pypots/imputation/etsformer/core.py
"""
The core wrapper assembles the submodules of ETSformer imputation model
and takes over the forward progress of the algorithm.
"""
# Created by Wenjie Du <wenjay.du@gmail.com>
# License: BSD-3-Clause
import torch.nn as nn
from ...nn.modules.etsformer import (
ETSformerEncoderLayer,
ETSformerEncoder,
ETSformerDecoderLayer,
ETSformerDecoder,
)
from ...nn.modules.saits import SaitsLoss, SaitsEmbedding
class _ETSformer(nn.Module):
def __init__(
self,
n_steps,
n_features,
n_e_layers,
n_d_layers,
d_model,
n_heads,
d_ffn,
dropout,
top_k,
ORT_weight: float = 1,
MIT_weight: float = 1,
activation="sigmoid",
):
super().__init__()
self.saits_embedding = SaitsEmbedding(
n_features * 2,
d_model,
with_pos=True,
n_max_steps=n_steps,
dropout=dropout,
)
# Encoder
self.encoder = ETSformerEncoder(
[
ETSformerEncoderLayer(
d_model,
n_heads,
n_features,
n_steps,
n_steps,
top_k,
d_ffn=d_ffn,
dropout=dropout,
activation=activation,
)
for _ in range(n_e_layers)
]
)
# Decoder
self.decoder = ETSformerDecoder(
[
ETSformerDecoderLayer(
d_model,
n_heads,
n_features,
n_steps,
dropout=dropout,
)
for _ in range(n_d_layers)
],
)
# apply SAITS loss function to ETSformer on the imputation task
self.saits_loss_func = SaitsLoss(ORT_weight, MIT_weight)
def forward(self, inputs: dict, training: bool = True) -> dict:
X, missing_mask = inputs["X"], inputs["missing_mask"]
# WDU: the original ETSformer paper isn't proposed for imputation task. Hence the model doesn't take
# the missing mask into account, which means, in the process, the model doesn't know which part of
# the input data is missing, and this may hurt the model's imputation performance. Therefore, I apply the
# SAITS embedding method to project the concatenation of features and masks into a hidden space, as well as
# the output layers to project back from the hidden space to the original space.
res = self.saits_embedding(X, missing_mask)
# ETSformer encoder processing
level, growths, seasons = self.encoder(res, X, attn_mask=None)
growth, season = self.decoder(growths, seasons)
reconstruction = level[:, -1:] + growth + season
imputed_data = missing_mask * X + (1 - missing_mask) * reconstruction
results = {
"imputed_data": imputed_data,
}
# if in training mode, return results with losses
if training:
X_ori, indicating_mask = inputs["X_ori"], inputs["indicating_mask"]
loss, ORT_loss, MIT_loss = self.saits_loss_func(reconstruction, X_ori, missing_mask, indicating_mask)
results["ORT_loss"] = ORT_loss
results["MIT_loss"] = MIT_loss
# `loss` is always the item for backward propagating to update the model
results["loss"] = loss
return results