Vizzuality/landgriffon

View on GitHub
data/notebooks/templates/init/initial_template.ipynb

Summary

Maintainability
Test Coverage
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Title"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The title of the notebook should be coherent with file name. The file name should be:\n",
    "\n",
    "progressive number_title.ipynb\n",
    "\n",
    "For example:\n",
    "01_Data_Exploration.ipynb"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Purpose"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "State the purpose of the notebook."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Methodology"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Quickly describle assumptions and processing steps."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## WIP - improvements"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Use this section only if the notebook is not final.\n",
    "\n",
    "Notable TODOs:\n",
    "\n",
    "- Todo 1;\n",
    "- Todo 2;\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Results"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Describe and comment the most important results."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Suggested next steps"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "State suggested next steps, based on results obtained in this notebook."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Setup"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Library import"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We import all the required PYthon libraries"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Data manipulation\n",
    "import os\n",
    "import pandas as pd\n",
    "import geopandas as gpd\n",
    "import numpy as np\n",
    "\n",
    "# Visualization\n",
    "import plotly\n",
    "import matplotlib as plt\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Data import"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# We retrieve all the data required for the analysis.\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Parameter definition"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# We set all relevant parameters for our notebook. (agrrements in naming convention).\n",
    "\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Data processing"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Put here the core of the notebook. Feel free to further split this section into subsections.\n",
    "\n",
    "\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## References"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Report here relevant references:\n",
    "\n",
    "1. author1, article1, journal1, year1, url1\n",
    "2. author2, article2, journal2, year2, url2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}