pypots/imputation/fits/core.py
"""
The core wrapper assembles the submodules of FITS imputation model
and takes over the forward progress of the algorithm.
"""
# Created by Wenjie Du <wenjay.du@gmail.com>
# License: BSD-3-Clause
import torch.nn as nn
from ...nn.functional import nonstationary_norm, nonstationary_denorm
from ...nn.modules.fits import BackboneFITS
from ...nn.modules.saits import SaitsLoss, SaitsEmbedding
class _FITS(nn.Module):
def __init__(
self,
n_steps: int,
n_features: int,
cut_freq: int,
individual: bool,
ORT_weight: float = 1,
MIT_weight: float = 1,
apply_nonstationary_norm: bool = False,
):
super().__init__()
self.n_steps = n_steps
self.apply_nonstationary_norm = apply_nonstationary_norm
self.saits_embedding = SaitsEmbedding(
n_features * 2,
n_features,
with_pos=False,
)
self.backbone = BackboneFITS(
n_steps,
n_features,
0, # n_pred_steps is not used in the imputation task
cut_freq,
individual,
)
# for the imputation task, the output dim is the same as input dim
self.output_projection = nn.Linear(n_features, n_features)
self.saits_loss_func = SaitsLoss(ORT_weight, MIT_weight)
def forward(self, inputs: dict, training: bool = True) -> dict:
X, missing_mask = inputs["X"], inputs["missing_mask"]
if self.apply_nonstationary_norm:
# Normalization from Non-stationary Transformer
X, means, stdev = nonstationary_norm(X, missing_mask)
# WDU: the original FITS paper isn't proposed for imputation task. Hence the model doesn't take
# the missing mask into account, which means, in the process, the model doesn't know which part of
# the input data is missing, and this may hurt the model's imputation performance. Therefore, I apply the
# SAITS embedding method to project the concatenation of features and masks into a hidden space, as well as
# the output layers to project back from the hidden space to the original space.
enc_out = self.saits_embedding(X, missing_mask)
# FITS encoder processing
enc_out = self.backbone(enc_out)
if self.apply_nonstationary_norm:
# De-Normalization from Non-stationary Transformer
enc_out = nonstationary_denorm(enc_out, means, stdev)
# project back the original data space
reconstruction = self.output_projection(enc_out)
imputed_data = missing_mask * X + (1 - missing_mask) * reconstruction
results = {
"imputed_data": imputed_data,
}
# if in training mode, return results with losses
if training:
X_ori, indicating_mask = inputs["X_ori"], inputs["indicating_mask"]
loss, ORT_loss, MIT_loss = self.saits_loss_func(reconstruction, X_ori, missing_mask, indicating_mask)
results["ORT_loss"] = ORT_loss
results["MIT_loss"] = MIT_loss
# `loss` is always the item for backward propagating to update the model
results["loss"] = loss
return results