBlA1jLQZccUGUB0fmqf+hwZQBLKBNktJRlArxWfEmEtGUBNYTlMlDUZQOus04XHPRlAifhtv/pFGUAnRAj5LU4ZQMWPojJhVhlAYts8bJReGUAAJ9elx2YZQJ5ycd/6bhlAPL4LGS53GUDaCaZSYX8ZQHdVQIyUhxlAFaHaxcePGUCz7HT/+pcZQFE4DzkuoBlA74OpcmGoGUCNz0OslLAZQCob3uXHuBlAyGZ4H/vAGUBmshJZLskZQAT+rJJh0RlAoklHzJTZGUBAleEFyOEZQN3gez/76RlAeywWeS7yGUAZeLCyYfoZQLfDSuyUAhpAVQ/lJcgKGkDzWn9f+xIaQJCmGZkuGxpALvKz0mEjGkDMPU4MlSsaQGqJ6EXIMxpACNWCf/s7GkClIB25LkQaQENst/JhTBpA4bdRLJVUGkB/A+xlyFwaQB1Php/7ZBpAu5og2S5tGkBY5roSYnUaQPYxVUyVfRpAlH3vhciFGkAyyYm/+40aQNAUJPkulhpAbmC+MmKeGkALrFhslaYaQKn38qXIrhpAR0ON3/u2GkDljicZL78aQIPawVJixxpAISZcjJXPGkC+cfbFyNcaQFy9kP/73xpA+ggrOS/oGkCYVMVyYvAaQDagX6yV+BpA0+v55cgAG0BxN5Qf/AgbQA+DLlkvERtArc7IkmIZG0BLGmPMlSEbQOll/QXJKRtAhrGXP/wxG0Ak/TF5LzobQMJIzLJiQhtAYJRm7JVKG0D+3wAmyVIbQJwrm1/8WhtAOXc1mS9jG0DXws/SYmsbQHUOagyWcxtAE1oERsl7G0CxpZ5//IMbQE/xOLkvjBtA7DzT8mKUG0CKiG0slpwbQCjUB2bJpBtAxh+in/ysG0BkazzZL7UbQAG31hJjvRtAnwJxTJbFG0A9TguGyc0bQNuZpb/81RtAeeU/+S/eG0AXMdoyY+YbQLR8dGyW7htAUsgOpsn2G0DwE6nf/P4bQI5fQxkwBxxALKvdUmMPHEDK9neMlhccQGdCEsbJHxxABY6s//wnHECj2UY5MDAcQEEl4XJjOBxA33B7rJZAHEB9vBXmyUgcQBoIsB/9UBxAuFNKWTBZHEBWn+SSY2EcQPTqfsyWaRxAkjYZBspxHEAvgrM//XkcQM3NTXkwghxAaxnosmOKHEAJZYLslpIcQKewHCbKmhxARfy2X/2iHEDiR1GZMKscQICT69JjsxxAHt+FDJe7HEC8KiBGysMcQFp2un/9yxxA+MFUuTDUHECVDe/yY9wcQDNZiSyX5BxA0aQjZsrsHEBv8L2f/fQcQA08WNkw/RxAq4fyEmQFHUBI04xMlw0dQOYeJ4bKFR1AhGrBv/0dHUAitlv5MCYdQMAB9jJkLh1AXU2QbJc2HUD7mCqmyj4dQJnkxN/9Rh1ANzBfGTFPHUDVe/lSZFcdQHPHk4yXXx1AEBMuxspnHUCuXsj//W8dQEyqYjkxeB1A6vX8cmSAHUCIQZesl4gdQCaNMebKkB1Aw9jLH/6YHUBhJGZZMaEdQP9vAJNkqR1AnbuazJexHUA7BzUGy7kdQNlSzz/+wR1Adp5peTHKHUAU6gOzZNIdQLI1nuyX2h1AUIE4JsviHUDuzNJf/uodQIsYbZkx8x1AKWQH02T7HUDHr6EMmAMeQGX7O0bLCx5AA0fWf/4THkChknC5MRweQD7eCvNkJB5A3CmlLJgsHkB6dT9myzQeQBjB2Z/+PB5Atgx02TFFHkBUWA4TZU0eQPGjqEyYVR5Aj+9ChstdHkAtO92//mUeQMuGd/kxbh5AadIRM2V2HkAHHqxsmH4eQKRpRqbLhh5AQrXg3/6OHkDgAHsZMpceQH5MFVNlnx5AHJivjJinHkC540nGy68eQFcv5P/+tx5A9Xp+OTLAHkCTxhhzZcgeQDESs6yY0B5Az11N5svYHkBsqecf/+AeQAr1gVky6R5AqEAck2XxHkBGjLbMmPkeQOTXUAbMAR9AgiPrP/8JH0Afb4V5MhIfQL26H7NlGh9AWwa67JgiH0D5UVQmzCofQJed7l//Mh9ANemImTI7H0DSNCPTZUMfQHCAvQyZSx9ADsxXRsxTH0CsF/J//1sfQEpjjLkyZB9A564m82VsH0CF+sAsmXQfQCNGW2bMfB9AwZH1n/+EH0Bf3Y/ZMo0fQP0oKhNmlR9AmnTETJmdH0A4wF6GzKUfQNYL+b//rR9AdFeT+TK2H0ASoy0zZr4fQLDux2yZxh9ATTpipszOH0Drhfzf/9YfQInRlhkz3x9AJx0xU2bnH0DFaMuMme8fQGO0ZcbM9x9AAAAAAAAAIEA=\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[1000]},\"y\":{\"__ndarray__\":\"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAJA8AAAAAABwKj0AAAAAABuLPQAAAAB8ctE9AAAA4IRkBj4AAADsWSQyPgAAAEHjQVU+AABAh2Cbcz4AAODf8B6OPgAAAO0yCaQ+AAAESkC+tz4AAMr3tJfJPgAAZgi5ftk+AABm2dTD5z4AAEb8oe70PgCgcKcjjwE/AGBZ7qg8DD8AYCfKj+AVPwAQOQ2SZyA/ALBb4A/mJz8A7NAvtfYwPwC0MRTHhzc/AIj8mvX2Pz8AVL81F05FPwDeCo/x6ks/AOu1KA4CUj8AkO60B+dWPwBLkcmVv1w/AFwyI87TYT+ArBNPuN1lP4A2vhzMi2o/AEg6LkTsbz9AoBAkmgZzP0DPFRk2fnY/gEprS65jej8A32IQf71+PwCnZsDuyIE/IApGv1ZzhD+AdSiBvGCHPyA9nli0k4o/AIRd2p4Ojj+g5Kcy0+mQP1AOAKBe8pI/0DOpIc4hlT9A3LYE4XiXP5Aoiks5+Jk/YMmculugnD9QuToYsHGfP9hf/cxANqE/4PpsvX/Ioj8Ac4Hanm+kP6D3PO2aK6Y/IKYRBGT8pz/Qcmz33eGpP+hORvfg26s/oJreHzrqrT+QpvMJVgawP9xJSM13IbE/IDsDIFpGsj94cIt70HSzP9h9bF2qrLQ/VNinl7PttT/kQRCgtDe3P/ihSt5yirg/+Ewd+LDluT+QgMMbL0m7P8ykBkirtLw/2LfpkeEnvj8QLb1njKK/PwhEvWgyksA/6I0nV5FWwT8OUqJ3Ph7CP4x8fucU6cI/TvQ9g++2wz9GsX//qIfEP9ZRdQAcW8U/tnnmLyMxxj9A9cdRmQnHP6QMbldZ5Mc/jqpicT7ByD/a/egfJKDJP2AROULmgMo/wH9+JGFjyz9I7KWMcUfMPzZLBcb0LM0/1Efrq8gTzj8CPiKzy/vOP0pOc/Lc5M8/qgcbFW5n0D+PpHzl1NzQP8KAqH2TUtE/A/dqzprI0T9+EDEo3D7SP2hAyzxJtdI/5iPaINQr0z8mu+pMb6LTP7ZiR54NGdQ/EKWCV6KP1D+4y8AgIQbVP1zlxAd+fNU/fsTFf63y1T/ZRw9hpGjWPzMLdOhX3tY/6G2Ttr1T1z/eqvfOy8jXP56ND5d4Pdg/lCAH1bqx2D9LgoKuiSXZP6viPafcmNk/IX2Vn6sL2j+iOvjS7n3aP2d9R9ae79o/2nAmlrRg2z9tEjtVKdHbP3cDY6r2QNw/oRHefhaw3D/YQXAMgx7dP/oJfds2jN0/MEcdwSz53T/iYTHdX2XeP630cJjL0N4//jF5oms73z+5KtvvO6XfP7iAFVwcB+A/m38IOi874D8gta7t1G7gP2v1j/ELouA/W5zh3dLU4D+J3JZnKAfhP6jSc18LOeE/qaEjsXpq4T+Q1FFidZvhP1s8x5H6y+E/C3qKdgn84T+0XgRfoSviP0lGKLDBWuI/dYyg5GmJ4j9CNv+LmbfiP6jm8klQ5eI/ITCA1Y0S4z+jUT/4UT/jP6Zpno2ca+M/uyYogm2X4z9W+s7SxMLjP2rPPIyi7eM/K0QnygYY5D/cY6i28UHkP4Hbm4lja+Q/UqIAiFyU5D8cDV8D3bzkPylCM1nl5OQ/xgFc8nUM5T9Uto1CjzPlP6K9yccxWuU/NtzZCV6A5T9dys+ZFKblPxzKiBFWy+U/NDQ1EyPw5T8a6uNIfBTmPweaEWRiOOY/DsI7HdZb5j+NXncz2H7mP00wC2xpoeY/OoYNkorD5j+JdgV2POXmPwJzj+1/Buc/NCQF01Un5z8PdygFv0fnP9XI0Wa8Z+c/9xyh3k6H5z/pSLJWd6bnP+cBVLw2xec/1LjB/43j5z/GMOATfgHoP6q8/O0HH+g/AhGPhSw86D/Zlv3T7FjoP0AtZNRJdeg/Fkddg0SR6D8eU83e3azoP45csOUWyOg/7NLpl/Di6D/0Zxb2a/3oP/ryXwGKF+k/W0lTu0sx6T/m+7clskrpP7TpaUK+Y+k/6pg0E3F86T+WRrCZy5TpP+yeINfOrOk/ng9VzHvE6T9opop509vpPz5uT97W8uk/wj1n+YYJ6j9M6rHI5B/qP8jSEknxNeo/TLZZdq1L6j9/yixLGmHqPy0G9MA4duo/6pTFzwmL6j+6aFNujp/qPzbf2ZHHs+o/1W8PLrbH6j9cWRU1W9vqP8FEaZe37uo/E9TXQ8wB6z9PFHAnmhTrPzfJdy0iJ+s/ropgP2U56z8sq71EZEvrP2ffOiMgXes/Jp+Tvplu6z8BOIv40X/rP3qK5bDJkOs/iWpgxYGh6z+0nK0R+7HrPyBpbW82wus/Kb4ptjTS6z9o3FG79uHrPyCGNlJ98es/VqwGTMkA7D8AlMx32w/sP/Jta6K0Huw/QFydllUt7D9E4PEcvzvsPzqszPvxSew/9tNk9+5X7D8iWMTRtmXsP6YHyEpKc+w/JrMfIKqA7D9+rk4N143sP1qcrMvRmuw/QIBmEpun7D9YE4CWM7TsP5FY1QqcwOw/1GwcINXM7D/qj+eE39jsPzNjp+W75Ow/CVut7Grw7D8UYC5C7fvsP8SdRYxDB+0/RHv3bm4S7T9+vDSMbh3tP5jI3YNEKO0/sxPG8/Ay7T+mqbd3dD3tP4bXdqnPR+0/7fHFIANS7T8YNmlzD1ztP9bDKjX1Ze0/h67e97Rv7T97I2dLT3ntP+WjuL3Egu0/4VDe2hWM7T//R/4sQ5XtP9AOXjxNnu0/JAxnjzSn7T+ODauq+a/tP+vX6BCduO0/u8EQQx/B7T8WVknAgMntPyD/8wXC0e0/9raxj+PZ7T/+vWfX5eHtP7BVRFXJ6e0/4X7Df47x7T/DurPLNfntP57NOqy/AO4/ooLakiwI7j/ob3XvfA/uPwe6UzCxFu4/gtYnwskd7j9mTBMQxyTuP3hyq4OpK+4/cir+hHEy7j+mmJZ6HznuP47XgcmzP+4/0qZT1S5G7j9BFSsAkUzuP0Ylt6raUu4/jWs7NAxZ7j9Hp5T6JV/uP9xTPVooZe4/kjNSrhNr7j/g0pZQ6HDuPy0Eepmmdu4/mlMa4E587j+ockp64YHuP26blbxeh+4/KutD+saM7j/8s16FGpLuP4PFtK5Zl+4/UqzexYSc7j/s50IZnKHuPzgXGvafpu4/RBtzqJCr7j8xMDd7brDuPzT8Lbg5te4/iJQBqPK57j9AeEKSmb7uP+OAa70uw+4/vcjlbrLH7j/bhgzrJMzuP57gMHWG0O4/4LCdT9fU7j+aRJu7F9nuPxINc/lH3e4/eUdzSGjh7j8MmvLmeOXuP6KmUxJ66e4/rpIIB2zt7j/EhJYAT/HuP5UXmTkj9e4/YsLF6+j47j8FN+9PoPzuP3u1CJ5JAO8/DFUpDeUD7z8SQ4/TcgfvP2b3oibzCu8/il76OmYO7z+a+VtEzBHvPwD0wXUlFe8/Fi9dAXIY7z+yQ5gYshvvP7Z5GuzlHu8/pLXKqw0i7z9iXNKGKSXvPy4toKs5KO8/0BHrRz4r7z8w5bSINy7vP1IwTZolMe8/2N1TqAg07z8Z5Lvd4DbvP97lzWSuOe8/5skqZ3E87z83Sc4NKj/vP2J0EYHYQe8/xi+t6HxE7z/kprxrF0fvP/C2vzCoSe8/klCdXS9M7z8a0aUXrU7vPxRTlYMhUe8/cPaVxYxT7z9KIEIB71XvP2KypllIWO8/eTpF8Zha7z96GRbq4FzvP7SiimUgX+8/LjOPhFdh7z8TQY1nhmPvP35jbS6tZe8/jlKZ+Mtn7z/63/3k4mnvPy7oDBLya+8/Bzy/nflt7z9Qg5al+W/vPwgYn0byce8/mNpxneNz7z8F/zXGzXXvPzPTotywd+8/Yn4B/Ix57z/euS4/YnvvPxaDnMAwfe8/GsdTmvh+7z+qB/bluYDvP875vrx0gu8/Oh6GNymE7z9hU8Bu14XvP3dhgXp/h+8/W4B9ciGJ7z+Q1wpuvYrvP0v4IoRTjO8/vFFky+ON7z+QnxNabo/vP+FSHUbzkO8/fvUWpXKS7z/Gh0CM7JPvPxbZhRBhle8/39p/RtCW7z947nVCOpjvP8gtXxifme8/z67j2/6a7z8jwl2gWZzvP38s23ivne8/aFseeACf7z//lJ+wTKDvPxojjjSUoe8/pXnRFdei7z90WApmFaTvP3jokzZPpe8/kdSEmISm7z/gXbCctafvP9Brp1PiqO8/1pe5zQqq7z/yNPYaL6vvPxZTLUtPrO8/ZL7wbWut7z97+pSSg67vP7g5MsiXr+8/nFClHaiw7z9YpZChtLHvP4IbXWK9su8/I/w6bsKz7z8K2iLTw7TvP4By1p7Bte8/eIrh3ru27z80yJqgsrfvP3CJJPGluO8/NrZt3ZW57z9QkDJygrrvP2Z//btru+8/8Nknx1G87z/kqtqfNL3vP0t0D1IUvu8/tu6Q6fC+7z+qxftxyr/vPwlRv/agwO8/jkseg3TB7z9Yhi8iRcLvP5aZ3t4Sw+8/dJLsw93D7z8qnvDbpcTvP2OyWDFrxe8/6jJqzi3G7z+2lEK97cbvP1n+1werx+8/5uX5t2XI7z9KrFHXHcnvPy02Y2/Tye8/YIKNiYbK7z/sPQsvN8vvP7ZV82jly+8/3YU5QJHM7z/E5q69Os3vP953Aurhze8/RKjBzYbO7z8g3VhxKc/vP+L1E93Jz+8/bM4eGWjQ7z8hv4UtBNHvP+QaNiKe0e8/GKv+/jXS7z+pKZDLy9LvPxi5fY9f0+8/olo9UvHT7z+IYigbgdTvP3Dqe/EO1e8/+kFZ3JrV7z+MXcbiJNbvP05Drgut1u8/dHbhXTPX7z/GYBbgt9fvP4a66Zg62O8/ovDejrvY7z9KiWDIOtnvP+aGwEu42e8/gck4HzTa7z+fbutIrtrvP4ov484m2+8/JL4Tt53b7z88IFoHE9zvP2sJfcWG3O8/hjMt9/jc7z+otQWiad3vP9FZjMvY3e8/OPExeUbe7z8wp1Kwst7vP85SNnYd3+8/OscQ0Ibf7z+yIgLD7t/vP14cF1RV4O8/0FBJiLrg7z9ljX9kHuHvP1kaju2A4e8/xgM3KOLh7z9oYSoZQuLvP0udBsWg4u8/TrlYMP7i7z+Rk5xfWuPvP9IpPVe14+8/rtuUGw/k7z/bq+2wZ+TvP1qAgRu/5O8/pWF6XxXl7z/VuPKAauXvP9iM9YO+5e8/qL5+bBHm7z+IRHs+Y+bvP2Zkyf2z5u8/Mu04rgPn7z9tb4tTUufvP7p0dPGf5+8/mraZi+zn7z9NVJMlOOjvP9IH7MKC6O8/FlohZ8zo7z9K1qMVFenvP3Q819Fc6e8/LrMSn6Pp7z+Y+KCA6envP46SwHku6u8/Fv6jjXLq7z8Q3nG/tervPykpRRL46u8/GlctiTnr7z8pjS4neuvvPwDKQe+56+8/yhBV5Pjr7z+wk0sJN+zvP5vd/WB07O8/Wvs57rDs7z8mpMOz7OzvP3BhVLQn7e8/Lrab8mHt7z9qRT9xm+3vP1D42jLU7e8/liMBOgzu7z9SrDqJQ+7vP0AsByN67u8/bhXdCbDu7z9o1SlA5e7vP8b3UcgZ7+8/QEixpE3v7z8y9JrXgO/vP5arWWOz7+8/iMEvSuXv7z8+TFeOFvDvP4BEAjJH8O8/rqRaN3fw7z85h4KgpvDvP7ZElG/V8O8/apGipgPx7z9smrhHMfHvP0si2lRe8e8/Rp0D0Irx7z8XTSq7tvHvP0hcPBji8e8/KPkg6Qzy7z9DcLgvN/LvP4hG3O1g8u8/9lJfJYry7z/m1w3YsvLvP/6brQfb8u8/rgL+tQLz7z9eJLjkKfPvPzLmjpVQ8+8/chEvynbz7z+aaj+EnPPvPwzIYMXB8+8/aCguj+bz7z+OyDzjCvTvP0o5HMMu9O8/qXRWMFL07z/68m8sdfTvP32/57iX9O8/yIw317n07z/KyNOI2/TvP5mwK8/89O8/2GOpqx317z/o97EfPvXvP7uKpSxe9e8/b1Xf03317z+QvrUWnfXvPyJseva79e8/UlV6dNr17z/60/2R+PXvP8y1SFAW9u8/QE2asDP27z9Kgi20UPbvP8DiOFxt9u8/jLLuqYn27z+W+3yepfbvP3qdDTvB9u8/9FzGgNz27z8i88hw9/bvP3gcMwwS9+8/h6ceVCz37z+Hg6FJRvfvP6XOze1f9+8/IuSxQXn37z8xalhGkvfvP6pfyPyq9+8/gSkFZsP37z8KoA6D2/fvPw4c4VTz9+8/poN13Ar47z/wVsEaIvjvP4a8thA5+O8/zo1Ev0/47z8YY1YnZvjvP46f1El8+O8/9nykJ5L47z9EF6jBp/jvPwZ4vhi9+O8/m6HDLdL47z9MmpAB5/jvPy53+5T7+O8/4GbX6A/57z8ivPT9I/nvPz74INU3+e8/TNUmb0v57z9VUM7MXvnvP0Kz3O5x+e8/sJ4U1oT57z+cEzaDl/nvP+p8/vap+e8/w7goMrz57z/YIW01zvnvP3yYgQHg+e8/nIsZl/H57z+YAeb2AvrvP/iglSEU+u8/+rjUFyX67z8USk3aNfrvPzgOp2lG+u8/FYGHxlb67z8k6JHxZvrvP6VaZ+t2+u8/dMmmtIb67z/EBu1NlvrvP8PN1Lel+u8/Esr28rT67z80n+n/w/rvP9DvQd/S+u8/5GSSkeH67z/TtGsX8PrvP2OqXHH++u8/mCvynwz77z96QLejGvvvP74ZNX0o++8/XBfzLDb77z8Gz3azQ/vvP4cSRBFR++8/FPbcRl777z951sFUa/vvPzJfcTt4++8/dJBo+4T77z8YxSKVkfvvP3a4GQme++8/IozFV6r77z+czZyBtvvvP+Z7FIfC++8/CA2gaM777z98c7Em2vvvP4sjucHl++8/khgmOvH77z8z2mWQ/PvvP3iB5MQH/O8/2r0M2BL87z9B2kfKHfzvP+jB/Zso/O8/MgWVTTP87z9w3nLfPfzvP482+1FI/O8/vKmQpVL87z/xi5TaXPzvP3jtZvFm/O8/Up9m6nD87z+eN/HFevzvP94VY4SE/O8/PGcXJo787z+yKmirl/zvPy81rhSh/O8/pjVBYqr87z8MuXeUs/zvP0wup6u8/O8/LuojqMX87z8oK0GKzvzvPygdUVLX/O8/Ut2kAOD87z+kfYyV6PzvP5wIVxHx/O8/yoRSdPn87z9M+Mu+Af3vP1RsD/EJ/e8/iPBnCxL97z9knh8OGv3vP5Kcf/kh/e8/KSLQzSn97z/seViLMf3vP3oFXzI5/e8/cEApw0D97z9+w/s9SP3vP31HGqNP/e8/Z6jH8lb97z9U6EUtXv3vP2cy1lJl/e8/q924Y2z97z/vby1gc/3vP5Kgckh6/e8/RVvGHIH97z/GwmXdh/3vP48zjYqO/e8/ekZ4JJX97z9h02Grm/3vP6zzgx+i/e8/4gQYgaj97z8eq1bQrv3vP5TTdw21/e8/97ayOLv97z/i2z1Swf3vPzUZT1rH/e8/apgbUc397z/i19c20/3vPyuttwvZ/e8/Okfuz9797z+fMK6D5P3vP7ZRKSfq/e8/yfKQuu/97z8rvhU+9f3vP1LC57H6/e8/5XM2FgD+7z+/rzBrBf7vP/K8BLEK/u8/w07g5w/+7z+ThvAPFf7vP9T1YSka/u8/5J9gNB/+7z/0+xcxJP7vP9T2sh8p/u8/0PRbAC7+7z9s0zzTMv7vPzPrfpg3/u8/cBFLUDz+7z/nmcn6QP7vP4JYIphF/u8/AKN8KEr+7z+dUv+rTv7vP6rF0CJT/u8/MOEWjVf+7z9+EvfqW/7vP7lQljxg/u8/aB4ZgmT+7z/2iqO7aP7vPzE0Wels/u8/xEddC3H+7z+ohNIhdf7vP5w82yx5/u8/hlWZLH3+7z/bSi4hgf7vPwIvuwqF/u8/rqxg6Yj+7z81CD+9jP7vP+IgdoaQ/u8/Q3IlRZT+7z9yFWz5l/7vP1zCaKOb/u8//NA5Q5/+7z+eOv3Yov7vPw6b0GSm/u8/1zHR5qn+7z9m4xtfrf7vP0A6zc2w/u8/IGgBM7T+7z8gR9SOt/7vP9paYeG6/u8/fNHDKr7+7z/mhBZrwf7vP7z7c6LE/u8/dmr20Mf+7z9rtLf2yv7vP95s0RPO/u8//9dcKNH+7z/u63I01P7vP71RLDjX/u8/ZWahM9r+7z/CO+om3f7vP4WZHhLg/u8/KP5V9eL+7z/Xn6fQ5f7vP2BtKqTo/u8/GA/1b+v+7z++5x007v7vP14Vu/Dw/u8/MnLipfP+7z92lalT9v7vP0rUJfr4/u8/gUJsmfv+7z91s5Ex/v7vP9q6qsIA/+8/hq3LTAP/7z9CogjQBf/vP45ydUwI/+8/Yrslwgr/7z/+3SwxDf/vP5gAnpkP/+8/Kw+M+xH/7z8kvAlXFP/vPyWBKawW/+8/sp/9+hj/7z/uIZhDG//vP0TbCoYd/+8/G2lnwh//7z+CM7/4If/vP9ptIykk/+8/fBelUyb/7z9i/FR4KP/vP8q1Q5cq/+8/2qqBsCz/7z84ER/ELv/vP7HtK9Iw/+8/zhS42jL/7z9uK9PdNP/vP2SnjNs2/+8/ANDz0zj/7z+uvhfHOv/vP4NfB7U8/+8/zHHRnT7/7z+ciISBQP/vP1oLL2BC/+8/SDbfOUT/7z8NG6MORv/vPz2hiN5H/+8/2oadqUn/7z/cYO9vS//vP62bizFN/+8/rXt/7k7/7z+tHdimUP/vP253olpS/+8/HFjrCVT/7z/CaL+0Vf/vP8gsK1tX/+8/aAI7/Vj/7z8eI/uaWv/vPyCkdzRc/+8/zna8yV3/7z8iadVaX//vPx4mzudg/+8/PDaycGL/7z/U/4z1Y//vP5DHaXZl/+8/yrBT82b/7z/8vVVsaP/vPyTReuFp/+8/KazNUmv/7z888VjAbP/vP0IjJypu/+8/LKZCkG//7z9ev7XycP/vPwyWilFy/+8/lTPLrHP/7z/kg4EEdf/vP8ZVt1h2/+8/SVt2qXf/7z8TKsj2eP/vP7g7tkB6/+8/Fu5Jh3v/7z+gg4zKfP/vP8Ijhwp+/+8/JttCR3//7z8OnMiAgP/vP6Q+IbeB/+8/S4FV6oL/7z/qCG4ahP/vP0Fhc0eF/+8/Mv1tcYb/7z8MN2aYh//vP9tQZLyI/+8/sHRw3Yn/7z/ptJL7iv/vP3wM0xaM/+8/Pl85L43/7z8oes1Ejv/vP6ATl1eP/+8/u8udZ5D/7z+CLOl0kf/vPziqgH+S/+8/lqNrh5P/7z8TYrGMlP/vPyQaWY+V/+8/dutpj5b/7z824eqMl//vP0jy4oeY/+8/hwFZgJn/7z8E3lN2mv/vPz5D2mmb/+8/YtnyWpz/7z+ANaRJnf/vP83Z9DWe/+8/0DXrH5//7z+opo0HoP/vPzl34uyg/+8/aODvz6H/7z9SCbywov/vP34HTY+j/+8/FN+oa6T/7z8Ug9VFpf/vP4XV2B2m/+8/q6e486b/7z84unrHp//vP369JJmo/+8/olG8aKn/7z/JBkc2qv/vP0xdygGr/+8/5sVLy6v/7z/eodCSrP/vPz5DXlit/+8/+uz5G67/7z8g06jdrv/vPwMbcJ2v/+8/aNtUW7D/7z+xHFwXsf/vPwjZitGx/+8/i/zlibL/7z9xZXJAs//vPznkNPWz/+8/0TsyqLT/7z+8IW9Ztf/vPzw+8Ai2/+8/fCy6trb/7z+wetFit//vP0CqOg24/+8/8C/6tbj/7z8AdBRduf/vP1fSjQK6/+8/oJpqprr/7z92EK9Iu//vP4JrX+m7/+8/pNd/iLz/7z8MdRQmvf/vP2tYIcK9/+8/BYuqXL7/7z/fCrT1vv/vP9rKQY2//+8/1LJXI8D/7z/Nn/m3wP/vPwBkK0vB/+8/B8fw3MH/7z/7hU1twv/vP5BTRfzC/+8/NNjbicP/7z8wshQWxP/vP8J186DE/+8/O617KsX/7z8e2bCyxf/vPz1wljnG/+8/0d8vv8b/7z+ai4BDx//vP/zNi8bH/+8/FPhUSMj/7z/ZUd/IyP/vPzUaLkjJ/+8/HodExsn/7z+wxSVDyv/vP0r61L7K/+8/okBVOcv/7z/mq6myy//vP8tG1SrM/+8/rRPbocz/7z+kDL4Xzf/vP54jgYzN/+8/dEInAM7/7z8CS7Nyzv/vP0IXKOTO/+8/XHmIVM//7z/BO9fDz//vP0IhFzLQ/+8/JeVKn9D/7z84O3UL0f/vP+jPmHbR/+8/Wki44NH/7z96QtZJ0v/vPxdV9bHS/+8/7g8YGdP/7z/G+0B/0//vP4KacuTT/+8/NGevSNT/7z8u1vmr1P/vPxxVVA7V/+8/EkvBb9X/7z+fGEPQ1f/vP+AX3C/W/+8/lpyOjtb/7z809Fzs1v/vP/BlSUnX/+8/3DJWpdf/7z/slYUA2P/vPxXE2VrY/+8/UuxUtNj/7z++N/kM2f/vP5zJyGTZ/+8/cr/Fu9n/7z8SMfIR2v/vP6gwUGfa/+8/1Mrhu9r/7z+wBqkP2//vP+blp2Lb/+8/umTgtNv/7z8eelQG3P/vP78XBlfc/+8/FCr3ptz/7z9umCn23P/vPwJFn0Td/+8//wxakt3/7z+WyFvf3f/vPwlLpive/+8/vGI7d97/7z8=\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[1000]}},\"selected\":{\"id\":\"1467\"},\"selection_policy\":{\"id\":\"1466\"}},\"id\":\"1452\",\"type\":\"ColumnDataSource\"},{\"attributes\":{\"source\":{\"id\":\"1452\"}},\"id\":\"1456\",\"type\":\"CDSView\"},{\"attributes\":{\"label\":{\"value\":\"PDF\"},\"renderers\":[{\"id\":\"1439\"}]},\"id\":\"1451\",\"type\":\"LegendItem\"},{\"attributes\":{\"background_fill_color\":\"#fefefe\",\"items\":[{\"id\":\"1451\"},{\"id\":\"1468\"}],\"location\":\"center_right\"},\"id\":\"1450\",\"type\":\"Legend\"},{\"attributes\":{},\"id\":\"1472\",\"type\":\"DataRange1d\"},{\"attributes\":{},\"id\":\"1539\",\"type\":\"BasicTicker\"},{\"attributes\":{},\"id\":\"1390\",\"type\":\"UnionRenderers\"},{\"attributes\":{},\"id\":\"1391\",\"type\":\"Selection\"},{\"attributes\":{},\"id\":\"1443\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{},\"id\":\"1466\",\"type\":\"UnionRenderers\"},{\"attributes\":{\"data\":{\"left\":{\"__ndarray__\":\"KqYf47TW1DmTQ8IrApnpP5NDwisCmfk/rrLRoMEyA0CTQ8IrApkJQHjUsrZC/w9ArrLRoMEyE0Ah+0nm4WUWQJNDwisCmRlABYw6cSLMHEB41LK2Qv8fQHWOFX4xmSFArrLRoMEyI0Dn1o3DUcwkQCH7SebhZSZAWh8GCXL/J0CTQ8IrApkpQMxnfk6SMitABYw6cSLMLEA/sPaTsmUuQHjUsrZC/y9AWHy3bGnMMEB1jhV+MZkxQJKgc4/5ZTJArrLRoMEyM0DLxC+yif8zQOfWjcNRzDRABOnr1BmZNUAh+0nm4WU2QD0NqPepMjdAWh8GCXL/N0B2MWQaOsw4QJNDwisCmTlAsFUgPcplOkDMZ35OkjI7QOl53F9a/ztABYw6cSLMPEAinpiC6pg9QD+w9pOyZT5AW8JUpXoyP0B41LK2Qv8/QEpzCGQFZkBAWHy3bGnMQEBnhWZ1zTJBQHWOFX4xmUFAg5fEhpX/QUCSoHOP+WVCQKCpIphdzEJArrLRoMEyQ0C9u4CpJZlDQA==\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[50]},\"right\":{\"__ndarray__\":\"k0PCKwKZ6T+TQ8IrApn5P66y0aDBMgNAk0PCKwKZCUB41LK2Qv8PQK6y0aDBMhNAIftJ5uFlFkCTQ8IrApkZQAWMOnEizBxAeNSytkL/H0B1jhV+MZkhQK6y0aDBMiNA59aNw1HMJEAh+0nm4WUmQFofBgly/ydAk0PCKwKZKUDMZ35OkjIrQAWMOnEizCxAP7D2k7JlLkB41LK2Qv8vQFh8t2xpzDBAdY4VfjGZMUCSoHOP+WUyQK6y0aDBMjNAy8Qvson/M0Dn1o3DUcw0QATp69QZmTVAIftJ5uFlNkA9Daj3qTI3QFofBgly/zdAdjFkGjrMOECTQ8IrApk5QLBVID3KZTpAzGd+TpIyO0DpedxfWv87QAWMOnEizDxAIp6YguqYPUA/sPaTsmU+QFvCVKV6Mj9AeNSytkL/P0BKcwhkBWZAQFh8t2xpzEBAZ4Vmdc0yQUB1jhV+MZlBQIOXxIaV/0FAkqBzj/llQkCgqSKYXcxCQK6y0aDBMkNAvbuAqSWZQ0DLxC+yif9DQA==\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[50]},\"top\":{\"__ndarray__\":\"07gFI/BJ8D+aF/xRaCGpPz2cRyd+CqI/yWSZXpommz9AbrbbPjCVP83LHEWikZA/4pCYDHgEij9LX6t+eUmFP7LFks6HFYI/yKNNd3kbfj9rsPKY5357P0AVlhYRnnY/6aoEucahdT/Selv9rJNyP/EOAT427m8/yMzEgI2faT/tAyV+9DNkP8/xkXxl82A/y+1i3+HGXD9ggEndzXBYP1lfq355SVU/TgLhqw+HUj+zD6g28MBQP7QI8fSiOkk/Lrx1UeMLSD8T1wNnpH9EPz5fq355STU/+dYDZ6R/ND8T1wNnpH80PzI63oKh9S0/tAjx9KI6KT+6Si2yS4kfP4PnUpZOEyY/tAjx9KI6KT+6Si2yS4kPP4jGtDf66xI/cMa0N/rrEj+VCPH0ojoZP4jGtDf66xI/qCmPU/dhHD/iSi2yS4kPP4jGtDf66xI/dQjx9KI6+T6IxrQ3+usCP4jGtDf66wI/dQjx9KI66T60CPH0ojrpPrQI8fSiOvk+dQjx9KI66T60CPH0ojrpPg==\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[50]}},\"selected\":{\"id\":\"1505\"},\"selection_policy\":{\"id\":\"1504\"}},\"id\":\"1489\",\"type\":\"ColumnDataSource\"},{\"attributes\":{\"text\":\"Gamma Distribution (k=7.5, \\u03b8=1)\"},\"id\":\"1470\",\"type\":\"Title\"},{\"attributes\":{\"data\":{\"x\":{\"__ndarray__\":\"AAAAAAAAAMD6/lt/me//v/P9t/4y3/+/7fwTfszO/7/m+2/9Zb7/v+D6y3z/rf+/2vkn/Jid/7/T+IN7Mo3/v8333/rLfP+/xvY7emVs/7/A9Zf5/lv/v7r083iYS/+/s/NP+DE7/7+t8qt3yyr/v6bxB/dkGv+/oPBjdv4J/7+a77/1l/n+v5PuG3Ux6f6/je139MrY/r+G7NNzZMj+v4DrL/P9t/6/euqLcpen/r9z6efxMJf+v23oQ3HKhv6/Zuef8GN2/r9g5vtv/WX+v1nlV++WVf6/U+SzbjBF/r9N4w/uyTT+v0bia21jJP6/QOHH7PwT/r854CNslgP+vzPff+sv8/2/Ld7basni/b8m3TfqYtL9vyDck2n8wf2/Gdvv6JWx/b8T2ktoL6H9vwzZp+fIkP2/BtgDZ2KA/b8A11/m+2/9v/nVu2WVX/2/89QX5S5P/b/s03NkyD79v+bSz+NhLv2/4NErY/sd/b/Z0IfilA39v9PP42Eu/fy/zM4/4cfs/L/GzZtgYdz8v8DM99/6y/y/uctTX5S7/L+zyq/eLav8v6zJC17Hmvy/pshn3WCK/L+gx8Nc+nn8v5nGH9yTafy/k8V7Wy1Z/L+MxNfaxkj8v4bDM1pgOPy/gMKP2fkn/L95wetYkxf8v3PAR9gsB/y/bL+jV8b2+79mvv/WX+b7v2C9W1b51fu/Wby31ZLF+79TuxNVLLX7v0y6b9TFpPu/RrnLU1+U+79AuCfT+IP7vzm3g1KSc/u/M7bf0Stj+78stTtRxVL7vya0l9BeQvu/ILPzT/gx+78Zsk/PkSH7vxOxq04rEfu/DLAHzsQA+78Gr2NNXvD6vwCuv8z33/q/+awbTJHP+r/zq3fLKr/6v+yq00rErvq/5qkvyl2e+r/gqItJ9436v9mn58iQffq/06ZDSCpt+r/MpZ/Hw1z6v8ak+0ZdTPq/wKNXxvY7+r+5orNFkCv6v7KhD8UpG/q/rKBrRMMK+r+mn8fDXPr5v6CeI0P26fm/mZ1/wo/Z+b+SnNtBKcn5v4ybN8HCuPm/hpqTQFyo+b+Ame+/9Zf5v3mYSz+Ph/m/cpenvih3+b9slgM+wmb5v2aVX71bVvm/X5S7PPVF+b9Zkxe8jjX5v1KSczsoJfm/TJHPusEU+b9GkCs6WwT5vz+Ph7n08/i/OY7jOI7j+L8yjT+4J9P4vyyMmzfBwvi/Jov3tlqy+L8filM29KH4vxmJr7WNkfi/EogLNSeB+L8Mh2e0wHD4vwaGwzNaYPi//4Qfs/NP+L/5g3syjT/4v/KC17EmL/i/7IEzMcAe+L/mgI+wWQ74v99/6y/z/fe/2X5Hr4zt97/SfaMuJt33v8x8/62/zPe/xntbLVm897+/eres8qv3v7l5EyyMm/e/snhvqyWL97+sd8sqv3r3v6Z2J6pYave/n3WDKfJZ97+ZdN+oi0n3v5JzOyglOfe/jHKXp74o97+GcfMmWBj3v39wT6bxB/e/eG+rJYv39r9ybgelJOf2v2xtYyS+1va/Zmy/o1fG9r9faxsj8bX2v1hqd6KKpfa/UmnTISSV9r9MaC+hvYT2v0ZniyBXdPa/P2bnn/Bj9r84ZUMfilP2vzJkn54jQ/a/LGP7Hb0y9r8mYledViL2vx9hsxzwEfa/GGAPnIkB9r8SX2sbI/H1vwxex5q84PW/Bl0jGlbQ9b//W3+Z77/1v/ha2xiJr/W/8lk3mCKf9b/sWJMXvI71v+ZX75ZVfvW/31ZLFu9t9b/YVaeViF31v9JUAxUiTfW/zFNflLs89b/GUrsTVSz1v79RF5PuG/W/uFBzEogL9b+yT8+RIfv0v6xOKxG76vS/pk2HkFTa9L+fTOMP7sn0v5hLP4+HufS/kkqbDiGp9L+MSfeNupj0v4ZIUw1UiPS/f0evjO139L94RgsMh2f0v3JFZ4sgV/S/bETDCrpG9L9lQx+KUzb0v19CewntJfS/WEHXiIYV9L9SQDMIIAX0v0w/j4e59PO/RT7rBlPk878/PUeG7NPzvzg8owWGw/O/Mjv/hB+z878sOlsEuaLzvyU5t4NSkvO/HzgTA+yB878YN2+ChXHzvxI2ywEfYfO/DDUngbhQ878FNIMAUkDzv/8y33/rL/O/+DE7/4Qf87/yMJd+Hg/zv+wv8/23/vK/5S5PfVHu8r/eLav86t3yv9gsB3yEzfK/0itj+x298r/MKr96t6zyv8UpG/pQnPK/vih3eeqL8r+4J9P4g3vyv7ImL3gda/K/rCWL97Za8r+lJOd2UEryv54jQ/bpOfK/mCKfdYMp8r+SIfv0HBnyv4wgV3S2CPK/hR+z80/48b9+Hg9z6efxv3gda/KC1/G/chzHcRzH8b9sGyPxtbbxv2Uaf3BPpvG/Xhnb7+iV8b9YGDdvgoXxv1IXk+4bdfG/TBbvbbVk8b9FFUvtTlTxvz4Up2zoQ/G/OBMD7IEz8b8yEl9rGyPxvywRu+q0EvG/JRAXak4C8b8eD3Pp5/HwvxgOz2iB4fC/Eg0r6BrR8L8MDIdntMDwvwUL4+ZNsPC//gk/Zuef8L/4CJvlgI/wv/IH92Qaf/C/7AZT5LNu8L/lBa9jTV7wv94EC+PmTfC/2ANnYoA98L/SAsPhGS3wv8sBH2GzHPC/xQB74EwM8L98/62/zPfvv3D9Zb7/1u+/ZPsdvTK2779W+dW7ZZXvv0r3jbqYdO+/PPVFuctT778w8/23/jLvvyTxtbYxEu+/Fu9ttWTx7r8K7SW0l9Duv/zq3bLKr+6/8OiVsf2O7r/k5k2wMG7uv9bkBa9jTe6/yuK9rZYs7r+84HWsyQvuv7DeLav86u2/pNzlqS/K7b+W2p2oYqntv4rYVaeViO2/fNYNpshn7b9w1MWk+0btv2TSfaMuJu2/VtA1omEF7b9Kzu2glOTsvzzMpZ/Hw+y/MMpdnvqi7L8iyBWdLYLsvxbGzZtgYey/CsSFmpNA7L/8wT2Zxh/sv/C/9Zf5/uu/4r2tlize67/Wu2WVX73rv8q5HZSSnOu/vLfVksV767+wtY2R+Frrv6KzRZArOuu/lrH9jl4Z67+Kr7WNkfjqv3ytbYzE1+q/cKsli/e26r9iqd2JKpbqv1anlYhddeq/SqVNh5BU6r88owWGwzPqvzChvYT2Euq/Ip91gyny6b8WnS2CXNHpvwqb5YCPsOm//Jidf8KP6b/wllV+9W7pv+KUDX0oTum/1pLFe1st6b/IkH16jgzpv7yONXnB6+i/sIztd/TK6L+iiqV2J6rov5aIXXVaiei/iIYVdI1o6L98hM1ywEfov3CChXHzJui/YoA9cCYG6L9WfvVuWeXnv0h8rW2MxOe/PHplbL+j578weB1r8oLnvyJ21WklYue/FnSNaFhB578IckVniyDnv/xv/WW+/+a/8G21ZPHe5r/ia21jJL7mv9ZpJWJXnea/yGfdYIp85r+8ZZVfvVvmv7BjTV7wOua/omEFXSMa5r+WX71bVvnlv4hddVqJ2OW/fFstWby35b9wWeVX75blv2JXnVYiduW/VlVVVVVV5b9IUw1UiDTlvzxRxVK7E+W/ME99Ue7y5L8iTTVQIdLkvxZL7U5UseS/CEmlTYeQ5L/8Rl1Mum/kv+5EFUvtTuS/4kLNSSAu5L/WQIVIUw3kv8g+PUeG7OO/vDz1RbnL47+uOq1E7Krjv6I4ZUMfiuO/ljYdQlJp47+INNVAhUjjv3wyjT+4J+O/bjBFPusG479iLv08Hubiv1YstTtRxeK/SCptOoSk4r88KCU5t4Pivy4m3TfqYuK/IiSVNh1C4r8WIk01UCHivwggBTSDAOK//B29Mrbf4b/uG3Ux6b7hv+IZLTAcnuG/1hflLk994b/IFZ0tglzhv7wTVSy1O+G/rhENK+ga4b+iD8UpG/rgv5QNfShO2eC/iAs1J4G44L98Ce0ltJfgv24HpSTnduC/YgVdIxpW4L9UAxUiTTXgv0gBzSCAFOC/eP4JP2bn379c+nk8zKXfv0T26TkyZN+/KPJZN5gi378Q7sk0/uDev/jpOTJkn96/3OWpL8pd3r/E4RktMBzev6jdiSqW2t2/kNn5J/yY3b941WklYlfdv1zR2SLIFd2/RM1JIC7U3L8oybkdlJLcvxDFKRv6UNy/+MCZGGAP3L/cvAkWxs3bv8S4eRMsjNu/qLTpEJJK27+QsFkO+Ajbv3isyQtex9q/XKg5CcSF2r9EpKkGKkTavyigGQSQAtq/EJyJAfbA2b/4l/n+W3/Zv9yTafzBPdm/xI/Z+Sf82L+oi0n3jbrYv5CHufTzeNi/dIMp8lk32L