pypots/imputation/koopa/core.py
"""
The core wrapper assembles the submodules of Koopa imputation model
and takes over the forward progress of the algorithm.
"""
# Created by Wenjie Du <wenjay.du@gmail.com>
# License: BSD-3-Clause
import torch.nn as nn
from ...nn.modules.koopa import BackboneKoopa
from ...nn.modules.saits import SaitsLoss, SaitsEmbedding
class _Koopa(nn.Module):
def __init__(
self,
n_steps,
n_features,
n_seg_steps,
d_dynamic,
d_hidden,
n_hidden_layers,
n_blocks,
multistep,
alpha,
ORT_weight: float = 1,
MIT_weight: float = 1,
):
super().__init__()
self.saits_embedding = SaitsEmbedding(
n_features * 2,
n_features,
with_pos=False,
)
self.backbone = BackboneKoopa(
n_steps,
n_features,
n_steps,
n_seg_steps,
d_dynamic,
d_hidden,
n_hidden_layers,
n_blocks,
multistep,
alpha,
)
# for the imputation task, the output dim is the same as input dim
self.saits_loss_func = SaitsLoss(ORT_weight, MIT_weight)
def forward(
self,
inputs: dict,
training=False,
) -> dict:
X, missing_mask = inputs["X"], inputs["missing_mask"]
# WDU: the original Koopa paper isn't proposed for imputation task. Hence the model doesn't take
# the missing mask into account, which means, in the process, the model doesn't know which part of
# the input data is missing, and this may hurt the model's imputation performance. Therefore, I apply the
# SAITS embedding method to project the concatenation of features and masks into a hidden space, as well as
# the output layers to project back from the hidden space to the original space.
enc_out = self.saits_embedding(X, missing_mask)
# Koopa encoder processing
reconstruction = self.backbone(enc_out)
imputed_data = missing_mask * X + (1 - missing_mask) * reconstruction
results = {
"imputed_data": imputed_data,
}
# if in training mode, return results with losses
if self.training:
X_ori, indicating_mask = inputs["X_ori"], inputs["indicating_mask"]
loss, ORT_loss, MIT_loss = self.saits_loss_func(reconstruction, X_ori, missing_mask, indicating_mask)
results["ORT_loss"] = ORT_loss
results["MIT_loss"] = MIT_loss
# `loss` is always the item for backward propagating to update the model
results["loss"] = loss
return results