pypots/imputation/patchtst/core.py
"""
The core wrapper assembles the submodules of PatchTST imputation model
and takes over the forward progress of the algorithm.
"""
# Created by Wenjie Du <wenjay.du@gmail.com>
# License: BSD-3-Clause
import torch.nn as nn
from ...nn.modules.patchtst import PatchEmbedding, PatchtstEncoder, PredictionHead
from ...nn.modules.saits import SaitsLoss, SaitsEmbedding
class _PatchTST(nn.Module):
def __init__(
self,
n_steps: int,
n_features: int,
n_layers: int,
d_model: int,
n_heads: int,
d_k: int,
d_v: int,
d_ffn: int,
patch_len: int,
stride: int,
dropout: float,
attn_dropout: float,
ORT_weight: float = 1,
MIT_weight: float = 1,
):
super().__init__()
n_patches = int((n_steps - patch_len) / stride + 2) # number of patches
padding = stride
self.saits_embedding = SaitsEmbedding(n_features * 2, d_model, with_pos=False)
self.patch_embedding = PatchEmbedding(d_model, patch_len, stride, padding, dropout)
self.encoder = PatchtstEncoder(
n_layers,
d_model,
n_heads,
d_k,
d_v,
d_ffn,
dropout,
attn_dropout,
)
self.head = PredictionHead(d_model, n_patches, n_steps, dropout)
self.output_projection = nn.Linear(d_model, n_features)
self.saits_loss_func = SaitsLoss(ORT_weight, MIT_weight)
def forward(self, inputs: dict, training: bool = True) -> dict:
X, missing_mask = inputs["X"], inputs["missing_mask"]
# WDU: the original PatchTST paper isn't proposed for imputation task. Hence the model doesn't take
# the missing mask into account, which means, in the process, the model doesn't know which part of
# the input data is missing, and this may hurt the model's imputation performance. Therefore, I apply the
# SAITS embedding method to project the concatenation of features and masks into a hidden space, as well as
# the output layers to project back from the hidden space to the original space.
input_X = self.saits_embedding(X, missing_mask)
# do patch embedding
enc_out = self.patch_embedding(input_X.permute(0, 2, 1)) # [bz * d_model, n_patches, d_model]
# PatchTST encoder processing
enc_out, attns = self.encoder(enc_out)
# project back the original data space
dec_out = self.head(enc_out) # [bz, n_steps, d_model]
reconstruction = self.output_projection(dec_out)
imputed_data = missing_mask * X + (1 - missing_mask) * reconstruction
results = {
"imputed_data": imputed_data,
}
if training:
X_ori, indicating_mask = inputs["X_ori"], inputs["indicating_mask"]
loss, ORT_loss, MIT_loss = self.saits_loss_func(reconstruction, X_ori, missing_mask, indicating_mask)
results["ORT_loss"] = ORT_loss
results["MIT_loss"] = MIT_loss
# `loss` is always the item for backward propagating to update the model
results["loss"] = loss
return results