pypots/imputation/dlinear/core.py
"""
The core wrapper assembles the submodules of DLinear imputation model
and takes over the forward progress of the algorithm.
"""
# Created by Wenjie Du <wenjay.du@gmail.com>
# License: BSD-3-Clause
from typing import Optional
import torch.nn as nn
from ...nn.modules.autoformer import SeriesDecompositionBlock
from ...nn.modules.dlinear import BackboneDLinear
from ...nn.modules.saits import SaitsLoss, SaitsEmbedding
class _DLinear(nn.Module):
def __init__(
self,
n_steps: int,
n_features: int,
moving_avg_window_size: int,
individual: bool = False,
d_model: Optional[int] = None,
ORT_weight: float = 1,
MIT_weight: float = 1,
):
super().__init__()
self.n_steps = n_steps
self.n_features = n_features
self.individual = individual
self.series_decomp = SeriesDecompositionBlock(moving_avg_window_size)
self.backbone = BackboneDLinear(n_steps, n_features, individual, d_model)
if not individual:
self.seasonal_saits_embedding = SaitsEmbedding(n_features * 2, d_model, with_pos=False)
self.trend_saits_embedding = SaitsEmbedding(n_features * 2, d_model, with_pos=False)
self.linear_seasonal_output = nn.Linear(d_model, n_features)
self.linear_trend_output = nn.Linear(d_model, n_features)
# apply SAITS loss function to Transformer on the imputation task
self.saits_loss_func = SaitsLoss(ORT_weight, MIT_weight)
def forward(self, inputs: dict, training: bool = True) -> dict:
X, missing_mask = inputs["X"], inputs["missing_mask"]
# input preprocessing and embedding for DLinear
seasonal_init, trend_init = self.series_decomp(X)
if not self.individual:
# WDU: the original DLinear paper isn't proposed for imputation task. Hence the model doesn't take
# the missing mask into account, which means, in the process, the model doesn't know which part of
# the input data is missing, and this may hurt the model's imputation performance. Therefore, I apply the
# SAITS embedding method to project the concatenation of features and masks into a hidden space, as well as
# the output layers to project the seasonal and trend from the hidden space to the original space.
# But this is only for the non-individual mode.
seasonal_init = self.seasonal_saits_embedding(seasonal_init, missing_mask)
trend_init = self.trend_saits_embedding(trend_init, missing_mask)
seasonal_output, trend_output = self.backbone(seasonal_init, trend_init)
if not self.individual:
seasonal_output = self.linear_seasonal_output(seasonal_output)
trend_output = self.linear_trend_output(trend_output)
reconstruction = seasonal_output + trend_output
imputed_data = missing_mask * X + (1 - missing_mask) * reconstruction
results = {
"imputed_data": imputed_data,
}
# if in training mode, return results with losses
if training:
X_ori, indicating_mask = inputs["X_ori"], inputs["indicating_mask"]
loss, ORT_loss, MIT_loss = self.saits_loss_func(reconstruction, X_ori, missing_mask, indicating_mask)
results["ORT_loss"] = ORT_loss
results["MIT_loss"] = MIT_loss
# `loss` is always the item for backward propagating to update the model
results["loss"] = loss
return results