pypots/imputation/nonstationary_transformer/core.py
"""
The core wrapper assembles the submodules of NonstationaryTransformer imputation model
and takes over the forward progress of the algorithm.
"""
# Created by Wenjie Du <wenjay.du@gmail.com>
# License: BSD-3-Clause
import torch.nn as nn
from ...nn.functional.normalization import nonstationary_norm, nonstationary_denorm
from ...nn.modules.nonstationary_transformer import (
NonstationaryTransformerEncoder,
Projector,
)
from ...nn.modules.saits import SaitsLoss, SaitsEmbedding
class _NonstationaryTransformer(nn.Module):
def __init__(
self,
n_steps: int,
n_features: int,
n_layers: int,
d_model: int,
n_heads: int,
d_ffn: int,
d_projector_hidden: list,
n_projector_hidden_layers: int,
dropout: float,
attn_dropout: float,
ORT_weight: float = 1,
MIT_weight: float = 1,
):
super().__init__()
d_k = d_v = d_model // n_heads
self.n_steps = n_steps
self.saits_embedding = SaitsEmbedding(
n_features * 2,
d_model,
with_pos=True,
dropout=dropout,
)
self.encoder = NonstationaryTransformerEncoder(
n_layers,
d_model,
n_heads,
d_k,
d_v,
d_ffn,
dropout,
attn_dropout,
)
self.tau_learner = Projector(
d_in=n_features,
n_steps=n_steps,
d_hidden=d_projector_hidden,
n_hidden_layers=n_projector_hidden_layers,
d_output=1,
)
self.delta_learner = Projector(
d_in=n_features,
n_steps=n_steps,
d_hidden=d_projector_hidden,
n_hidden_layers=n_projector_hidden_layers,
d_output=n_steps,
)
# for the imputation task, the output dim is the same as input dim
self.output_projection = nn.Linear(d_model, n_features)
self.saits_loss_func = SaitsLoss(ORT_weight, MIT_weight)
def forward(self, inputs: dict, training: bool = True) -> dict:
X, missing_mask = inputs["X"], inputs["missing_mask"]
X_enc, means, stdev = nonstationary_norm(X, missing_mask)
tau = self.tau_learner(X, stdev).exp()
delta = self.delta_learner(X, means)
# WDU: the original Nonstationary Transformer paper isn't proposed for imputation task. Hence the model doesn't
# take the missing mask into account, which means, in the process, the model doesn't know which part of
# the input data is missing, and this may hurt the model's imputation performance. Therefore, I apply the
# SAITS embedding method to project the concatenation of features and masks into a hidden space, as well as
# the output layers to project back from the hidden space to the original space.
enc_out = self.saits_embedding(X, missing_mask)
# NonstationaryTransformer encoder processing
enc_out, attns = self.encoder(enc_out, tau=tau, delta=delta)
# project back the original data space
reconstruction = self.output_projection(enc_out)
reconstruction = nonstationary_denorm(reconstruction, means, stdev)
imputed_data = missing_mask * X + (1 - missing_mask) * reconstruction
results = {
"imputed_data": imputed_data,
}
# if in training mode, return results with losses
if training:
X_ori, indicating_mask = inputs["X_ori"], inputs["indicating_mask"]
loss, ORT_loss, MIT_loss = self.saits_loss_func(reconstruction, X_ori, missing_mask, indicating_mask)
results["ORT_loss"] = ORT_loss
results["MIT_loss"] = MIT_loss
# `loss` is always the item for backward propagating to update the model
results["loss"] = loss
return results