9cf5nvv/XXv0R7Ce0ltNe/KHd56oty178Qc+nn8TDXv/RuWeVX79a/3GrJ4r2t1r/EZjngI2zWv6hiqd2JKta/kF4Z2+/o1b90WonYVafVv1xW+dW7ZdW/RFJp0yEk1b8oTtnQh+LUvxBKSc7toNS/9EW5y1Nf1L/cQSnJuR3Uv8Q9mcYf3NO/qDkJxIWa07+QNXnB61jTv3Qx6b5RF9O/XC1ZvLfV0r9EKcm5HZTSvyglObeDUtK/ECGptOkQ0r/0HBmyT8/Rv9wYia+1jdG/wBT5rBtM0b+oEGmqgQrRv5AM2afnyNC/dAhJpU2H0L9cBLmis0XQv0AAKaAZBNC/UPgxO/+Ez78g8BE2ywHPv+jn8TCXfs6/uN/RK2P7zb+A17EmL3jNv1DPkSH79My/IMdxHMdxzL/ovlEXk+7Lv7i2MRJfa8u/gK4RDSvoyr9QpvEH92TKvyCe0QLD4cm/6JWx/Y5eyb+4jZH4WtvIv4CFcfMmWMi/UH1R7vLUx78gdTHpvlHHv+hsEeSKzsa/uGTx3lZLxr+AXNHZIsjFv1BUsdTuRMW/IEyRz7rBxL/oQ3HKhj7Ev7g7UcVSu8O/gDMxwB44w79QKxG76rTCvyAj8bW2McK/6BrRsIKuwb+4ErGrTivBv4AKkaYaqMC/UAJxoeYkwL8w9KE4ZUO/v9DjYS79PL6/cNMhJJU2vb8Aw+EZLTC8v6CyoQ/FKbu/MKJhBV0jur/QkSH79By5v3CB4fCMFri/AHGh5iQQt7+gYGHcvAm2vzBQIdJUA7W/0D/hx+z8s79wL6G9hPayvwAfYbMc8LG/oA4hqbTpsL9g/ME9mcavv6DbQSnJua2/4LrBFPmsq78AmkEAKaCpv0B5wetYk6e/YFhB14iGpb+gN8HCuHmjv+AWQa7obKG/AOyBMzHAnr+AqoEKkaaav8BogeHwjJa/QCeBuFBzkr8AywEfYbOMvwBIAc0ggIS/AIoB9sCZeL8ABgGkgGZgvwAIAaSAZmA/AIoB9sCZeD8ASAHNIICEPwDLAR9hs4w/ACeBuFBzkj8AaYHh8IyWP4CqgQqRppo/AOyBMzHAnj/AFkGu6GyhP4A3wcK4eaM/gFhB14iGpT9AecHrWJOnPwCaQQApoKk/wLrBFPmsqz+A20EpybmtP4D8wT2Zxq8/oA4hqbTpsD8AH2GzHPCxP2Avob2E9rI/wD/hx+z8sz9AUCHSVAO1P6BgYdy8CbY/AHGh5iQQtz9ggeHwjBa4P8CRIfv0HLk/QKJhBV0juj+gsqEPxSm7PwDD4RktMLw/YNMhJJU2vT/A42Eu/Ty+P0D0oThlQ78/UAJxoeYkwD+ACpGmGqjAP7ASsatOK8E/4BrRsIKuwT8gI/G1tjHCP1ArEbvqtMI/gDMxwB44wz+wO1HFUrvDP+BDccqGPsQ/IEyRz7rBxD9QVLHU7kTFP4Bc0dkiyMU/sGTx3lZLxj/gbBHkis7GPyB1Mem+Ucc/UH1R7vLUxz+AhXHzJljIP7CNkfha28g/8JWx/Y5eyT8gntECw+HJP1Cm8Qf3ZMo/gK4RDSvoyj+wtjESX2vLP/C+UReT7ss/IMdxHMdxzD9Qz5Eh+/TMP4DXsSYveM0/sN/RK2P7zT/w5/Ewl37OPyDwETbLAc8/UPgxO/+Ezz9AACmgGQTQP1gEuaKzRdA/eAhJpU2H0D+QDNmn58jQP6gQaaqBCtE/wBT5rBtM0T/YGImvtY3RP/gcGbJPz9E/ECGptOkQ0j8oJTm3g1LSP0ApybkdlNI/WC1ZvLfV0j94Mem+URfTP5A1ecHrWNM/qDkJxIWa0z/APZnGH9zTP9hBKcm5HdQ/+EW5y1Nf1D8QSknO7aDUPyhO2dCH4tQ/QFJp0yEk1T9YVvnVu2XVP3haidhVp9U/kF4Z2+/o1T+oYqndiSrWP8BmOeAjbNY/2GrJ4r2t1j/4blnlV+/WPxBz6efxMNc/KHd56oty1z9AewntJbTXP1h/me+/9dc/eIMp8lk32D+Qh7n083jYP6iLSfeNutg/wI/Z+Sf82D/Yk2n8wT3ZP/iX+f5bf9k/EJyJAfbA2T8ooBkEkALaP0CkqQYqRNo/WKg5CcSF2j94rMkLXsfaP5CwWQ74CNs/qLTpEJJK2z/AuHkTLIzbP+C8CRbGzds/+MCZGGAP3D8QxSkb+lDcPyjJuR2Uktw/QM1JIC7U3D9g0dkiyBXdP3jVaSViV90/kNn5J/yY3T+o3YkqltrdP8DhGS0wHN4/4OWpL8pd3j/46TkyZJ/ePxDuyTT+4N4/KPJZN5gi3z9A9uk5MmTfP2D6eTzMpd8/eP4JP2bn3z9IAc0ggBTgP1QDFSJNNeA/YAVdIxpW4D9wB6Uk53bgP3wJ7SW0l+A/iAs1J4G44D+UDX0oTtngP6APxSkb+uA/sBENK+ga4T+8E1UstTvhP8gVnS2CXOE/1BflLk994T/gGS0wHJ7hP/AbdTHpvuE//B29Mrbf4T8IIAU0gwDiPxQiTTVQIeI/ICSVNh1C4j8wJt036mLiPzwoJTm3g+I/SCptOoSk4j9ULLU7UcXiP2Au/Twe5uI/cDBFPusG4z98Mo0/uCfjP4g01UCFSOM/lDYdQlJp4z+gOGVDH4rjP7A6rUTsquM/vDz1RbnL4z/IPj1HhuzjP9RAhUhTDeQ/4ELNSSAu5D/wRBVL7U7kP/xGXUy6b+Q/CEmlTYeQ5D8US+1OVLHkPyBNNVAh0uQ/ME99Ue7y5D88UcVSuxPlP0hTDVSINOU/VFVVVVVV5T9gV51WInblP3BZ5VfvluU/fFstWby35T+IXXVaidjlP5RfvVtW+eU/oGEFXSMa5j+wY01e8DrmP7xllV+9W+Y/yGfdYIp85j/UaSViV53mP+RrbWMkvuY/8G21ZPHe5j/8b/1lvv/mPwhyRWeLIOc/FHSNaFhB5z8kdtVpJWLnPzB4HWvyguc/PHplbL+j5z9IfK1tjMTnP1R+9W5Z5ec/ZIA9cCYG6D9wgoVx8yboP3yEzXLAR+g/iIYVdI1o6D+UiF11WonoP6SKpXYnqug/sIztd/TK6D+8jjV5wevoP8iQfXqODOk/1JLFe1st6T/klA19KE7pP/CWVX71buk//Jidf8KP6T8Im+WAj7DpPxSdLYJc0ek/JJ91gyny6T8wob2E9hLqPzyjBYbDM+o/SKVNh5BU6j9Up5WIXXXqP2Sp3Ykqluo/cKsli/e26j98rW2MxNfqP4ivtY2R+Oo/lLH9jl4Z6z+ks0WQKzrrP7C1jZH4Wus/vLfVksV76z/IuR2UkpzrP9S7ZZVfves/5L2tlize6z/wv/WX+f7rP/zBPZnGH+w/CMSFmpNA7D8Uxs2bYGHsPyTIFZ0tguw/MMpdnvqi7D88zKWfx8PsP0jO7aCU5Ow/VNA1omEF7T9k0n2jLibtP3DUxaT7Ru0/fNYNpshn7T+I2FWnlYjtP5Tanahiqe0/pNzlqS/K7T+w3i2r/OrtP7zgdazJC+4/yOK9rZYs7j/Y5AWvY03uP+TmTbAwbu4/8OiVsf2O7j/86t2yyq/uPwjtJbSX0O4/GO9ttWTx7j8k8bW2MRLvPzDz/bf+Mu8/PPVFuctT7z9I9426mHTvP1j51btlle8/ZPsdvTK27z9w/WW+/9bvP3z/rb/M9+8/xAB74EwM8D/MAR9hsxzwP9ICw+EZLfA/2ANnYoA98D/eBAvj5k3wP+QFr2NNXvA/7AZT5LNu8D/yB/dkGn/wP/gIm+WAj/A//gk/Zuef8D8EC+PmTbDwPwwMh2e0wPA/Eg0r6BrR8D8YDs9ogeHwPx4Pc+nn8fA/JBAXak4C8T8sEbvqtBLxPzISX2sbI/E/OBMD7IEz8T8+FKds6EPxP0QVS+1OVPE/TBbvbbVk8T9SF5PuG3XxP1gYN2+ChfE/Xhnb7+iV8T9kGn9wT6bxP2wbI/G1tvE/chzHcRzH8T94HWvygtfxP34eD3Pp5/E/hB+z80/48T+MIFd0tgjyP5Ih+/QcGfI/mCKfdYMp8j+eI0P26TnyP6Qk53ZQSvI/rCWL97Za8j+yJi94HWvyP7gn0/iDe/I/vih3eeqL8j/EKRv6UJzyP8wqv3q3rPI/0itj+x298j/YLAd8hM3yP94tq/zq3fI/5C5PfVHu8j/sL/P9t/7yP/Iwl34eD/M/+DE7/4Qf8z/+Mt9/6y/zPwQ0gwBSQPM/DDUngbhQ8z8SNssBH2HzPxg3b4KFcfM/HjgTA+yB8z8mObeDUpLzPyw6WwS5ovM/Mjv/hB+z8z84PKMFhsPzPz49R4bs0/M/Rj7rBlPk8z9MP4+HufTzP1JAMwggBfQ/WEHXiIYV9D9eQnsJ7SX0P2ZDH4pTNvQ/bETDCrpG9D9yRWeLIFf0P3hGCwyHZ/Q/fkevjO139D+GSFMNVIj0P4xJ9426mPQ/kkqbDiGp9D+YSz+Ph7n0P55M4w/uyfQ/pk2HkFTa9D+sTisRu+r0P7JPz5Eh+/Q/uFBzEogL9T++UReT7hv1P8ZSuxNVLPU/zFNflLs89T/SVAMVIk31P9hVp5WIXfU/3lZLFu9t9T/mV++WVX71P+xYkxe8jvU/8lk3mCKf9T/4WtsYia/1P/5bf5nvv/U/Bl0jGlbQ9T8MXseavOD1PxJfaxsj8fU/GGAPnIkB9j8eYbMc8BH2PyZiV51WIvY/LGP7Hb0y9j8yZJ+eI0P2PzhlQx+KU/Y/Pmbnn/Bj9j9GZ4sgV3T2P0xoL6G9hPY/UmnTISSV9j9YaneiiqX2P15rGyPxtfY/Zmy/o1fG9j9sbWMkvtb2P3JuB6Uk5/Y/eG+rJYv39j9+cE+m8Qf3P4Zx8yZYGPc/jHKXp74o9z+SczsoJTn3P5h036iLSfc/oHWDKfJZ9z+mdieqWGr3P6x3yyq/evc/snhvqyWL9z+4eRMsjJv3P8B6t6zyq/c/xntbLVm89z/MfP+tv8z3P9J9oy4m3fc/2H5Hr4zt9z/gf+sv8/33P+aAj7BZDvg/7IEzMcAe+D/ygtexJi/4P/iDezKNP/g/AIUfs/NP+D8GhsMzWmD4PwyHZ7TAcPg/EogLNSeB+D8Yia+1jZH4PyCKUzb0ofg/Jov3tlqy+D8sjJs3wcL4PzKNP7gn0/g/OI7jOI7j+D9Aj4e59PP4P0aQKzpbBPk/TJHPusEU+T9SknM7KCX5P1iTF7yONfk/YJS7PPVF+T9mlV+9W1b5P2yWAz7CZvk/cpenvih3+T94mEs/j4f5P4CZ77/1l/k/hpqTQFyo+T+MmzfBwrj5P5Kc20Epyfk/mJ1/wo/Z+T+gniND9un5P6afx8Nc+vk/rKBrRMMK+j+yoQ/FKRv6P7iis0WQK/o/wKNXxvY7+j/GpPtGXUz6P8yln8fDXPo/0qZDSCpt+j/Yp+fIkH36P+Coi0n3jfo/5qkvyl2e+j/sqtNKxK76P/Krd8sqv/o/+KwbTJHP+j8Arr/M99/6PwavY01e8Po/DLAHzsQA+z8SsatOKxH7PxiyT8+RIfs/ILPzT/gx+z8mtJfQXkL7Pyy1O1HFUvs/Mrbf0Stj+z84t4NSknP7P0C4J9P4g/s/RrnLU1+U+z9Mum/UxaT7P1K7E1Ustfs/Wry31ZLF+z9gvVtW+dX7P2a+/9Zf5vs/bL+jV8b2+z9ywEfYLAf8P3rB61iTF/w/gMKP2fkn/D+GwzNaYDj8P4zE19rGSPw/ksV7Wy1Z/D+axh/ck2n8P6DHw1z6efw/pshn3WCK/D+syQtex5r8P7LKr94tq/w/ustTX5S7/D/AzPff+sv8P8bNm2Bh3Pw/zM4/4cfs/D/Sz+NhLv38P9rQh+KUDf0/4NErY/sd/T/m0s/jYS79P+zTc2TIPv0/8tQX5S5P/T/61btllV/9PwDXX+b7b/0/BtgDZ2KA/T8M2afnyJD9PxLaS2gvof0/Gtvv6JWx/T8g3JNp/MH9PybdN+pi0v0/LN7basni/T8y33/rL/P9PzrgI2yWA/4/QOHH7PwT/j9G4mttYyT+P0zjD+7JNP4/UuSzbjBF/j9a5VfvllX+P2Dm+2/9Zf4/Zuef8GN2/j9s6ENxyob+P3Lp5/Ewl/4/euqLcpen/j+A6y/z/bf+P4bs03NkyP4/jO139MrY/j+S7ht1Men+P5rvv/WX+f4/oPBjdv4J/z+m8Qf3ZBr/P6zyq3fLKv8/svNP+DE7/z+69PN4mEv/P8D1l/n+W/8/xvY7emVs/z/M99/6y3z/P9T4g3syjf8/2vkn/Jid/z/g+st8/63/P+b7b/1lvv8/7PwTfszO/z/0/bf+Mt//P/r+W3+Z7/8/AAAAAAAAAEA=\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[1000]},\"y\":{\"__ndarray__\":\"AABLldeaAD8AgDgYAy0BPwCgBybuwwE/ACBFrL1fAj8AICuhlwADPwDgTAqjpgM/ACBoAwhSBD8A4FvF7wIFPwBgRa2EuQU/ACDFQ/J1Bj8AYGpEZTgHPwAgSKULAQg/ACCynhTQCD8AQCSzsKUJPwDgU7cRggo/AMBs2mplCz8AIHmu8E8MPwAA9jDZQQ0/AKCV01s7Dj8AgC6FsTwPPwCQbF0KIxA/APCevOCrED8AwAiv+jgRPwBA4dR3yhE/AFCspHhgEj8AoEJwHvsSPwCQ82mLmhM/AIDAqeI+FD8AwLIySOgUPwAgS/jglhU/APAM5NJKFj8A8CPbRAQXPwCwJcRewxc/APDujEmIGD8AEJ0wL1MZPwCApL06JBo/AJADXJj7Gj8A8JJTddkbPwAwdBIAvhw/AGCdM2ipHT8AEISF3psePwCg5hCVlR8/ADjaj19LID8AIAuiyM8gPwDgyq8gWCE/ANAyVYPkIT8ACGXdDHUiPwAYUUbaCSM/AFiJRAmjIz8AGClHuEAkPwCIy3sG4yQ/ACiU0hOKJT8AEEgCATYmPwAIeYzv5iY/AADCwQGdJz8AmBXGWlgoPwAwHpUeGSk/AICwBnLfKT8AKFDTeqsqPwDQxphffSs/AKDN3kdVLD8AqMkbXDMtPwAAm7nFFy4/AOB+Gq8CLz8A0ASeQ/QvPwCgC9NXdjA/AJALThD2MD8AxAV7YnkxPwAs8h1mADI/AJBohjOLMj8AxFWS4xkzPwDwurCPrDM/ALx25FFDND8AxBjHRN40PwDsvouDfTU/ABT9ASohNj8A4M6YVMk2PwDMk2Egdjc/AHgVE6snOD8AUJgME944PwCI9lh3mTk/AHTFsfdZOj8ANIWCtB87PwDg2uvO6js/AADVxmi7PD8AkDqopJE9PwBY5OOlbT4/ANAgkJBPPz8AJpHExBtAPwDiOzrbkkA/APJH4h4NQT8ATCNeo4pBPwB+Prl8C0I/ANDdar+PQj8AmO9XgBdDPwCu59TUokM/ABSgp9IxRD8Aoj4JkMREPwDiH6gjW0U/APbGqaT1RT8AgNKsKpRGPwCW9srNNkc/ALD7mqbdRz8AgsIyzohIPwC4TCleOEk/AJjKmHDsST8AcK0gIKVKPwDAvueHYks/ACQ8nsMkTD8A4Pd/7+tMPwAIflYouE0/ADA+e4uJTj8AlrnZNmBPPwDY2ngkHlA/AI25bPCOUD8AWvQfjwJRPwCDgbcQeVE/ANHzpoXyUT8AT56x/m5SPwD9ueuM7lI/AGCNu0FxUz8AB5baLvdTPwDGs1ZmgFQ/AM1Vk/oMVT8AZKlK/pxVPwBWyo6EMFY/APH0yqDHVj8AkLnEZmJXPwChMZ3qAFg/AAs20kCjWD8A9pY/fklZPwDOVCC481k/AILaDwSiWj8A3zgLeFRbPwD5YnIqC1w/AJBrCTLGXD8AWMP5pYVdPwAReNOdSV4/AFp0jjESXz8ALMCLed9fPwDuYEvHWGA/AM0/80TEYD+ApHCPQjJhPwBR+SjNomE/AMCSAPIVYj+AIEqPvotiPwARIodABGM/ALmz04V/Yz8Ax8+anP1jP4BAHz2TfmQ/ABfEVngCZT8Ac/m/WollP4Cks41JE2Y/AK4/ElSgZj+AVuLdiTBnP4Cxdr/6w2c/ABQMxbZaaD+AW4M8zvRoPwCBK7RRkmk/gFxd+1Ezaj+AjxYj4NdqPwCEk34NgGs/gGXoo+srbD8AEJlsjNtsP4DSL/YBj20/gAHTol5Gbj8AONkZtQFvP4BAXEgYwW8/QEPlsE1CcD9AgzvwKKZwP8DPE8MnDHE/QN1QLlR0cT9AkxpbuN5xP0CSIpdeS3I/QL7nVFG6cj8AyvgrmytzPwC0NdlGn3M/ACoQP18VdD8AzMpl7410PwA9t3sCCXU/APxy1aOGdT8A9SLu3gZ2PwDCrWe/iXY/wI30ClEPdz8AjArIn5d3PwD+ara3Ing/wLQtFaWweD+ABDpLdEF5P8AeeOcx1Xk/wMUAoeprej/AS0tXqwV7P4DTWRKBons/AMTjAnlCfD+AYn6CoOV8P4CGwxMFjH0/AFt2YrQ1fj+AH6ZDvOJ+P8DczrUqk38/oP578IYjgD/AYGgLOn+AP6A+Zem13IA/oEoY3QE8gT+gFR9OJZ2BPwC5GLknAII/wEmurxBlgj8AEprY58uCP+CGre+0NIM/YPfVxX+fgz+A6h9BUAyEP8AnuVwue4Q/oGPxKCLshD8ghznLM1+FP+CPIX5r1IU/gPxUkdFLhj/gxJVpbsWGP2DStYBKQYc/wPSOZW6/hz9ATPm74j+IP2AiwDywwog/YCqVtd9HiT8AJAIJes+JP8DZWC6IWYo/QHShMRPmij/gG4czJHWLP+DjQmnEBow/oPeEHP2ajD/gA1yr1zGNPyDXGohdy40/ADI8OZhnjj/gwURZkQaPP6BAo5ZSqI8/wFnH2XImkD9QYfFCKnqQP5ASfXtUz5A/wI3DgfYlkT/w+LRdFX6RPwDEwiC215E/AOvI5d0ykj/QNfbQkY+SPyBysw/X7ZI/4KSJ2LJNkz8QMgdrKq+TP0D3ow9DEpQ/IFekFwJ3lD+wNPvcbN2UP4DaKsKIRZU/kM0kMluvlT+QiCig6RqWP6AeoYc5iJY/cMMBbFD3lj/ANqHYM2iXPyASlGDp2pc/QPeFnnZPmD9wnZE04cWYP2C8F8wuPpk/gNSUFWW4mT8Q0XXIiTSaP1CG66Kispo/oAe9abUymz+Q1hjox7SbP9DpZO/fOJw/sIoNVwO/nD+ACVP8N0edP9BHFsKD0Z0/ABikkOxdnj+wcn9VeOyePzCBKgMtfZ8/wD53SAgIoD+wM1F9lFKgP5BHOCA+nqA/KHtNMwjroD+IQ5+69TihPzCRCrwJiKE/0EIbP0fYoT+YBOxMsSmiP0CcBfBKfKI/MKI9NBfQoj/IqJQmGSWjP/DRE9VTe6M/aNSpTsrSoz/QcAejfyukP+BXe+J2haQ/wILNHbPgpD/g/RlmNz2lP1Aoq8wGm6U/IGjTYiT6pT/wVMY5k1qmP8hacWJWvKY/INVT7XAfpz9YpVbq5YOnP5hEo2i46ac/SFN6dutQqD8wqAkhgrmoP+jfQXR/I6k/qG+reuaOqT8oPDs9uvupP3i3JsP9aao/CIe3EbTZqj+gtB4s4EqrP+BrRxOFvas/EEepxaUxrD/YLBo/RaesPyjCn3hmHq0/2HFAaAyXrT9YDdQAOhGuPwgI1DHyjK4/UFEr5zcKrz/IzgUJDomvP+C8z727BLA/6JGJj7tFsD/scZTnh4ewPwgYkjEiyrA/gNPI1osNsT+oRQo+xlGxP5T6mcvSlrE/aN4T4bLcsT/wkFLdZyOyPwCZVRzzarI/oHkn91Wzsj+gqsPDkfyyP5B2/NSnRrM/tL9gepmRsz8QriEAaN2zP0hI+K4UKrQ/cPkKzKB3tD+QBdOYDca0PwzvAVNcFbU/0M5mNI5ltT9UodNypLa1P8iKAkCgCLY/4BN7yYJbtj94Ync4Ta+2P+RuybEABLc/MDnAVZ5Ztz8sAA1AJ7C3P/R7qIecB7g/UB+4Pv9fuD8kYXNyULm4P8QQCSuRE7k/dLeEa8JuuT88CbQx5cq5P7xnDHb6J7o/vHiQKwOGuj/Y07U/AOW6P5TISpryRLs/QEBcHduluz84vRuluge8P9x6xQeSarw/zK+GFWLOvD+Y9WOYKzO9P+jXH1TvmL0/7I0hBq7/vT8s4FtlaGe+P+A9NCIf0L4/hANq5tI5vz+o9f1UhKS/P1T5DAUaCMA/pm58TXE+wD+MYedKSHXAP5qg2ECfrMA/wBRAb3