WenjieDu/PyPOTS

View on GitHub
pypots/forecasting/bttf/submodules.py

Summary

Maintainability
B
4 hrs
Test Coverage
"""

"""

# Created by Wenjie Du <wenjay.du@gmail.com>
# License: BSD-3-Clause

import numpy as np
from numpy.linalg import cholesky as cholesky_lower
from numpy.linalg import inv as inv
from numpy.linalg import solve as solve
from numpy.random import multivariate_normal as mvnrnd
from numpy.random import normal as normrnd
from scipy.linalg import cholesky as cholesky_upper
from scipy.linalg import khatri_rao as kr_prod
from scipy.linalg import solve_triangular as solve_ut
from scipy.stats import invwishart
from scipy.stats import wishart


def mvnrnd_pre(mu, Lambda):
    src = normrnd(size=(mu.shape[0],))
    return (
        solve_ut(
            cholesky_upper(Lambda, overwrite_a=True, check_finite=False),
            src,
            lower=False,
            check_finite=False,
            overwrite_b=True,
        )
        + mu
    )


def cov_mat(mat, mat_bar):
    mat = mat - mat_bar
    return mat.T @ mat


def ten2mat(tensor, mode):
    return np.reshape(np.moveaxis(tensor, mode, 0), (tensor.shape[mode], -1), order="F")


def sample_factor_u(tau_sparse_tensor, tau_ind, U, V, X, beta0=1):
    """Sampling M-by-R factor matrix U and its hyper-parameters (mu_u, Lambda_u)."""

    dim1, rank = U.shape
    U_bar = np.mean(U, axis=0)
    temp = dim1 / (dim1 + beta0)
    var_mu_hyper = temp * U_bar
    var_U_hyper = inv(np.eye(rank) + cov_mat(U, U_bar) + temp * beta0 * np.outer(U_bar, U_bar))
    var_Lambda_hyper = wishart.rvs(df=dim1 + rank, scale=var_U_hyper)
    var_mu_hyper = mvnrnd_pre(var_mu_hyper, (dim1 + beta0) * var_Lambda_hyper)

    var1 = kr_prod(X, V).T
    var2 = kr_prod(var1, var1)
    var3 = (var2 @ ten2mat(tau_ind, 0).T).reshape([rank, rank, dim1]) + var_Lambda_hyper[:, :, None]
    var4 = var1 @ ten2mat(tau_sparse_tensor, 0).T + (var_Lambda_hyper @ var_mu_hyper)[:, None]
    for i in range(dim1):
        U[i, :] = mvnrnd_pre(solve(var3[:, :, i], var4[:, i]), var3[:, :, i])

    return U


def sample_factor_v(tau_sparse_tensor, tau_ind, U, V, X, beta0=1):
    """Sampling N-by-R factor matrix V and its hyper-parameters (mu_v, Lambda_v)."""

    dim2, rank = V.shape
    V_bar = np.mean(V, axis=0)
    temp = dim2 / (dim2 + beta0)
    var_mu_hyper = temp * V_bar
    var_V_hyper = inv(np.eye(rank) + cov_mat(V, V_bar) + temp * beta0 * np.outer(V_bar, V_bar))
    var_Lambda_hyper = wishart.rvs(df=dim2 + rank, scale=var_V_hyper)
    var_mu_hyper = mvnrnd_pre(var_mu_hyper, (dim2 + beta0) * var_Lambda_hyper)

    var1 = kr_prod(X, U).T
    var2 = kr_prod(var1, var1)
    var3 = (var2 @ ten2mat(tau_ind, 1).T).reshape([rank, rank, dim2]) + var_Lambda_hyper[:, :, None]
    var4 = var1 @ ten2mat(tau_sparse_tensor, 1).T + (var_Lambda_hyper @ var_mu_hyper)[:, None]
    for j in range(dim2):
        V[j, :] = mvnrnd_pre(solve(var3[:, :, j], var4[:, j]), var3[:, :, j])

    return V


def mnrnd(M, U, V):
    """
    Generate matrix normal distributed random matrix.
    M is a m-by-n matrix, U is a m-by-m matrix, and V is a n-by-n matrix.
    """
    dim1, dim2 = M.shape
    X0 = np.random.randn(dim1, dim2)
    P = cholesky_lower(U)
    Q = cholesky_lower(V)

    return M + P @ X0 @ Q.T


def sample_var_coefficient(X, time_lags):
    dim, rank = X.shape
    d = time_lags.shape[0]
    tmax = np.max(time_lags)

