superset/models/helpers.py
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=too-many-lines
"""a collection of model-related helper classes and functions"""
import builtins
import dataclasses
import logging
import re
import uuid
from collections.abc import Hashable
from datetime import datetime, timedelta
from typing import Any, cast, NamedTuple, Optional, TYPE_CHECKING, Union
import dateutil.parser
import humanize
import numpy as np
import pandas as pd
import pytz
import sqlalchemy as sa
import sqlparse
import yaml
from flask import g
from flask_appbuilder import Model
from flask_appbuilder.models.decorators import renders
from flask_appbuilder.models.mixins import AuditMixin
from flask_appbuilder.security.sqla.models import User
from flask_babel import lazy_gettext as _
from jinja2.exceptions import TemplateError
from markupsafe import escape, Markup
from sqlalchemy import and_, Column, or_, UniqueConstraint
from sqlalchemy.exc import MultipleResultsFound
from sqlalchemy.ext.declarative import declared_attr
from sqlalchemy.orm import Mapper, validates
from sqlalchemy.sql.elements import ColumnElement, literal_column, TextClause
from sqlalchemy.sql.expression import Label, Select, TextAsFrom
from sqlalchemy.sql.selectable import Alias, TableClause
from sqlalchemy_utils import UUIDType
from superset import app, db, is_feature_enabled
from superset.advanced_data_type.types import AdvancedDataTypeResponse
from superset.common.db_query_status import QueryStatus
from superset.common.utils.time_range_utils import get_since_until_from_time_range
from superset.constants import EMPTY_STRING, NULL_STRING
from superset.db_engine_specs.base import TimestampExpression
from superset.errors import ErrorLevel, SupersetError, SupersetErrorType
from superset.exceptions import (
AdvancedDataTypeResponseError,
ColumnNotFoundException,
QueryClauseValidationException,
QueryObjectValidationError,
SupersetParseError,
SupersetSecurityException,
)
from superset.extensions import feature_flag_manager
from superset.jinja_context import BaseTemplateProcessor
from superset.sql.parse import SQLScript
from superset.sql_parse import (
has_table_query,
insert_rls_in_predicate,
ParsedQuery,
sanitize_clause,
)
from superset.superset_typing import (
AdhocMetric,
Column as ColumnTyping,
FilterValue,
FilterValues,
Metric,
OrderBy,
QueryObjectDict,
)
from superset.utils import core as utils, json
from superset.utils.core import (
GenericDataType,
get_column_name,
get_non_base_axis_columns,
get_user_id,
is_adhoc_column,
MediumText,
remove_duplicates,
)
from superset.utils.dates import datetime_to_epoch
if TYPE_CHECKING:
from superset.connectors.sqla.models import SqlMetric, TableColumn
from superset.db_engine_specs import BaseEngineSpec
from superset.models.core import Database
config = app.config
logger = logging.getLogger(__name__)
VIRTUAL_TABLE_ALIAS = "virtual_table"
SERIES_LIMIT_SUBQ_ALIAS = "series_limit"
ADVANCED_DATA_TYPES = config["ADVANCED_DATA_TYPES"]
def validate_adhoc_subquery(
sql: str,
database_id: int,
engine: str,
default_schema: str,
) -> str:
"""
Check if adhoc SQL contains sub-queries or nested sub-queries with table.
If sub-queries are allowed, the adhoc SQL is modified to insert any applicable RLS
predicates to it.
