pypots/imputation/lerp/model.py
"""
The implementation of linear interpolation for the partially-observed time-series imputation task.
"""
# Created by Cole Sussmeier <colesussmeier@gmail.com>
# License: BSD-3-Clause
import warnings
from typing import Union, Optional
import h5py
import numpy as np
import torch
from ..base import BaseImputer
class Lerp(BaseImputer):
"""Linear interpolation (Lerp) imputation method.
Lerp will linearly interpolate missing values between the nearest non-missing values.
If there are missing values at the beginning or end of the series, they will be back-filled or
forward-filled with the nearest non-missing value, respectively.
If an entire series is empty, all 'nan' values will be filled with zeros.
"""
def __init__(
self,
):
super().__init__()
def fit(
self,
train_set: Union[dict, str],
val_set: Optional[Union[dict, str]] = None,
file_type: str = "hdf5",
) -> None:
"""Train the imputer on the given data.
Warnings
--------
Linear interpolation class does not need to run fit().
Please run func ``predict()`` directly.
"""
warnings.warn("Linear interpolation class has no parameter to train. Please run func `predict()` directly.")
def predict(
self,
test_set: Union[dict, str],
file_type: str = "hdf5",
) -> dict:
"""Make predictions for the input data with the trained model.
Parameters
----------
test_set : dict or str
The dataset for model validating, should be a dictionary including keys as 'X',
or a path string locating a data file supported by PyPOTS (e.g. h5 file).
If it is a dict, X should be array-like of shape [n_samples, sequence length (n_steps), n_features],
which is time-series data for validating, can contain missing values, and y should be array-like of shape
[n_samples], which is classification labels of X.
If it is a path string, the path should point to a data file, e.g. a h5 file, which contains
key-value pairs like a dict, and it has to include keys as 'X' and 'y'.
file_type :
The type of the given file if test_set is a path string.
Returns
-------
result_dict: dict
Prediction results in a Python Dictionary for the given samples.
It should be a dictionary including keys as 'imputation', 'classification', 'clustering', and 'forecasting'.
For sure, only the keys that relevant tasks are supported by the model will be returned.
"""
if isinstance(test_set, str):
with h5py.File(test_set, "r") as f:
X = f["X"][:]
else:
X = test_set["X"]
assert len(X.shape) == 3, (
f"Input X should have 3 dimensions [n_samples, n_steps, n_features], "
f"but the actual shape of X: {X.shape}"
)
if isinstance(X, list):
X = np.asarray(X)
def _interpolate_missing_values(X: np.ndarray):
nans = np.isnan(X)
nan_index = np.where(nans)[0]
index = np.where(~nans)[0]
if np.any(nans) and index.size > 1:
X[nans] = np.interp(nan_index, index, X[~nans])
elif np.any(nans):
X[nans] = 0
if isinstance(X, np.ndarray):
trans_X = X.transpose((0, 2, 1))
n_samples, n_features, n_steps = trans_X.shape
reshaped_X = np.reshape(trans_X, (-1, n_steps))
imputed_X = np.ones(reshaped_X.shape)
for i, univariate_series in enumerate(reshaped_X):
t = np.copy(univariate_series)
_interpolate_missing_values(t)
imputed_X[i] = t
imputed_trans_X = np.reshape(imputed_X, (n_samples, n_features, -1))
imputed_data = imputed_trans_X.transpose((0, 2, 1))
elif isinstance(X, torch.Tensor):
trans_X = X.permute(0, 2, 1)
n_samples, n_features, n_steps = trans_X.shape
reshaped_X = trans_X.reshape(-1, n_steps)
imputed_X = torch.ones_like(reshaped_X)
for i, univariate_series in enumerate(reshaped_X):
t = univariate_series.clone().cpu().detach().numpy()
_interpolate_missing_values(t)
imputed_X[i] = torch.from_numpy(t)
imputed_trans_X = imputed_X.reshape(n_samples, n_features, -1)
imputed_data = imputed_trans_X.permute(0, 2, 1)
else:
raise ValueError()
result_dict = {
"imputation": imputed_data,
}
return result_dict
def impute(
self,
test_set: Union[dict, str],
file_type: str = "hdf5",
) -> np.ndarray:
"""Impute missing values in the given data with the trained model.
Parameters
----------
test_set :
The data samples for testing, should be array-like of shape [n_samples, sequence length (n_steps),
n_features], or a path string locating a data file, e.g. h5 file.
file_type :
The type of the given file if X is a path string.
Returns
-------
array-like, shape [n_samples, sequence length (n_steps), n_features],
Imputed data.
"""
result_dict = self.predict(test_set, file_type=file_type)
return result_dict["imputation"]