bkwD+4NWcSzhzBPyKh5WKmVcE/7tWVlf+OwT8UFYrb2cjBP+poAWI1A8I/hNRcUhI+wj/sqxTScHnCPxwXrgJRtcI/LsCwAbPxwj+krpzoli7DP5RQ4Mz8a8M/HrPOv+Spwz9a65XOTujDP96wNQI7J8Q/LCt2X6lmxD8A897mmabEP+RIrpQM58Q/EILQYAEoxT+UrNc+eGnFP25s8x1xq8U//hHp6OvtxT9c6wuG6DDGP8DRNddmdMY/lPO/uWa4xj/K3HsG6PzGPxa+rJHqQcc/VPQAK26Hxz/60Iudcs3HP5ikv6/3E8g/egxoI/1ayD84hKS1gqLIPy484x6I6sg/7jXcEg0zyT88p4xAEXzJP+akMlKUxck/4BVJ7ZUPyj+q74OyFVrKPwC9zD0Tpco/Jm8/Jo7wyj8aeyf+hTzLP/ZC/VL6iMs/XMxjrerVyz/mxCaRViPMP7jUOH09ccw/UkCy656/zD/i2c9Reg7NPwhD8h/PXc0/NH+dwZytzT9U13id4v3NP4YPTxWgTs4/yO4OhtSfzj+oGcxHf/HOP9Q/wK2fQ88/OJ1MBjWWzz8wz/uaPunPP8T+QdhdHtA/HKxkw1VI0D/cdHCshnLQPx3fiS7wnNA/GTBx4pHH0D/0VIRea/LQP1r2wDZ8HdE/0LbG/MNI0T/Fm9k/QnTRP5ah5Iz2n9E/L3p8buDL0T+sduJs//fRP5KbBw5TJNI/zN+P1dpQ0j9altVEln3SP3QC7dqEqtI/PhaoFKbX0j+8W5ps+QTTPwsIHVt+MtM/pjhTVjRg0z98Wi7SGo7TP+K6ckAxvNM/0kG8EHfq0z+oVYOw6xjUP8jnIYuOR9Q/DKrYCV921D/mbNSTXKXUP4ilM46G1NQ/KRwMXNwD1T/VwXBeXTPVP4Ctd/QIY9U/LEBAe96S1T9wb/lN3cLVP1w26MUE89U/EyxuOlQj1j+zPxABy1PWP1qZfW1ohNY/ep+W0Su11j9aIHR9FObWPxafbr8hF9c/oMMl5FJI1z927Yc2p3nXPy/o2f8dq9c/uMG+h7bc1z9dwT8UcA7YPzp/1OlJQNg/lBtrS0Ny2D80lXB6W6TYP4w+2baR1tg/v1ApP+UI2T/wm31QVTvZP3JUlCbhbdk/xvvV+4eg2T86ZV4JSdPZP+/UBYcjBto/HDlqqxY52j96fPirIWzaPzDx9bxDn9o/ztOJEXzS2j8Z5cbbyQXbP3YatUwsOds/v2NblKJs2z/uhcnhK6DbP/YJImPH09s/sD6kRXQH3D9qTba1MTvcPwNg797+btw/5Nch7Nqi3D8YlWUHxdbcP3VMIlq8Ct0/SuwZDcA+3T+CDnNIz3LdP2x3wzPppt0/hqAa9gzb3T8JTgy2OQ/eP88uu5luQ94/VYXjxqp33j8j2eVi7aveP92v0ZI14N4/vUxwe4IU3z8Rdk9B00jfP1o/zAgnfd8/o9cd9nyx3z/SWmAt1OXfP5jST+kVDeA/LhTxhEEn4D9T4Jl7bEHgP/hEWF+WW+A/oNlHwr514D8TKJc25Y/gP24TjU4JquA/Vj2OnCrE4D+XaCKzSN7gP/rY+SRj+OA/vq/yhHkS4T9KRB5miyzhP794xluYRuE/2Qlz+Z9g4T/E2e7SoXrhP3U1TXydlOE/DhTviZKu4T/+T4iQgMjhP0rZJCVn4uE/p+At3UX84T8H+25OHBbiPwk9Gw/qL+I/IU7Sta5J4j/DcqXZaWPiP3KNHBIbfeI/GxY798GW4j9oB4UhXrDiP8PBAyrvyeI/cONKqnTj4j+HFX087vziP2TNUHtbFuM/HQIVArwv4z/H1bVsD0njPwYywVdVYuM/n1drYI174z+6YJMkt5TjP2a1x0LSreM/NnJKWt7G4z9hwBUL29/jP1Af4PXH+OM/JJ8gvKQR5D/oCxMAcSrkP0UJvGQsQ+Q/Lh7tjdZb5D90sEggb3TkP9PvRcH1jOQ/Q7A0F2ql5D9TM0HJy73kPyXgd38a1uQ/+OnI4lXu5D/S5AudfQblP0hIA1mRHuU/6t9fwpA25T8/KcSFe07lPxefx1BRZuU/7PH50RF+5T88Lea4vJXlP43JFbZRreU/+aoTe9DE5T8eDG+6ONzlPyxVvieK8+U/F9+hd8QK5j+PosZf5yHmP8DS6JbyOOY/rmPW1OVP5j/6e3HSwGbmPyLSskmDfeY/4fSr9SyU5j/EfomSvarmP9Q0ld00weY/GhA4lZLX5j83Mvx41u3mP6nEjkkABOc/6MLByA8a5z83r425BDDnPx4yE+DeRec/mKScAZ5b5z/ShJ/kQXHnP4TVvVDKhuc/9GfHDjec5z9yELvoh7HnP5LFx6m8xuc/8alNHtXb5z+dAN8T0fDnPzUMQVmwBeg/sthsvnIa6D8L8I8UGC/oP5T5DC6gQ+g/TER83gpY6D8gPKz6V2zoPyvKoViHgOg/M6CYz5iU6D88bwM4jKjoP4YJjGthvOg/7W8TRRjQ6D/SyrGgsOPoP8ZOtlsq9+g/6AynVIUK6T9Cr0BrwR3pPzohdoDeMOk/NiRwdtxD6T/A0Iwwu1bpPxQEX5N6aek/hrqthBp86T/GVnPrmo7pPzHW3K/7oOk/hPJIuzyz6T/0MEf4XcXpP/TellJf1+k/4vwlt0Dp6T/aFhAUAvvpP8ILnVijDOo/6sI/dSQe6j970JRbhS/qP84IYf7FQOo/GwOQUeZR6j+QizJK5mLqPygFfd7Fc+o/grvFBYWE6j/kJIO4I5XqP9sUSvChpeo/fN/Lp/+16j/GbdTaPMbqP0FDSIZZ1uo/NXUiqFXm6j/Ik3I/MfbqPyqFWkzsBes/OFMM0IYV6z/c68fMACXrP1fU2EVaNOs/9M+TP5ND6z85elS/q1LrPwTVesujYes/4cpoa3tw6z/GpX+nMn/rP7t6HYnJjes/hIqaGkCc6z+3l0ZnlqrrP5IyZnvMuOs/0PovZOLG6z/a18kv2NTrP50nRu2t4us/V+SgrGPw6z+swbx++f3rP0tBYHVvC+w/kL8yo8UY7D9CeLkb/CXsP/mDVPMSM+w/RM47PwpA7D8DBXwV4kzsP02B84yaWew/BipPvTNm7D+kUAe/rXLsP1mIXKsIf+w/+HdUnESL7D/uprasYZfsP4RFCfhfo+w/6PCNmj+v7D8Jcz6xALvsP9h+yVmjxuw/EmmPsifS7D/o3Z7ajd3sP9qTsfHV6Ow/FvwoGAD07D+C8ApvDP/sP/pf/hf7Ce0/2fhHNcwU7T8j0sbpfx/tP7ET8VgWKu0/hJ3Qpo807T+nrv/36z7tP9SLpXErSe0/JSZzOU5T7T8ewp91VF3tP06f5Uw+Z+0/0qB+5gtx7T/29iBqvXrtPz7K+/9ShO0/Cuiz0MyN7T8ucWAFK5ftP6yKh8dtoO0/zBAbQZWp7T/gTHWcobLtP+KtVQSTu+0/M4Tdo2nE7T+uwIymJc3tP0q3PjjH1e0/kOUmhU7e7T//vM25u+btP8JxDQMP7+0/w80Ojkj37T9jCEaIaP/tPxSjbx9vB+4/60qNgVwP7j+Av+LcMBfuPyq/8l/sHu4/4vh7OY8m7j/eA3aYGS7uPzJdDqyLNe4/j2ulo+U87j9BicuuJ0TuP7YUPv1RS+4/kIfkvmRS7j+IlM0jYFnuPz5MLFxEYO4/BklVmBFn7j8B4rsIyG3uP35l791ndO4/zFqYSPF67j+2y3V5ZIHuP6qVWqHBh+4/rsIq8QiO7j9U6tiZOpTuP7GaY8xWmu4/fsnSuV2g7j97TTWTT6buPyJgnoksrO4/1CcjzvSx7j+CStiRqLfuP/OIzwVIve4/umIVW9PC7j/gwq7CSsjuP3S1lm2uze4/3SW8jP7S7j88pv9QO9juP7Y/Metk3e4/00sOjHvi7j/tVj9kf+fuP8gLVqRw7O4/TijLfE/x7j+He/wdHPbuP8TsKrjW+u4/FIx4e3//7j/2q+aXFgTvP2oEVD2cCO8/QN96mxAN7z/CTe/hcxHvP7RnHUDGFe8/qpNH5Qca7z+y2IQAOR7vP0s5v8BZIu8/wxeyVGom7z/Oo+jqairvP3hRvLFbLu8/XFlT1zwy7z8cQp+JDjbvPxVzW/bQOe8/RtALS4Q97z9vX/u0KEHvP0r2OmG+RO8/5PGffEVI7z8L98IzvkvvP7y7/rIoT+8/lNluJoVS7z8sqe6501XvP1omGJkUWe8/R91C70dc7z9G4ILnbV/vP3DGp6yGYu8/2bI7aZJl7z9vZIJHkWjvP1JOeHGDa+8/qLjREGlu7z/g6flOQnHvPzhYElUPdO8/kuPxS9B27z9sFyRchXnvP/Z06K0ufO8/MsUxacx+7z/+cqW1XoHvP/jsmrrlg+8/OA8bn2GG7z+klN+J0ojvP/CPUqE4i+8/IuyNC5SN7z9w9Fru5I/vP5DjMW8rku8/L3o5s2eU7z+ZnEbfmZbvP3D32xfCmO8/VqspgeCa7z92/ww/9ZzvP88aEHUAn+8/LcRpRgKh7z+2KP3V+qLvP+yoWUbqpO8/Dqy6udCm7z/AeQdSrqjvP+QZ0zCDqu8/cjpcd0+s7z9gG41GE67vP1aA+77Or+8/IqjoAIKx7z/kSUEsLbPvP7iXnWDQtO8/2UZBvWu27z8cnRth/7fvP6qDx2qLue8/1p6L+A+77z8Fa1oojbzvP31e0hcDvu8/BhA+5HG/7z9GYpSq2cDvP8GzeIc6wu8/ShM7l5TD7z/zeNj158TvPzsD+740xu8/eDj6DXvH7z9ZTNv9usjvP2hpUan0ye8/dP69KijL7z/CDzGcVczvP/eLaRd9ze8/lqTVtZ7O7z8EKpOQus/vP+jqb8DQ0O8/5BbqXeHR7z98pDCB7NLvPxa6I0Ly0+8/CBpVuPLU7z+GkQj77dXvP2hqNCHk1u8/rN+BQdXX7z+YlE1ywdjvP2wOqMmo2e8/hDBWXYva7z/cutFCadvvP9rKSY9C3O8/Rl6jVxfd7z9g2Hmw593vP/qIH66z3u8/ejWeZHvf7z/Ao7fnPuDvP8gm5kr+4O8//ixdobnh7z8u0An+cOLvP/Bmk3Mk4+8/mhdcFNTj7z98bIHyf+TvP3Dp3B8o5e8/pKIErszl7z9/1EuubebvP6R8wzEL5+8/7PM6SaXn7z9OiUAFPOjvP6odInbP6O8/UsDtq1/p7z9cTHK27OnvP40GQKV26u8/6Tuph/3q7z/A4MJsgevvPzkwZWMC7O8/R0wseoDs7z/v3Xi/++zvP9+1cEF07e8/QG3/Dert7z+vBtcyXe7vP1yPcL3N7u8/M8AMuzvv7z8Sn7Q4p+/vP+ofOkMQ8O8/08U453bw7z/4QxYx2/DvP1QeAy098e8/OEr75pzx7z+EzsZq+vHvP5Bj+sNV8u8/vxL4/a7y7z+Z1e8jBvPvP4U04EBb8+8/+uSWX67z7z8wZ7GK//PvPzijncxO9O8/iIWaL5z07z/Vmri95/TvP06r2oAx9e8/GlW2gnn17z8dptTMv/XvP/y0kmgE9u8/UDkiX0f27z8CI4q5iPbvP9gwp4DI9u8/GIYsvQb37z8+P6R3Q/fvP9MFcLh+9+8/OqPJh7j37z+UksPt8PfvP5qRSfIn+O8/dDAhnV347z9+YOr1kfjvPwgCIATF+O8/93AYz/b47z9QEAZeJ/nvP6TU97dW+e8/Ws3Z44T57z/SrHXosfnvP2BPc8zd+e8/FEFZlgj67z9aQo1MMvrvP2DLVPVa+u8/Qo7VloL67z8I+BU3qfrvP1iw/dvO+u8/+xdWi/P67z8UxspKF/vvPxoE6h86++8/jEglEFz77z9gsNEgffvvPy13KFed++8/BG5HuLz77z8IcTFJ2/vvP7bbzg75++8/5vvtDRb87z91g0NLMvzvP674astN/O8/YCXnkmj87z+khCKmgvzvP1qvbwmc/O8/UscJwbT87z8v4RTRzPzvP/Zsnj3k/O8/UZ2dCvv87z+GzfM7Ef3vPyTmbNUm/e8/XsC/2jv97z8iiI5PUP3vP+gcZzdk/e8/KHHDlXf97z+i6Aluiv3vP0i1jcOc/e8/7jKPma797z+6QTzzv/3vP0ifsNPQ/e8/jj72PeH97z+MngU18f3vP7MfxrsA/u8/ElgO1Q/+7z9QZqSDHv7vP2ZDPsos/u8/JhOCqzr+7z+TcwYqSP7vP/7KUkhV/u8/+JTfCGL+7z8drhZubv7vP6aeU3p6/u8/4OPjL4b+7z9wOAeRkf7vP3/b75+c/u8/vtbCXqf+7z9IQ5jPsf7vP26Ne/S7/u8/ardrz8X+7z/umltiz/7vP7ApMq/Y/u8/06zKt+H+7z9SA/V96v7vP07fdQPz/u8/XAIHSvv+7z/LeFdTA//vP+DTCyEL/+8/FWO+tBL/7z9ebP8PGv/vP2hjVTQh/+8/5B89Iyj/7z/cEireLv/vPxh7hmY1/+8/iJizvTv/7z/S3gnlQf/vP+Am2d1H/+8/mN9oqU3/7z+nPfhIU//vP2pqvr1Y/+8//LHqCF7/7z9ksKQrY//vP+t9DCdo/+8/nto6/Gz/7z/2WEGscf/vP7qHKjh2/+8/CBv6oHr/7z+cFK3nfv/vP0brOQ2D/+8/qrGQEof/7z8oPJv4iv/vPxxGPcCO/+8/TZZUapL/7z+wIrn3lf/vP28zPWmZ/+8/OIWtv5z/7z/gatH7n//vP1buah6j/+8/7PA2KKb/7z/qSu0Zqf/vP5DqQPSr/+8/YPLft67/7z/M1nNlsf/vP1R7of2z/+8/7E4Jgbb/7z/iZ0fwuP/vPx6f80u7/+8/1KqhlL3/7z8=\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[1000]}},\"selected\":{\"id\":\"1409\"},\"selection_policy\":{\"id\":\"1408\"}},\"id\":\"1394\",\"type\":\"ColumnDataSource\"},{\"attributes\":{\"bottom\":{\"value\":0},\"fill_alpha\":{\"value\":0.5},\"fill_color\":{\"value\":\"navy\"},\"left\":{\"field\":\"left\"},\"line_alpha\":{\"value\":0.5},\"line_color\":{\"value\":\"white\"},\"right\":{\"field\":\"right\"},\"top\":{\"field\":\"top\"}},\"id\":\"1548\",\"type\":\"Quad\"},{\"attributes\":{},\"id\":\"1481\",\"type\":\"BasicTicker\"},{\"attributes\":{\"axis_label\":\"Pr(x)\",\"formatter\":{\"id\":\"1503\"},\"ticker\":{\"id\":\"1485\"}},\"id\":\"1484\",\"type\":\"LinearAxis\"},{\"attributes\":{\"start\":0},\"id\":\"1474\",\"type\":\"DataRange1d\"},{\"attributes\":{},\"id\":\"1476\",\"type\":\"LinearScale\"},{\"attributes\":{\"axis_label\":\"x\",\"formatter\":{\"id\":\"1501\"},\"ticker\":{\"id\":\"1481\"}},\"id\":\"1480\",\"type\":\"LinearAxis\"},{\"attributes\":{},\"id\":\"1478\",\"type\":\"LinearScale\"},{\"attributes\":{\"axis\":{\"id\":\"1480\"},\"grid_line_color\":\"white\",\"ticker\":null},\"id\":\"1483\",\"type\":\"Grid\"},{\"attributes\":{},\"id\":\"1445\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{\"axis\":{\"id\":\"1484\"},\"dimension\":1,\"grid_line_color\":\"white\",\"ticker\":null},\"id\":\"1487\",\"type\":\"Grid\"},{\"attributes\":{},\"id\":\"1485\",\"type\":\"BasicTicker\"},{\"attributes\":{\"active_drag\":\"auto\",\"active_inspect\":\"auto\",\"active_multi\":null,\"active_scroll\":\"auto\",\"active_tap\":\"auto\"},\"id\":\"1488\",\"type\":\"Toolbar\"},{\"attributes\":{\"start\":0},\"id\":\"1532\",\"type\":\"DataRange1d\"},{\"attributes\":{\"line_alpha\":0.7,\"line_color\":\"orange\",\"line_width\":2,\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1395\",\"type\":\"Line\"},{\"attributes\":{\"bottom\":{\"value\":0},\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"navy\"},\"left\":{\"field\":\"left\"},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"white\"},\"right\":{\"field\":\"right\"},\"top\":{\"field\":\"top\"}},\"id\":\"1491\",\"type\":\"Quad\"},{\"attributes\":{},\"id\":\"1534\",\"type\":\"LinearScale\"},{\"attributes\":{},\"id\":\"1530\",\"type\":\"DataRange1d\"},{\"attributes\":{\"axis\":{\"id\":\"1538\"},\"grid_line_color\":\"white\",\"ticker\":null},\"id\":\"1541\",\"type\":\"Grid\"},{\"attributes\":{\"axis_label\":\"x\",\"formatter\":{\"id\":\"1559\"},\"ticker\":{\"id\":\"1539\"}},\"id\":\"1538\",\"type\":\"LinearAxis\"},{\"attributes\":{\"axis_label\":\"Pr(x)\",\"formatter\":{\"id\":\"1561\"},\"ticker\":{\"id\":\"1543\"}},\"id\":\"1542\",\"type\":\"LinearAxis\"},{\"attributes\":{},\"id\":\"1536\",\"type\":\"LinearScale\"}],\"root_ids\":[\"1633\"]},\"title\":\"Bokeh Application\",\"version\":\"2.2.3\"}};\n",
       "  var render_items = [{\"docid\":\"52fa0a58-20c1-4551-95eb-bbb511b0472f\",\"root_ids\":[\"1633\"],\"roots\":{\"1633\":\"4f3f3a9a-4e65-42af-b731-eea3b64edc58\"}}];\n",
       "  root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n",
       "\n",
       "  }\n",
       "  if (root.Bokeh !== undefined) {\n",
       "    embed_document(root);\n",
       "  } else {\n",
       "    var attempts = 0;\n",
       "    var timer = setInterval(function(root) {\n",
       "      if (root.Bokeh !== undefined) {\n",
       "        clearInterval(timer);\n",
       "        embed_document(root);\n",
       "      } else {\n",