:param sql: adhoc sql expression
:raise SupersetSecurityException if sql contains sub-queries or
nested sub-queries with table
"""
statements = []
for statement in sqlparse.parse(sql):
try:
has_table = has_table_query(str(statement), engine)
except SupersetParseError:
has_table = True
if has_table:
if not is_feature_enabled("ALLOW_ADHOC_SUBQUERY"):
raise SupersetSecurityException(
SupersetError(
error_type=SupersetErrorType.ADHOC_SUBQUERY_NOT_ALLOWED_ERROR,
message=_("Custom SQL fields cannot contain sub-queries."),
level=ErrorLevel.ERROR,
)
)
# TODO (betodealmeida): reimplement with sqlglot
statement = insert_rls_in_predicate(statement, database_id, default_schema)
statements.append(statement)
return ";\n".join(str(statement) for statement in statements)
def json_to_dict(json_str: str) -> dict[Any, Any]:
if json_str:
val = re.sub(",[ \t\r\n]+}", "}", json_str)
val = re.sub(",[ \t\r\n]+\\]", "]", val)
return json.loads(val)
return {}
def convert_uuids(obj: Any) -> Any:
"""
Convert UUID objects to str so we can use yaml.safe_dump
"""
if isinstance(obj, uuid.UUID):
return str(obj)
if isinstance(obj, list):
return [convert_uuids(el) for el in obj]
if isinstance(obj, dict):
return {k: convert_uuids(v) for k, v in obj.items()}
return obj
class ImportExportMixin:
uuid = sa.Column(
UUIDType(binary=True), primary_key=False, unique=True, default=uuid.uuid4
)
export_parent: Optional[str] = None
# The name of the attribute
# with the SQL Alchemy back reference
export_children: list[str] = []
# List of (str) names of attributes
# with the SQL Alchemy forward references
export_fields: list[str] = []
# The names of the attributes
# that are available for import and export
extra_import_fields: list[str] = []
# Additional fields that should be imported,
# even though they were not exported
__mapper__: Mapper
@classmethod
def _unique_constraints(cls) -> list[set[str]]:
"""Get all (single column and multi column) unique constraints"""
unique = [
{c.name for c in u.columns}
for u in cls.__table_args__ # type: ignore
if isinstance(u, UniqueConstraint)
]
unique.extend({c.name} for c in cls.__table__.columns if c.unique) # type: ignore
return unique
@classmethod
def parent_foreign_key_mappings(cls) -> dict[str, str]:
"""Get a mapping of foreign name to the local name of foreign keys"""
parent_rel = cls.__mapper__.relationships.get(cls.export_parent)
if parent_rel:
return {
local.name: remote.name
for (local, remote) in parent_rel.local_remote_pairs
}
return {}
@classmethod
def export_schema(
cls, recursive: bool = True, include_parent_ref: bool = False
) -> dict[str, Any]:
"""Export schema as a dictionary"""
parent_excludes = set()
if not include_parent_ref:
parent_ref = cls.__mapper__.relationships.get(cls.export_parent)
if parent_ref:
parent_excludes = {column.name for column in parent_ref.local_columns}
def formatter(column: sa.Column) -> str:
return (
f"{str(column.type)} Default ({column.default.arg})"
if column.default
else str(column.type)
)
schema: dict[str, Any] = {
column.name: formatter(column)
for column in cls.__table__.columns # type: ignore
if (column.name in cls.export_fields and column.name not in parent_excludes)
}
if recursive:
for column in cls.export_children:
child_class = cls.__mapper__.relationships[column].argument.class_
schema[column] = [
child_class.export_schema(
recursive=recursive, include_parent_ref=include_parent_ref
)
]
return schema
@classmethod
def import_from_dict(
# pylint: disable=too-many-arguments,too-many-branches,too-many-locals
cls,
dict_rep: dict[Any, Any],
parent: Optional[Any] = None,
recursive: bool = True,
sync: Optional[list[str]] = None,
allow_reparenting: bool = False,
) -> Any:
"""Import obj from a dictionary"""
if sync is None:
sync = []
parent_refs = cls.parent_foreign_key_mappings()
export_fields = (
set(cls.export_fields)
| set(cls.extra_import_fields)
| set(parent_refs.keys())
| {"uuid"}
)
new_children = {c: dict_rep[c] for c in cls.export_children if c in dict_rep}
unique_constraints = cls._unique_constraints()
filters = [] # Using these filters to check if obj already exists
# Remove fields that should not get imported
for k in list(dict_rep):
if k not in export_fields and k not in parent_refs:
del dict_rep[k]
if not parent:
if cls.export_parent:
for prnt in parent_refs.keys():
if prnt not in dict_rep:
raise RuntimeError(f"{cls.__name__}: Missing field {prnt}")
else:
# Set foreign keys to parent obj
for k, v in parent_refs.items():
dict_rep[k] = getattr(parent, v)
if not allow_reparenting:
# Add filter for parent obj
filters.extend(
[getattr(cls, k) == dict_rep.get(k) for k in parent_refs.keys()]
)
# Add filter for unique constraints
ucs = [
and_(
*[
getattr(cls, k) == dict_rep.get(k)
for k in cs
if dict_rep.get(k) is not None
]
)
for cs in unique_constraints
]
filters.append(or_(*ucs))
# Check if object already exists in DB, break if more than one is found
try:
obj_query = db.session.query(cls).filter(and_(*filters))
obj = obj_query.one_or_none()
except MultipleResultsFound:
logger.error(
"Error importing %s \n %s \n %s",
cls.__name__,
str(obj_query),
yaml.safe_dump(dict_rep),
exc_info=True,
)
raise
if not obj:
is_new_obj = True
# Create new DB object
obj = cls(**dict_rep)
logger.info("Importing new %s %s", obj.__tablename__, str(obj))
if cls.export_parent and parent:
setattr(obj, cls.export_parent, parent)
db.session.add(obj)
else:
is_new_obj = False
logger.info("Updating %s %s", obj.__tablename__, str(obj))
# Update columns
for k, v in dict_rep.items():
setattr(obj, k, v)
# Recursively create children
if recursive:
for child in cls.export_children:
argument = cls.__mapper__.relationships[child].argument
child_class = (
argument.class_ if hasattr(argument, "class_") else argument
)
added = []
for c_obj in new_children.get(child, []):
added.append(
child_class.import_from_dict(
dict_rep=c_obj, parent=obj, sync=sync
)
)