    Z_mat = X[tmax:dim, :]
    Q_mat = np.zeros((dim - tmax, rank * d))
    for k in range(d):
        Q_mat[:, k * rank : (k + 1) * rank] = X[tmax - time_lags[k] : dim - time_lags[k], :]
    var_Psi0 = np.eye(rank * d) + Q_mat.T @ Q_mat
    var_Psi = inv(var_Psi0)
    var_M = var_Psi @ Q_mat.T @ Z_mat
    var_S = np.eye(rank) + Z_mat.T @ Z_mat - var_M.T @ var_Psi0 @ var_M
    Sigma = invwishart.rvs(df=rank + dim - tmax, scale=var_S)

    return mnrnd(var_M, var_Psi, Sigma), Sigma


def sample_factor_x(tau_sparse_tensor, tau_ind, time_lags, U, V, X, A, Lambda_x):
    """Sampling T-by-R factor matrix X."""

    dim3, rank = X.shape
    tmax = np.max(time_lags)
    tmin = np.min(time_lags)
    d = time_lags.shape[0]
    A0 = np.dstack([A] * d)
    for k in range(d):
        A0[k * rank : (k + 1) * rank, :, k] = 0
    mat0 = Lambda_x @ A.T
    mat1 = np.einsum("kij, jt -> kit", A.reshape([d, rank, rank]), Lambda_x)
    mat2 = np.einsum("kit, kjt -> ij", mat1, A.reshape([d, rank, rank]))

    var1 = kr_prod(V, U).T
    var2 = kr_prod(var1, var1)
    var3 = (var2 @ ten2mat(tau_ind, 2).T).reshape([rank, rank, dim3]) + Lambda_x[:, :, None]
    var4 = var1 @ ten2mat(tau_sparse_tensor, 2).T
    for t in range(dim3):
        Mt = np.zeros((rank, rank))
        Nt = np.zeros(rank)
        Qt = mat0 @ X[t - time_lags, :].reshape(rank * d)
        index = list(range(0, d))
        if dim3 - tmax <= t < dim3 - tmin:
            index = list(np.where(t + time_lags < dim3))[0]
        elif t < tmax:
            Qt = np.zeros(rank)
            index = list(np.where(t + time_lags >= tmax))[0]
        if t < dim3 - tmin:
            Mt = mat2.copy()
            temp = np.zeros((rank * d, len(index)))
            n = 0
            for k in index:
                temp[:, n] = X[t + time_lags[k] - time_lags, :].reshape(rank * d)
                n += 1
            temp0 = X[t + time_lags[index], :].T - np.einsum("ijk, ik -> jk", A0[:, :, index], temp)
            Nt = np.einsum("kij, jk -> i", mat1[index, :, :], temp0)

        var3[:, :, t] = var3[:, :, t] + Mt
        if t < tmax:
            var3[:, :, t] = var3[:, :, t] - Lambda_x + np.eye(rank)
        X[t, :] = mvnrnd_pre(solve(var3[:, :, t], var4[:, t] + Nt + Qt), var3[:, :, t])

    return X


def compute_mape(var, var_hat):
    return np.sum(np.abs(var - var_hat) / var) / var.shape[0]


def compute_rmse(var, var_hat):
    return np.sqrt(np.sum((var - var_hat) ** 2) / var.shape[0])


def ar4cast(A, X, Sigma, time_lags, multi_step):
    dim, rank = X.shape
    d = time_lags.shape[0]
    X_new = np.append(X, np.zeros((multi_step, rank)), axis=0)
    for t in range(multi_step):
        var = A.T @ X_new[dim + t - time_lags, :].reshape(rank * d)
        X_new[dim + t, :] = mvnrnd(var, Sigma)
    return X_new