       "        attempts++;\n",
       "        if (attempts > 100) {\n",
       "          clearInterval(timer);\n",
       "          console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n",
       "        }\n",
       "      }\n",
       "    }, 10, root)\n",
       "  }\n",
       "})(window);"
      ],
      "application/vnd.bokehjs_exec.v0+json": ""
     },
     "metadata": {
      "application/vnd.bokehjs_exec.v0+json": {
       "id": "1633"
      }
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Normal Distribution\n",
    "\n",
    "mu, sigma = 0, 0.5\n",
    "\n",
    "measured = np.random.normal(mu, sigma, 1000)\n",
    "hist, edges = np.histogram(gdf['impact'], density=True, bins=50)\n",
    "\n",
    "x = np.linspace(-2, 2, 1000)\n",
    "pdf = 1/(sigma * np.sqrt(2*np.pi)) * np.exp(-(x-mu)**2 / (2*sigma**2))\n",
    "cdf = (1+scipy.special.erf((x-mu)/np.sqrt(2*sigma**2)))/2\n",
    "\n",
    "p1 = make_plot(\"Normal Distribution (μ=0, σ=0.5)\", hist, edges, x, pdf, cdf)\n",
    "\n",
    "# Log-Normal Distribution\n",
    "\n",
    "mu, sigma = 0, 0.5\n",
    "\n",
    "measured = np.random.lognormal(mu, sigma, 1000)\n",
    "hist, edges = np.histogram(gdf['impact'], density=True, bins=50)\n",
    "\n",
    "x = np.linspace(0.0001, 8.0, 1000)\n",
    "pdf = 1/(x* sigma * np.sqrt(2*np.pi)) * np.exp(-(np.log(x)-mu)**2 / (2*sigma**2))\n",
    "cdf = (1+scipy.special.erf((np.log(x)-mu)/(np.sqrt(2)*sigma)))/2\n",
    "\n",
    "p2 = make_plot(\"Log Normal Distribution (μ=0, σ=0.5)\", hist, edges, x, pdf, cdf)\n",
    "\n",
    "# Gamma Distribution\n",
    "\n",
    "k, theta = 7.5, 1.0\n",
    "\n",
    "measured = np.random.gamma(k, theta, 1000)\n",
    "hist, edges = np.histogram(gdf['impact'], density=True, bins=50)\n",
    "\n",
    "x = np.linspace(0.0001, 20.0, 1000)\n",
    "pdf = x**(k-1) * np.exp(-x/theta) / (theta**k * scipy.special.gamma(k))\n",
    "cdf = scipy.special.gammainc(k, x/theta)\n",
    "\n",
    "p3 = make_plot(\"Gamma Distribution (k=7.5, θ=1)\", hist, edges, x, pdf, cdf)\n",
    "\n",
    "# Weibull Distribution\n",
    "\n",
    "lam, k = 1, 1.25\n",
    "measured = lam*(-np.log(np.random.uniform(0, 1, 1000)))**(1/k)\n",
    "hist, edges = np.histogram(gdf['impact'], density=True, bins=50)\n",
    "\n",
    "x = np.linspace(0.0001, 8, 1000)\n",
    "pdf = (k/lam)*(x/lam)**(k-1) * np.exp(-(x/lam)**k)\n",
    "cdf = 1 - np.exp(-(x/lam)**k)\n",
    "\n",
    "p4 = make_plot(\"Weibull Distribution (λ=1, k=1.25)\", hist, edges, x, pdf, cdf)\n",
    "\n",
    "output_file('histogram.html', title=\"histogram.py example\")\n",
    "\n",
    "show(gridplot([p1,p2,p3,p4], ncols=2, plot_width=400, plot_height=400, toolbar_location=None))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 38,
   "id": "4eaf2ecc",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The unsustainable water use impact for buying 2400 tonnes of cotton in China would be 100532.66914021136 m3 / year\n"
     ]
    }
   ],
   "source": [
    "# using this h3 methodology - the total impact would be the sum of the distributed impacts\n",
    "print(f\"The unsustainable water use impact for buying 2400 tonnes of cotton in China would be {sum(gdf['impact'])} m3 / year\")\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 50,
   "id": "d5ee8466",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Domain Code</th>\n",
       "      <th>Domain</th>\n",
       "      <th>Area Code (FAO)</th>\n",
       "      <th>Area</th>\n",
       "      <th>Element Code</th>\n",
       "      <th>Element</th>\n",
       "      <th>Item Code (FAO)</th>\n",
       "      <th>Item</th>\n",
       "      <th>Year Code</th>\n",
       "      <th>Year</th>\n",
       "      <th>Unit</th>\n",
       "      <th>Value</th>\n",
       "      <th>Flag</th>\n",
       "      <th>Flag Description</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>QC</td>\n",
       "      <td>Crops</td>\n",
       "      <td>2</td>\n",
       "      <td>Afghanistan</td>\n",
       "      <td>5312</td>\n",
       "      <td>Area harvested</td>\n",
       "      <td>328</td>\n",
       "      <td>Seed cotton</td>\n",
       "      <td>2000</td>\n",
       "      <td>2000</td>\n",
       "      <td>ha</td>\n",
       "      <td>50000.0</td>\n",
       "      <td>*</td>\n",
       "      <td>Unofficial figure</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>QC</td>\n",
       "      <td>Crops</td>\n",
       "      <td>2</td>\n",
       "      <td>Afghanistan</td>\n",
       "      <td>5312</td>\n",
       "      <td>Area harvested</td>\n",
       "      <td>328</td>\n",
       "      <td>Seed cotton</td>\n",
       "      <td>2001</td>\n",
       "      <td>2001</td>\n",
       "      <td>ha</td>\n",
       "      <td>50000.0</td>\n",
       "      <td>*</td>\n",
       "      <td>Unofficial figure</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>QC</td>\n",
       "      <td>Crops</td>\n",
       "      <td>2</td>\n",
       "      <td>Afghanistan</td>\n",
       "      <td>5312</td>\n",
       "      <td>Area harvested</td>\n",
       "      <td>328</td>\n",
       "      <td>Seed cotton</td>\n",
       "      <td>2002</td>\n",
       "      <td>2002</td>\n",
       "      <td>ha</td>\n",
       "      <td>50000.0</td>\n",
       "      <td>*</td>\n",
       "      <td>Unofficial figure</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>QC</td>\n",
       "      <td>Crops</td>\n",
       "      <td>2</td>\n",
       "      <td>Afghanistan</td>\n",
       "      <td>5312</td>\n",
       "      <td>Area harvested</td>\n",
       "      <td>328</td>\n",
       "      <td>Seed cotton</td>\n",
       "      <td>2003</td>\n",
       "      <td>2003</td>\n",
       "      <td>ha</td>\n",
       "      <td>30000.0</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Official data</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>QC</td>\n",
       "      <td>Crops</td>\n",
       "      <td>2</td>\n",
       "      <td>Afghanistan</td>\n",
       "      <td>5312</td>\n",
       "      <td>Area harvested</td>\n",
       "      <td>328</td>\n",
       "      <td>Seed cotton</td>\n",
       "      <td>2004</td>\n",
       "      <td>2004</td>\n",
       "      <td>ha</td>\n",
       "      <td>25500.0</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Official data</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "  Domain Code Domain  Area Code (FAO)         Area  Element Code  \\\n",
       "0          QC  Crops                2  Afghanistan          5312   \n",
       "1          QC  Crops                2  Afghanistan          5312   \n",
       "2          QC  Crops                2  Afghanistan          5312   \n",
       "3          QC  Crops                2  Afghanistan          5312   \n",
       "4          QC  Crops                2  Afghanistan          5312   \n",
       "\n",
       "          Element  Item Code (FAO)         Item  Year Code  Year Unit  \\\n",
       "0  Area harvested              328  Seed cotton       2000  2000   ha   \n",
       "1  Area harvested              328  Seed cotton       2001  2001   ha   \n",
       "2  Area harvested              328  Seed cotton       2002  2002   ha   \n",
       "3  Area harvested              328  Seed cotton       2003  2003   ha   \n",
       "4  Area harvested              328  Seed cotton       2004  2004   ha   \n",
       "\n",
       "     Value Flag   Flag Description  \n",
       "0  50000.0    *  Unofficial figure  \n",
       "1  50000.0    *  Unofficial figure  \n",
       "2  50000.0    *  Unofficial figure  \n",
       "3  30000.0  NaN      Official data  \n",
       "4  25500.0  NaN      Official data  "
      ]
     },
     "execution_count": 50,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# download projection over time - \n",
    "\n",
    "ha_00_19 = pd.read_csv('../../datasets/raw/crop_data/FAOSTAT_ha_2000_2019.csv')\n",
    "ha_00_19.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 61,
   "id": "07134297",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "50000.0"
      ]
     },
     "execution_count": 61,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "ha_00_19[(ha_00_19['Year']==2000) & (ha_00_19['Area']=='Afghanistan')]['Value'][0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 94,
   "id": "8e9e5933",
   "metadata": {},
   "outputs": [],
   "source": [
    "unique_years = ha_00_19.Year.unique()\n",
    "unique_countries = ha_00_19.Area.unique()\n",
    "\n",
    "ha_byYear = []\n",
    "for country in unique_countries:\n",
    "    element = {\n",
    "            'country': country\n",
    "        }\n",
    "    for year in unique_years:\n",
    "        try:\n",
    "            value = float(list(ha_00_19[(ha_00_19['Area']==country) & (ha_00_19['Year']==year)]['Value'])[0])\n",
    "        except:\n",
    "            value = 0\n",
    "        \n",
    "        \n",
    "        element[f'{year}'] = value\n",
    "    ha_byYear.append(element)\n",
    "        \n",
    "        \n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 95,
   "id": "eca2d538",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>country</th>\n",
       "      <th>2000</th>\n",
       "      <th>2001</th>\n",
       "      <th>2002</th>\n",
       "      <th>2003</th>\n",
       "      <th>2004</th>\n",
       "      <th>2005</th>\n",
       "      <th>2006</th>\n",
       "      <th>2007</th>\n",
       "      <th>2008</th>\n",
       "      <th>...</th>\n",
       "      <th>2010</th>\n",
       "      <th>2011</th>\n",
       "      <th>2012</th>\n",
       "      <th>2013</th>\n",
       "      <th>2014</th>\n",
       "      <th>2015</th>\n",
       "      <th>2016</th>\n",
       "      <th>2017</th>\n",
       "      <th>2018</th>\n",
       "      <th>2019</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Afghanistan</td>\n",
       "      <td>50000.0</td>\n",
       "      <td>50000.0</td>\n",
       "      <td>50000.0</td>\n",
       "      <td>30000.0</td>\n",
       "      <td>25500.0</td>\n",
       "      <td>30000.0</td>\n",
       "      <td>31950.0</td>\n",
       "      <td>35000.0</td>\n",
       "      <td>35000.0</td>\n",
       "      <td>...</td>\n",