# If children should get synced, delete the ones that did not
# get updated.
if child in sync and not is_new_obj:
back_refs = child_class.parent_foreign_key_mappings()
delete_filters = [
getattr(child_class, k) == getattr(obj, back_refs.get(k))
for k in back_refs.keys()
]
to_delete = set(
db.session.query(child_class).filter(and_(*delete_filters))
).difference(set(added))
for o in to_delete:
logger.info("Deleting %s %s", child, str(obj))
db.session.delete(o)
return obj
def export_to_dict(
self,
recursive: bool = True,
include_parent_ref: bool = False,
include_defaults: bool = False,
export_uuids: bool = False,
) -> dict[Any, Any]:
"""Export obj to dictionary"""
export_fields = set(self.export_fields)
if export_uuids:
export_fields.add("uuid")
if "id" in export_fields:
export_fields.remove("id")
cls = self.__class__
parent_excludes = set()
if recursive and not include_parent_ref:
parent_ref = cls.__mapper__.relationships.get(cls.export_parent)
if parent_ref:
parent_excludes = {c.name for c in parent_ref.local_columns}
dict_rep = {
c.name: getattr(self, c.name)
for c in cls.__table__.columns # type: ignore
if (
c.name in export_fields
and c.name not in parent_excludes
and (
include_defaults
or (
getattr(self, c.name) is not None
and (not c.default or getattr(self, c.name) != c.default.arg)
)
)
)
}
# sort according to export_fields using DSU (decorate, sort, undecorate)
order = {field: i for i, field in enumerate(self.export_fields)}
decorated_keys = [(order.get(k, len(order)), k) for k in dict_rep]
decorated_keys.sort()
dict_rep = {k: dict_rep[k] for _, k in decorated_keys}
if recursive:
for cld in self.export_children:
# sorting to make lists of children stable
dict_rep[cld] = sorted(
[
child.export_to_dict(
recursive=recursive,
include_parent_ref=include_parent_ref,
include_defaults=include_defaults,
)
for child in getattr(self, cld)
],
key=lambda k: sorted(str(k.items())),
)
return convert_uuids(dict_rep)
def override(self, obj: Any) -> None:
"""Overrides the plain fields of the dashboard."""
for field in obj.__class__.export_fields:
setattr(self, field, getattr(obj, field))
def copy(self) -> Any:
"""Creates a copy of the dashboard without relationships."""
