pypots/optim/sgd.py
"""
The optimizer wrapper for PyTorch SGD :class:`torch.optim.SGD`.
"""
# Created by Wenjie Du <wenjay.du@gmail.com>
# License: BSD-3-Clause
from typing import Iterable, Optional
from torch.optim import SGD as torch_SGD
from .base import Optimizer
from .lr_scheduler.base import LRScheduler
class SGD(Optimizer):
"""The optimizer wrapper for PyTorch SGD :class:`torch.optim.SGD`.
Parameters
----------
lr : float
The learning rate of the optimizer.
momentum : float
Momentum factor.
weight_decay : float
Weight decay (L2 penalty).
dampening : float
Dampening for momentum.
nesterov : bool
Whether to enable Nesterov momentum.
lr_scheduler : pypots.optim.lr_scheduler.base.LRScheduler
The learning rate scheduler of the optimizer.
"""
def __init__(
self,
lr: float = 0.001,
momentum: float = 0,
weight_decay: float = 0,
dampening: float = 0,
nesterov: bool = False,
lr_scheduler: Optional[LRScheduler] = None,
):
super().__init__(lr, lr_scheduler)
self.momentum = momentum
self.weight_decay = weight_decay
self.dampening = dampening
self.nesterov = nesterov
def init_optimizer(self, params: Iterable) -> None:
"""Initialize the torch optimizer wrapped by this class.
Parameters
----------
params :
An iterable of ``torch.Tensor`` or ``dict``. Specifies what Tensors should be optimized.
"""
self.torch_optimizer = torch_SGD(
params=params,
lr=self.lr,
momentum=self.momentum,
weight_decay=self.weight_decay,
dampening=self.dampening,
nesterov=self.nesterov,
)
if self.lr_scheduler is not None:
self.lr_scheduler.init_scheduler(self.torch_optimizer)