       "      <td>33000.0</td>\n",
       "      <td>33000.0</td>\n",
       "      <td>33000.0</td>\n",
       "      <td>36300.0</td>\n",
       "      <td>35000.0</td>\n",
       "      <td>42124.0</td>\n",
       "      <td>51102.0</td>\n",
       "      <td>31845.0</td>\n",
       "      <td>39496.0</td>\n",
       "      <td>49371.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Albania</td>\n",
       "      <td>990.0</td>\n",
       "      <td>840.0</td>\n",
       "      <td>840.0</td>\n",
       "      <td>1000.0</td>\n",
       "      <td>1060.0</td>\n",
       "      <td>1080.0</td>\n",
       "      <td>1080.0</td>\n",
       "      <td>950.0</td>\n",
       "      <td>740.0</td>\n",
       "      <td>...</td>\n",
       "      <td>740.0</td>\n",
       "      <td>740.0</td>\n",
       "      <td>740.0</td>\n",
       "      <td>740.0</td>\n",
       "      <td>740.0</td>\n",
       "      <td>740.0</td>\n",
       "      <td>740.0</td>\n",
       "      <td>740.0</td>\n",
       "      <td>740.0</td>\n",
       "      <td>617.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Algeria</td>\n",
       "      <td>141.0</td>\n",
       "      <td>143.0</td>\n",
       "      <td>146.0</td>\n",
       "      <td>151.0</td>\n",
       "      <td>155.0</td>\n",
       "      <td>82.0</td>\n",
       "      <td>106.0</td>\n",
       "      <td>124.0</td>\n",
       "      <td>143.0</td>\n",
       "      <td>...</td>\n",
       "      <td>200.0</td>\n",
       "      <td>211.0</td>\n",
       "      <td>250.0</td>\n",
       "      <td>260.0</td>\n",
       "      <td>260.0</td>\n",
       "      <td>260.0</td>\n",
       "      <td>260.0</td>\n",
       "      <td>260.0</td>\n",
       "      <td>260.0</td>\n",
       "      <td>275.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Angola</td>\n",
       "      <td>10000.0</td>\n",
       "      <td>2000.0</td>\n",
       "      <td>2000.0</td>\n",
       "      <td>2000.0</td>\n",
       "      <td>2000.0</td>\n",
       "      <td>2000.0</td>\n",
       "      <td>2000.0</td>\n",
       "      <td>2000.0</td>\n",
       "      <td>2000.0</td>\n",
       "      <td>...</td>\n",
       "      <td>2000.0</td>\n",
       "      <td>3000.0</td>\n",
       "      <td>3000.0</td>\n",
       "      <td>3000.0</td>\n",
       "      <td>3000.0</td>\n",
       "      <td>3000.0</td>\n",
       "      <td>3000.0</td>\n",
       "      <td>3000.0</td>\n",
       "      <td>3000.0</td>\n",
       "      <td>2945.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>Antigua and Barbuda</td>\n",
       "      <td>600.0</td>\n",
       "      <td>600.0</td>\n",
       "      <td>650.0</td>\n",
       "      <td>700.0</td>\n",
       "      <td>700.0</td>\n",
       "      <td>700.0</td>\n",
       "      <td>700.0</td>\n",
       "      <td>700.0</td>\n",
       "      <td>700.0</td>\n",
       "      <td>...</td>\n",
       "      <td>700.0</td>\n",
       "      <td>700.0</td>\n",
       "      <td>600.0</td>\n",
       "      <td>600.0</td>\n",
       "      <td>600.0</td>\n",
       "      <td>600.0</td>\n",
       "      <td>600.0</td>\n",
       "      <td>600.0</td>\n",
       "      <td>600.0</td>\n",
       "      <td>599.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>5 rows × 21 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "               country     2000     2001     2002     2003     2004     2005  \\\n",
       "0          Afghanistan  50000.0  50000.0  50000.0  30000.0  25500.0  30000.0   \n",
       "1              Albania    990.0    840.0    840.0   1000.0   1060.0   1080.0   \n",
       "2              Algeria    141.0    143.0    146.0    151.0    155.0     82.0   \n",
       "3               Angola  10000.0   2000.0   2000.0   2000.0   2000.0   2000.0   \n",
       "4  Antigua and Barbuda    600.0    600.0    650.0    700.0    700.0    700.0   \n",
       "\n",
       "      2006     2007     2008  ...     2010     2011     2012     2013  \\\n",
       "0  31950.0  35000.0  35000.0  ...  33000.0  33000.0  33000.0  36300.0   \n",
       "1   1080.0    950.0    740.0  ...    740.0    740.0    740.0    740.0   \n",
       "2    106.0    124.0    143.0  ...    200.0    211.0    250.0    260.0   \n",
       "3   2000.0   2000.0   2000.0  ...   2000.0   3000.0   3000.0   3000.0   \n",
       "4    700.0    700.0    700.0  ...    700.0    700.0    600.0    600.0   \n",
       "\n",
       "      2014     2015     2016     2017     2018     2019  \n",
       "0  35000.0  42124.0  51102.0  31845.0  39496.0  49371.0  \n",
       "1    740.0    740.0    740.0    740.0    740.0    617.0  \n",
       "2    260.0    260.0    260.0    260.0    260.0    275.0  \n",
       "3   3000.0   3000.0   3000.0   3000.0   3000.0   2945.0  \n",
       "4    600.0    600.0    600.0    600.0    600.0    599.0  \n",
       "\n",
       "[5 rows x 21 columns]"
      ]
     },
     "execution_count": 95,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "ha_df = pd.DataFrame(ha_byYear)\n",
    "ha_df.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 109,
   "id": "9983ebc7",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>2000</th>\n",
       "      <th>2001</th>\n",
       "      <th>2002</th>\n",
       "      <th>2003</th>\n",
       "      <th>2004</th>\n",
       "      <th>2005</th>\n",
       "      <th>2006</th>\n",
       "      <th>2007</th>\n",
       "      <th>2008</th>\n",
       "      <th>2009</th>\n",
       "      <th>...</th>\n",
       "      <th>2011</th>\n",
       "      <th>2012</th>\n",
       "      <th>2013</th>\n",
       "      <th>2014</th>\n",
       "      <th>2015</th>\n",
       "      <th>2016</th>\n",
       "      <th>2017</th>\n",
       "      <th>2018</th>\n",
       "      <th>2019</th>\n",
       "      <th>country</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>NaN</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>-0.400000</td>\n",
       "      <td>-0.15000</td>\n",
       "      <td>0.176471</td>\n",
       "      <td>0.065000</td>\n",
       "      <td>0.095462</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>-0.057143</td>\n",
       "      <td>...</td>\n",
       "      <td>0.000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.10</td>\n",
       "      <td>-0.035813</td>\n",
       "      <td>0.203543</td>\n",
       "      <td>0.213133</td>\n",
       "      <td>-0.376835</td>\n",
       "      <td>0.240257</td>\n",
       "      <td>0.250025</td>\n",
       "      <td>Afghanistan</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>NaN</td>\n",
       "      <td>-0.151515</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.190476</td>\n",
       "      <td>0.06000</td>\n",
       "      <td>0.018868</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>-0.120370</td>\n",
       "      <td>-0.221053</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>...</td>\n",
       "      <td>0.000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.00</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>-0.166216</td>\n",
       "      <td>Albania</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>NaN</td>\n",
       "      <td>0.014184</td>\n",
       "      <td>0.020979</td>\n",
       "      <td>0.034247</td>\n",
       "      <td>0.02649</td>\n",
       "      <td>-0.470968</td>\n",
       "      <td>0.292683</td>\n",
       "      <td>0.169811</td>\n",
       "      <td>0.153226</td>\n",
       "      <td>0.139860</td>\n",
       "      <td>...</td>\n",
       "      <td>0.055</td>\n",
       "      <td>0.184834</td>\n",
       "      <td>0.04</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.057692</td>\n",
       "      <td>Algeria</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>NaN</td>\n",
       "      <td>-0.800000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.00000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>...</td>\n",
       "      <td>0.500</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.00</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>-0.018333</td>\n",
       "      <td>Angola</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>NaN</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.083333</td>\n",
       "      <td>0.076923</td>\n",
       "      <td>0.00000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>...</td>\n",
       "      <td>0.000</td>\n",
       "      <td>-0.142857</td>\n",
       "      <td>0.00</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>-0.001667</td>\n",
       "      <td>Antigua and Barbuda</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>5 rows × 21 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "   2000      2001      2002      2003     2004      2005      2006      2007  \\\n",
       "0   NaN  0.000000  0.000000 -0.400000 -0.15000  0.176471  0.065000  0.095462   \n",
       "1   NaN -0.151515  0.000000  0.190476  0.06000  0.018868  0.000000 -0.120370   \n",
       "2   NaN  0.014184  0.020979  0.034247  0.02649 -0.470968  0.292683  0.169811   \n",
       "3   NaN -0.800000  0.000000  0.000000  0.00000  0.000000  0.000000  0.000000   \n",
       "4   NaN  0.000000  0.083333  0.076923  0.00000  0.000000  0.000000  0.000000   \n",
       "\n",
       "       2008      2009  ...   2011      2012  2013      2014      2015  \\\n",
       "0  0.000000 -0.057143  ...  0.000  0.000000  0.10 -0.035813  0.203543   \n",
       "1 -0.221053  0.000000  ...  0.000  0.000000  0.00  0.000000  0.000000   \n",
       "2  0.153226  0.139860  ...  0.055  0.184834  0.04  0.000000  0.000000   \n",
       "3  0.000000  0.000000  ...  0.500  0.000000  0.00  0.000000  0.000000   \n",
       "4  0.000000  0.000000  ...  0.000 -0.142857  0.00  0.000000  0.000000   \n",
       "\n",
       "       2016      2017      2018      2019              country  \n",
       "0  0.213133 -0.376835  0.240257  0.250025          Afghanistan  \n",
       "1  0.000000  0.000000  0.000000 -0.166216              Albania  \n",
       "2  0.000000  0.000000  0.000000  0.057692              Algeria  \n",
       "3  0.000000  0.000000  0.000000 -0.018333               Angola  \n",
       "4  0.000000  0.000000  0.000000 -0.001667  Antigua and Barbuda  \n",
       "\n",
