data/notebooks/templates/init/initial_template.ipynb
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Title"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The title of the notebook should be coherent with file name. The file name should be:\n",
"\n",
"progressive number_title.ipynb\n",
"\n",
"For example:\n",
"01_Data_Exploration.ipynb"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Purpose"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"State the purpose of the notebook."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Methodology"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Quickly describle assumptions and processing steps."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## WIP - improvements"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Use this section only if the notebook is not final.\n",
"\n",
"Notable TODOs:\n",
"\n",
"- Todo 1;\n",
"- Todo 2;\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Describe and comment the most important results."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Suggested next steps"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"State suggested next steps, based on results obtained in this notebook."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Setup"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Library import"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We import all the required PYthon libraries"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# Data manipulation\n",
"import os\n",
"import pandas as pd\n",
"import geopandas as gpd\n",
"import numpy as np\n",
"\n",
"# Visualization\n",
"import plotly\n",
"import matplotlib as plt\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data import"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# We retrieve all the data required for the analysis.\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Parameter definition"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# We set all relevant parameters for our notebook. (agrrements in naming convention).\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data processing"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Put here the core of the notebook. Feel free to further split this section into subsections.\n",
"\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## References"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Report here relevant references:\n",
"\n",
"1. author1, article1, journal1, year1, url1\n",
"2. author2, article2, journal2, year2, url2"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.1"
}
},
"nbformat": 4,
"nbformat_minor": 4
}