pypots/imputation/tide/core.py
"""
The core wrapper assembles the submodules of TiDE imputation model
and takes over the forward progress of the algorithm.
"""
# Created by Wenjie Du <wenjay.du@gmail.com>
# License: BSD-3-Clause
import torch.nn as nn
from ...nn.modules.saits import SaitsLoss, SaitsEmbedding
from ...nn.modules.tide.autoencoder import TiDE
class _TiDE(nn.Module):
def __init__(
self,
n_steps,
n_features,
n_layers,
d_model,
d_hidden,
d_feature_encode,
d_temporal_decoder_hidden,
dropout,
ORT_weight: float = 1,
MIT_weight: float = 1,
):
super().__init__()
self.n_steps = n_steps
self.saits_embedding = SaitsEmbedding(
n_features * 2,
d_model,
with_pos=False,
dropout=dropout,
)
# n_output_steps = n_steps
# n_output_features = n_features
# d_flatten = n_steps + (n_steps + n_output_steps) * d_feature_encode
# self.feature_encoder = ResBlock(
# n_features,
# d_hidden,
# d_feature_encode,
# dropout,
# )
# self.encoder = TideEncoder(
# n_steps,
# n_features,
# n_layers,
# d_flatten,
# d_hidden,
# dropout,
# )
# self.decoder = TideDecoder(
# n_steps,
# n_steps,
# n_output_features,
# n_layers,
# d_hidden,
# d_feature_encode,
# dropout,
# )
# self.temporal_decoder = ResBlock(
# n_output_features + d_feature_encode,
# d_temporal_decoder_hidden,
# 1,
# dropout,
# )
# self.residual_proj = nn.Linear(n_steps, n_output_steps)
self.tide = TiDE(
n_steps,
n_features,
n_layers,
d_hidden,
d_feature_encode,
d_temporal_decoder_hidden,
dropout,
)
# for the imputation task, the output dim is the same as input dim
# self.output_projection = nn.Linear(d_model, n_features)
self.saits_loss_func = SaitsLoss(ORT_weight, MIT_weight)
def forward(self, inputs: dict, training: bool = True) -> dict:
X, missing_mask = inputs["X"], inputs["missing_mask"]
# # WDU: the original TiDE paper isn't proposed for imputation task. Hence the model doesn't take
# # the missing mask into account, which means, in the process, the model doesn't know which part of
# # the input data is missing, and this may hurt the model's imputation performance. Therefore, I apply the
# # SAITS embedding method to project the concatenation of features and masks into a hidden space, as well as
# # the output layers to project back from the hidden space to the original space.
# X_enc = self.saits_embedding(X, missing_mask)
#
# # TiDE encoder processing
# feature = self.feature_encoder(missing_mask)
# # print(f"X.shape: {X.shape}")
# # print(f"feature.shape: {feature.shape}")
# enc_in = torch.cat([X_enc, feature], dim=-1)
# enc_out = self.encoder(enc_in)
# dec_out = self.decoder(enc_out)
# reconstruction = self.temporal_decoder(
# torch.cat([feature[:, self.n_steps :], dec_out], dim=-1)
# ).squeeze(-1) + self.residual_proj(X_enc)
# # # project back the original data space
# # reconstruction = self.output_projection(enc_out)
reconstruction = self.tide(X, missing_mask)
imputed_data = missing_mask * X + (1 - missing_mask) * reconstruction
results = {
"imputed_data": imputed_data,
}
# if in training mode, return results with losses
if training:
X_ori, indicating_mask = inputs["X_ori"], inputs["indicating_mask"]
loss, ORT_loss, MIT_loss = self.saits_loss_func(reconstruction, X_ori, missing_mask, indicating_mask)
results["ORT_loss"] = ORT_loss
results["MIT_loss"] = MIT_loss
# `loss` is always the item for backward propagating to update the model
results["loss"] = loss
return results