       "[5 rows x 21 columns]"
      ]
     },
     "execution_count": 109,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pct_change_df = ha_df[['2000', '2001', '2002', '2003', '2004', '2005', '2006',\n",
    "       '2007', '2008', '2009', '2010', '2011', '2012', '2013', '2014', '2015',\n",
    "       '2016', '2017', '2018', '2019']].pct_change(axis=1)\n",
    "\n",
    "#add countries\n",
    "pct_change_df['country']=ha_df['country']\n",
    "pct_change_df.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 165,
   "id": "00db70e0",
   "metadata": {},
   "outputs": [],
   "source": [
    "pct_change_df.to_csv('../../datasets/raw/crop_data/projection_factor_byCountry.csv')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 120,
   "id": "b4e5573e",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "<ipython-input-120-6d3cd98700ee>:3: SettingWithCopyWarning: \n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
      "  pct_change_china['2000']=0\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>2000</th>\n",
       "      <th>2001</th>\n",
       "      <th>2002</th>\n",
       "      <th>2003</th>\n",
       "      <th>2004</th>\n",
       "      <th>2005</th>\n",
       "      <th>2006</th>\n",
       "      <th>2007</th>\n",
       "      <th>2008</th>\n",
       "      <th>2009</th>\n",
       "      <th>...</th>\n",
       "      <th>2011</th>\n",
       "      <th>2012</th>\n",
       "      <th>2013</th>\n",
       "      <th>2014</th>\n",
       "      <th>2015</th>\n",
       "      <th>2016</th>\n",
       "      <th>2017</th>\n",
       "      <th>2018</th>\n",
       "      <th>2019</th>\n",
       "      <th>country</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>21</th>\n",
       "      <td>0</td>\n",
       "      <td>0.190235</td>\n",
       "      <td>-0.130057</td>\n",
       "      <td>0.2215</td>\n",
       "      <td>0.113872</td>\n",
       "      <td>-0.110855</td>\n",
       "      <td>0.148916</td>\n",
       "      <td>0.018983</td>\n",
       "      <td>-0.029024</td>\n",
       "      <td>-0.139426</td>\n",
       "      <td>...</td>\n",
       "      <td>0.038936</td>\n",
       "      <td>-0.069409</td>\n",
       "      <td>-0.073057</td>\n",
       "      <td>-0.02838</td>\n",
       "      <td>-0.107863</td>\n",
       "      <td>-0.103739</td>\n",
       "      <td>0.435088</td>\n",
       "      <td>-0.307655</td>\n",
       "      <td>0.435534</td>\n",
       "      <td>China, mainland</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>1 rows × 21 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "    2000      2001      2002    2003      2004      2005      2006      2007  \\\n",
       "21     0  0.190235 -0.130057  0.2215  0.113872 -0.110855  0.148916  0.018983   \n",
       "\n",
       "        2008      2009  ...      2011      2012      2013     2014      2015  \\\n",
       "21 -0.029024 -0.139426  ...  0.038936 -0.069409 -0.073057 -0.02838 -0.107863   \n",
       "\n",
       "        2016      2017      2018      2019          country  \n",
       "21 -0.103739  0.435088 -0.307655  0.435534  China, mainland  \n",
       "\n",
       "[1 rows x 21 columns]"
      ]
     },
     "execution_count": 120,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#filter by china mainland\n",
    "pct_change_china = pct_change_df[pct_change_df['country']=='China, mainland']\n",
    "pct_change_china['2000']=0\n",
    "pct_change_china"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 117,
   "id": "6b1055a3",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0.19023509032417718"
      ]
     },
     "execution_count": 117,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pct_change_china['2001'].iloc[0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 139,
   "id": "cda9c063",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>year</th>\n",
       "      <th>average_imp</th>\n",
       "      <th>min_imp</th>\n",
       "      <th>max_imp</th>\n",
       "      <th>total_imp</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>2000</td>\n",
       "      <td>74522.894697</td>\n",
       "      <td>7.722101e-11</td>\n",
       "      <td>2.588871e+06</td>\n",
       "      <td>100532.669140</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>2001</td>\n",
       "      <td>88699.764301</td>\n",
       "      <td>9.191116e-11</td>\n",
       "      <td>3.081366e+06</td>\n",
       "      <td>119657.510535</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>2002</td>\n",
       "      <td>64830.676085</td>\n",
       "      <td>6.717788e-11</td>\n",
       "      <td>2.252171e+06</td>\n",
       "      <td>87457.699214</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>2003</td>\n",
       "      <td>91029.710530</td>\n",
       "      <td>9.432546e-11</td>\n",
       "      <td>3.162306e+06</td>\n",
       "      <td>122800.648147</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>2004</td>\n",
       "      <td>83008.968795</td>\n",
       "      <td>8.601432e-11</td>\n",
       "      <td>2.883671e+06</td>\n",
       "      <td>111980.529332</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   year   average_imp       min_imp       max_imp      total_imp\n",
       "0  2000  74522.894697  7.722101e-11  2.588871e+06  100532.669140\n",
       "1  2001  88699.764301  9.191116e-11  3.081366e+06  119657.510535\n",
       "2  2002  64830.676085  6.717788e-11  2.252171e+06   87457.699214\n",
       "3  2003  91029.710530  9.432546e-11  3.162306e+06  122800.648147\n",
       "4  2004  83008.968795  8.601432e-11  2.883671e+06  111980.529332"
      ]
     },
     "execution_count": 139,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#to json\n",
    "pct_change_china_json = {}\n",
    "for el in pct_change_china.columns:\n",
    "    if el != 'country':\n",
    "        pct_change_china_json[el]=pct_change_china[el].iloc[0]\n",
    "\n",
    "#total_volume is 2400\n",
    "total_vol = 2400\n",
    "#value is going to be (2000val + (factor*2000val))\n",
    "#project average\n",
    "average_risk = sum(merge_df['sumStats'])/len(merge_df['sumStats'])\n",
    "pr_average_imp = [(average_risk + pct_change_china_json[f'{year}']*average_risk)*total_vol for year in range(2000,2020)]\n",
    "\n",
    "#project min\n",
    "min_risk = min(merge_df['sumStats'])\n",
    "pr_min_imp = [(min_risk + pct_change_china_json[f'{year}']*min_risk)*total_vol for year in range(2000,2020)]\n",
    "\n",
    "#project max\n",
    "max_risk = max(merge_df['sumStats'])\n",
    "pr_max_imp = [(max_risk + pct_change_china_json[f'{year}']*max_risk)*total_vol for year in range(2000,2020)]\n",
    "\n",
    "\n",
    "#project sum\n",
    "total_impact = sum(gdf['impact'])  \n",
    "pr_total_imp = [(total_impact + pct_change_china_json[f'{year}']*total_impact) for year in range(2000,2020)]\n",
    "\n",
    "\n",
    "#generate dataframe\n",
    "df = pd.DataFrame()\n",
    "df['year']=[year for year in range(2000,2020)]\n",
    "df['average_imp']=pr_average_imp\n",
    "df['min_imp']=pr_min_imp\n",
    "df['max_imp']=pr_max_imp\n",
    "df['total_imp']=pr_total_imp\n",
    "df.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 164,
   "id": "d841e0e7",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "BokehDeprecationWarning: 'legend' keyword is deprecated, use explicit 'legend_label', 'legend_field', or 'legend_group' keywords instead\n",
      "BokehDeprecationWarning: 'legend' keyword is deprecated, use explicit 'legend_label', 'legend_field', or 'legend_group' keywords instead\n",
      "BokehDeprecationWarning: 'legend' keyword is deprecated, use explicit 'legend_label', 'legend_field', or 'legend_group' keywords instead\n",
      "BokehDeprecationWarning: 'legend' keyword is deprecated, use explicit 'legend_label', 'legend_field', or 'legend_group' keywords instead\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "\n",
       "\n",
       "\n",
       "\n",
       "\n",
       "\n",
       "  <div class=\"bk-root\" id=\"8b8f8331-79f1-4014-bb7b-f0a513411fdf\" data-root-id=\"7294\"></div>\n"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/javascript": [
       "(function(root) {\n",
       "  function embed_document(root) {\n",
       "    \n",
       "  var docs_json = {\"9380ed64-d5a6-4a6e-bb64-2a240e27fbef\":{\"roots\":{\"references\":[{\"attributes\":{\"below\":[{\"id\":\"7303\"}],\"center\":[{\"id\":\"7306\"},{\"id\":\"7310\"},{\"id\":\"7351\"}],\"left\":[{\"id\":\"7307\"}],\"renderers\":[{\"id\":\"7328\"},{\"id\":\"7356\"},{\"id\":\"7383\"},{\"id\":\"7410\"}],\"title\":{\"id\":\"7331\"},\"toolbar\":{\"id\":\"7318\"},\"x_range\":{\"id\":\"7295\"},\"x_scale\":{\"id\":\"7299\"},\"y_range\":{\"id\":\"7297\"},\"y_scale\":{\"id\":\"7301\"}},\"id\":\"7294\",\"subtype\":\"Figure\",\"type\":\"Plot\"},{\"attributes\":{\"days\":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31]},\"id\":\"7339\",\"type\":\"DaysTicker\"},{\"attributes\":{\"overlay\":{\"id\":\"7317\"}},\"id\":\"7313\",\"type\":\"BoxZoomTool\"},{\"attributes\":{\"line_color\":\"#fdae61\",\"line_width\":2,\"x\":{\"field\":\"year\"},\"y\":{\"field\":\"total_imp\"}},\"id\":\"7408\",\"type\":\"Line\"},{\"attributes\":{},\"id\":\"7308\",\"type\":\"BasicTicker\"},{\"attributes\":{},\"id\":\"7311\",\"type\":\"PanTool\"},{\"attributes\":{\"line_color\":\"#1f77b4\",\"line_width\":2,\"x\":{\"field\":\"year\"},\"y\":{\"field\":\"average_imp\"}},\"id\":\"7326\",\"type\":\"Line\"},{\"attributes\":{\"base\":24,\"mantissas\":[1,2,4,6,8,12],\"max_interval\":43200000.0,\"min_interval\":3600000.0,\"num_minor_ticks\":0},\"id\":\"7338\",\"type\":\"AdaptiveTicker\"},{\"attributes\":{\"months\":[0,1,2,3,4,5,6,7,8,9,10,11]},\"id\":\"7343\",\"type\":\"MonthsTicker\"},{\"attributes\":{\"items\":[{\"id\":\"7352\"},{\"id\":\"7379\"},{\"id\":\"7406\"},{\"id\":\"7433\"}]},\"id\":\"7351\",\"type\":\"Legend\"},{\"attributes\":{\"axis_label\":\"m3 / year\",\"formatter\":{\"id\":\"7335\"},\"ticker\":{\"id\":\"7308\"}},\"id\":\"7307\",\"type\":\"LinearAxis\"},{\"attributes\":{\"label\":{\"value\":\"Min impact\"},\"renderers\":[{\"id\":\"7356\"}]},\"id\":\"7379\",\"type\":\"LegendItem\"},{\"attributes\":{},\"id\":\"7347\",\"type\":\"YearsTicker\"},{\"attributes\":{},\"id\":\"7297\",\"type\":\"DataRange1d\"},{\"attributes\":{\"days\":[1,4,7,10,13,16,19,22,25,28]},\"id\":\"7340\",\"type\":\"DaysTicker\"},{\"attributes\":{\"axis\":{\"id\":\"7303\"},\"ticker\":null},\"id\":\"7306\",\"type\":\"Grid\"},{\"attributes\":{\"days\":[1,15]},\"id\":\"7342\",\"type\":\"DaysTicker\"},{\"attributes\":{\"num_minor_ticks\":5,\"tickers\":[{\"id\":\"7336\"},{\"id\":\"7337\"},{\"id\":\"7338\"},{\"id\":\"7339\"},{\"id\":\"7340\"},{\"id\":\"7341\"},{\"id\":\"7342\"},{\"id\":\"7343\"},{\"id\":\"7344\"},{\"id\":\"7345\"},{\"id\":\"7346\"},{\"id\":\"7347\"}]},\"id\":\"7304\",\"type\":\"DatetimeTicker\"},{\"attributes\":{\"line_alpha\":0.1,\"line_color\":\"#fdae61\",\"line_width\":2,\"x\":{\"field\":\"year\"},\"y\":{\"field\":\"total_imp\"}},\"id\":\"7409\",\"type\":\"Line\"},{\"attributes\":{\"text\":\"Unsustainable water use impacts for Cotton in China\"},\"id\":\"7331\",\"type\":\"Title\"},{\"attributes\":{\"days\":[1,8,15,22]},\"id\":\"7341\",\"type\":\"DaysTicker\"},{\"attributes\":{\"bottom_units\":\"screen\",\"fill_alpha\":0.5,\"fill_color\":\"lightgrey\",\"left_units\":\"screen\",\"level\":\"overlay\",\"line_alpha\":1.0,\"line_color\":\"black\",\"line_dash\":[4,4],\"line_width\":2,\"right_units\":\"screen\",\"top_units\":\"screen\"},\"id\":\"7317\",\"type\":\"BoxAnnotation\"},{\"attributes\":{\"source\":{\"id\":\"7293\"}},\"id\":\"7329\",\"type\":\"CDSView\"},{\"attributes\":{\"source\":{\"id\":\"7293\"}},\"id\":\"7411\",\"type\":\"CDSView\"},{\"attributes\":{},\"id\":\"7301\",\"type\":\"LinearScale\"},{\"attributes\":{},\"id\":\"7333\",\"type\":\"DatetimeTickFormatter\"},{\"attributes\":{\"label\":{\"value\":\"Average impact\"},\"renderers\":[{\"id\":\"7328\"}]},\"id\":\"7352\",\"type\":\"LegendItem\"},{\"attributes\":{\"months\":[0,2,4,6,8,10]},\"id\":\"7344\",\"type\":\"MonthsTicker\"},{\"attributes\":{},\"id\":\"7295\",\"type\":\"DataRange1d\"},{\"attributes\":{},\"id\":\"7348\",\"type\":\"UnionRenderers\"},{\"attributes\":{},\"id\":\"7349\",\"type\":\"Selection\"},{\"attributes\":{\"line_color\":\"#fee08b\",\"line_width\":2,\"x\":{\"field\":\"year\"},\"y\":{\"field\":\"min_imp\"}},\"id\":\"7354\",\"type\":\"Line\"},{\"attributes\":{\"label\":{\"value\":\"Total impacts\"},\"renderers\":[{\"id\":\"7410\"}]},\"id\":\"7433\",\"type\":\"LegendItem\"},{\"attributes\":{\"data_source\":{\"id\":\"7293\"},\"glyph\":{\"id\":\"7381\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"7382\"},\"selection_glyph\":null,\"view\":{\"id\":\"7384\"}},\"id\":\"7383\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"line_alpha\":0.1,\"line_color\":\"#fee08b\",\"line_width\":2,\"x\":{\"field\":\"year\"},\"y\":{\"field\":\"min_imp\"}},\"id\":\"7355\",\"type\":\"Line\"},{\"attributes\":{},\"id\":\"7335\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{\"months\":[0,6]},\"id\":\"7346\",\"type\":\"MonthsTicker\"},{\"attributes\":{\"source\":{\"id\":\"7293\"}},\"id\":\"7357\",\"type\":\"CDSView\"},{\"attributes\":{},\"id\":\"7299\",\"type\":\"LinearScale\"},{\"attributes\":{\"line_alpha\":0.1,\"line_color\":\"#9e0142\",\"line_width\":2,\"x\":{\"field\":\"year\"},\"y\":{\"field\":\"max_imp\"}},\"id\":\"7382\",\"type\":\"Line\"},{\"attributes\":{\"label\":{\"value\":\"Max impact\"},\"renderers\":[{\"id\":\"7383\"}]},\"id\":\"7406\",\"type\":\"LegendItem\"},{\"attributes\":{\"data_source\":{\"id\":\"7293\"},\"glyph\":{\"id\":\"7326\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"7327\"},\"selection_glyph\":null,\"view\":{\"id\":\"7329\"}},\"id\":\"7328\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"data_source\":{\"id\":\"7293\"},\"glyph\":{\"id\":\"7354\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"7355\"},\"selection_glyph\":null,\"view\":{\"id\":\"7357\"}},\"id\":\"7356\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"data\":{\"average_imp\":{\"__ndarray__\":\"XxKuUK4x8kDC55M6vKf1QAipfKLVp+9A/zdUXls59kBiPC+AD0T0QGC03QZaLfBAEBRfO0nn9ECaZgMfGYryQAJ1QuZ+qvFA4xaxX49Q70A+jX+Q9dDxQIgacSAI5/JAY+5iC2Xu8EAaZmzKZ93wQMRK2a1+rfFAs458F0o78ECycJTYf07wQF+HNGEuHPpA46xa9nAx6UCN9bqGQh76QA==\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[20]},\"index\":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19],\"max_imp\":{\"__ndarray__\":\"AACAsWPAQ0Gius7ISoJHQXersF3FLkFBmxRMG2EgSEFTKTG6KwBGQb8KpXXcj0FBxO99al6xRkF5SaEXYCBEQRO2DM2hLUNB4zHX9WX/QEGapiFdY1dDQQ0RDapDhURBfEOw3G1hQkFSk0hN/E5CQbqF603jMENBHwOT9f2eQUHVwliv2LNBQTApyOZcWExBdD5qWIdZO0HbcOCZnlpMQQ==\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[20]},\"min_imp\":{\"__ndarray__\":\"////CfI51T3ClaQtrEPZPdQZAyU5d9I9HLgKYpDt2T1XVPRMuKTXPa8URCWQ39I95aEpLiZj2D24xqM8GaHVPVP9MdY6nNQ9Mx5MMlBE0j3TV1yUGsnUPR/DkFSFDdY98R0mgMfA0z2Oj8Fi9azTPWVduZO6n9Q9kjhD4NLv0j3t2FE9PAbTPcxGRmAwdt491ocpl1NkzT37lkM2nXjePQ==\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[20]},\"total_imp\":{\"__ndarray__\":\"xF3MtEqL+EA8XCYrmDb9QBvJ+i8bWvVArx/PXgr7/UDGsyR4yFb7QC6IMjjB0vVAfKwIJPoy/EBuEhdzkQL5QM2zwrTs1PdA4UrSIz0f9UCf398G0Aj4QJ7qEu3vf/lAoc5wUyzX9kBSJJAbQcD2QI/MPXT42PdAqzPAmY7l9UDrQ2C8eP/1QO/Rr6yJnAFBIAiSJTT+8ECl3ayc8J0BQQ==\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[20]},\"year\":{\"__ndarray__\":\"AACA9VmNa0IAAIDm9HhsQgAAAAzrY21CAACAMeFObkIAAABX1zlvQgAAACS5EnBCAADANjSIcEIAAIBJr/1wQgAAQFwqc3FCAADA1PfocUIAAIDncl5yQgAAQPrt03JCAAAADWlJc0IAAICFNr9zQgAAQJixNHRCAAAAqyyqdEIAAMC9px91QgAAQDZ1lXVCAAAASfAKdkIAAMBba4B2Qg==\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[20]}},\"selected\":{\"id\":\"7349\"},\"selection_policy\":{\"id\":\"7348\"}},\"id\":\"7293\",\"type\":\"ColumnDataSource\"},{\"attributes\":{\"mantissas\":[1,2,5],\"max_interval\":500.0,\"num_minor_ticks\":0},\"id\":\"7336\",\"type\":\"AdaptiveTicker\"},{\"attributes\":{},\"id\":\"7314\",\"type\":\"SaveTool\"},{\"attributes\":{\"data_source\":{\"id\":\"7293\"},\"glyph\":{\"id\":\"7408\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"7409\"},\"selection_glyph\":null,\"view\":{\"id\":\"7411\"}},\"id\":\"7410\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"base\":60,\"mantissas\":[1,2,5,10,15,20,30],\"max_interval\":1800000.0,\"min_interval\":1000.0,\"num_minor_ticks\":0},\"id\":\"7337\",\"type\":\"AdaptiveTicker\"},{\"attributes\":{},\"id\":\"7316\",\"type\":\"HelpTool\"},{\"attributes\":{\"formatter\":{\"id\":\"7333\"},\"ticker\":{\"id\":\"7304\"}},\"id\":\"7303\",\"type\":\"DatetimeAxis\"},{\"attributes\":{\"months\":[0,4,8]},\"id\":\"7345\",\"type\":\"MonthsTicker\"},{\"attributes\":{\"source\":{\"id\":\"7293\"}},\"id\":\"7384\",\"type\":\"CDSView\"},{\"attributes\":{\"active_drag\":\"auto\",\"active_inspect\":\"auto\",\"active_multi\":null,\"active_scroll\":\"auto\",\"active_tap\":\"auto\",\"tools\":[{\"id\":\"7311\"},{\"id\":\"7312\"},{\"id\":\"7313\"},{\"id\":\"7314\"},{\"id\":\"7315\"},{\"id\":\"7316\"}]},\"id\":\"7318\",\"type\":\"Toolbar\"},{\"attributes\":{},\"id\":\"7315\",\"type\":\"ResetTool\"},{\"attributes\":{\"axis\":{\"id\":\"7307\"},\"dimension\":1,\"ticker\":null},\"id\":\"7310\",\"type\":\"Grid\"},{\"attributes\":{\"line_alpha\":0.1,\"line_color\":\"#1f77b4\",\"line_width\":2,\"x\":{\"field\":\"year\"},\"y\":{\"field\":\"average_imp\"}},\"id\":\"7327\",\"type\":\"Line\"},{\"attributes\":{},\"id\":\"7312\",\"type\":\"WheelZoomTool\"},{\"attributes\":{\"line_color\":\"#9e0142\",\"line_width\":2,\"x\":{\"field\":\"year\"},\"y\":{\"field\":\"max_imp\"}},\"id\":\"7381\",\"type\":\"Line\"}],\"root_ids\":[\"7294\"]},\"title\":\"Bokeh Application\",\"version\":\"2.2.3\"}};\n",
       "  var render_items = [{\"docid\":\"9380ed64-d5a6-4a6e-bb64-2a240e27fbef\",\"root_ids\":[\"7294\"],\"roots\":{\"7294\":\"8b8f8331-79f1-4014-bb7b-f0a513411fdf\"}}];\n",
       "  root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n",
       "\n",
       "  }\n",
       "  if (root.Bokeh !== undefined) {\n",
       "    embed_document(root);\n",
       "  } else {\n",
       "    var attempts = 0;\n",
       "    var timer = setInterval(function(root) {\n",
       "      if (root.Bokeh !== undefined) {\n",
       "        clearInterval(timer);\n",
       "        embed_document(root);\n",
       "      } else {\n",
       "        attempts++;\n",
       "        if (attempts > 100) {\n",
       "          clearInterval(timer);\n",
       "          console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n",
       "        }\n",
       "      }\n",
       "    }, 10, root)\n",
       "  }\n",
       "})(window);"
      ],
      "application/vnd.bokehjs_exec.v0+json": ""
     },
     "metadata": {
      "application/vnd.bokehjs_exec.v0+json": {
       "id": "7294"
      }
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "df['year'] = pd.to_datetime(df['year'], format='%Y')\n",
    "\n",
    "source = ColumnDataSource(df)\n",
    "\n",
    "p = figure(x_axis_type=\"datetime\")\n",
    "\n",
    "p.line(x='year', y='average_imp', line_width=2, source=source, legend='Average impact')\n",
    "p.line(x='year', y='min_imp', line_width=2, source=source, color=Spectral10[5], legend='Min impact')\n",
    "p.line(x='year', y='max_imp', line_width=2, source=source, color=Spectral10[9], legend='Max impact')\n",
    "p.line(x='year', y='total_imp', line_width=2, source=source, color=Spectral10[6], legend='Total impacts')\n",
    "\n",
    "p.title.text = 'Unsustainable water use impacts for Cotton in China'\n",
    "p.yaxis.axis_label = 'm3 / year'\n",
    "show(p)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e2110c36",
   "metadata": {},
   "source": [
    "## 3. Final Notes\n",
    "\n",
    "- for the translation into h3:\n",
    "\n",
    "    - for the resolution of 10km, the resolution of 6 for the H3 looks better than the resolution of 5\n",
    "    - Raster with 10km resolution will be translated to H3 using the Res 6 and the weighted mean\n",
    "    - Ratsers with 30m resolution will be translated to H3 using the Res 10 and the weighted mean\n",
    "    - Alternatively this 30m rasters will be translated to the Res 9 using the weighted sum\n",
    "    - The aggregation to different zoom levels would be done using the weighted sum\n",
    "\n",
    "\n",
    "- for the caculation:\n",
    "    \n",
    "    - translate the intersection to sql\n",
    "    \n",
    "    "
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}