new_obj = self.__class__()
new_obj.override(self)
return new_obj
def alter_params(self, **kwargs: Any) -> None:
params = self.params_dict
params.update(kwargs)
self.params = json.dumps(params)
def remove_params(self, param_to_remove: str) -> None:
params = self.params_dict
params.pop(param_to_remove, None)
self.params = json.dumps(params)
def reset_ownership(self) -> None:
"""object will belong to the user the current user"""
# make sure the object doesn't have relations to a user
# it will be filled by appbuilder on save
self.created_by = None
self.changed_by = None
# flask global context might not exist (in cli or tests for example)
self.owners = []
if g and hasattr(g, "user"):
self.owners = [g.user]
@property
def params_dict(self) -> dict[Any, Any]:
return json_to_dict(self.params)
@property
def template_params_dict(self) -> dict[Any, Any]:
return json_to_dict(self.template_params) # type: ignore
def _user(user: User) -> str:
if not user:
return ""
return escape(user)
class AuditMixinNullable(AuditMixin):
"""Altering the AuditMixin to use nullable fields
Allows creating objects programmatically outside of CRUD
"""
created_on = sa.Column(sa.DateTime, default=datetime.now, nullable=True)
changed_on = sa.Column(
sa.DateTime, default=datetime.now, onupdate=datetime.now, nullable=True
)
@declared_attr
def created_by_fk(self) -> sa.Column: # pylint: disable=arguments-renamed
return sa.Column(
sa.Integer,
sa.ForeignKey("ab_user.id"),
default=get_user_id,
nullable=True,
)
@declared_attr
def changed_by_fk(self) -> sa.Column: # pylint: disable=arguments-renamed
return sa.Column(
sa.Integer,
sa.ForeignKey("ab_user.id"),
default=get_user_id,
onupdate=get_user_id,
nullable=True,
)
@property
def created_by_name(self) -> str:
if self.created_by:
return escape(f"{self.created_by}")
return ""
@property
def changed_by_name(self) -> str:
if self.changed_by:
return escape(f"{self.changed_by}")
return ""
@renders("created_by")
def creator(self) -> Union[Markup, str]:
return _user(self.created_by)
@property
def changed_by_(self) -> Union[Markup, str]:
return _user(self.changed_by)
@renders("changed_on")
def changed_on_(self) -> Markup:
return Markup(f'<span class="no-wrap">{self.changed_on}</span>')
@renders("changed_on")
def changed_on_delta_humanized(self) -> str:
return self.changed_on_humanized
@renders("changed_on")
def changed_on_dttm(self) -> float:
return datetime_to_epoch(self.changed_on)
@renders("created_on")
def created_on_delta_humanized(self) -> str:
return self.created_on_humanized
@renders("changed_on")
def changed_on_utc(self) -> str:
# Convert naive datetime to UTC
return self.changed_on.astimezone(pytz.utc).strftime("%Y-%m-%dT%H:%M:%S.%f%z")
@property
def changed_on_humanized(self) -> str:
return humanize.naturaltime(datetime.now() - self.changed_on)
@property
def created_on_humanized(self) -> str:
return humanize.naturaltime(datetime.now() - self.created_on)
@renders("changed_on")
def modified(self) -> Markup:
return Markup(f'<span class="no-wrap">{self.changed_on_humanized}</span>')
class QueryResult: # pylint: disable=too-few-public-methods
"""Object returned by the query interface"""
def __init__( # pylint: disable=too-many-arguments
self,
df: pd.DataFrame,
query: str,
duration: timedelta,
applied_template_filters: Optional[list[str]] = None,
applied_filter_columns: Optional[list[ColumnTyping]] = None,
rejected_filter_columns: Optional[list[ColumnTyping]] = None,
status: str = QueryStatus.SUCCESS,
error_message: Optional[str] = None,
errors: Optional[list[dict[str, Any]]] = None,
from_dttm: Optional[datetime] = None,
to_dttm: Optional[datetime] = None,
) -> None:
self.df = df
self.query = query
self.duration = duration
self.applied_template_filters = applied_template_filters or []
self.applied_filter_columns = applied_filter_columns or []
self.rejected_filter_columns = rejected_filter_columns or []
self.status = status
self.error_message = error_message
self.errors = errors or []
self.from_dttm = from_dttm
self.to_dttm = to_dttm
self.sql_rowcount = len(self.df.index) if not self.df.empty else 0
class ExtraJSONMixin:
"""Mixin to add an `extra` column (JSON) and utility methods"""
extra_json = sa.Column(MediumText(), default="{}")
@property
def extra(self) -> dict[str, Any]:
try:
return json.loads(self.extra_json or "{}") or {}
except (TypeError, json.JSONDecodeError) as exc:
logger.error(
"Unable to load an extra json: %r. Leaving empty.", exc, exc_info=True
)
return {}
@extra.setter
def extra(self, extras: dict[str, Any]) -> None:
self.extra_json = json.dumps(extras)
def set_extra_json_key(self, key: str, value: Any) -> None:
extra = self.extra
extra[key] = value
self.extra_json = json.dumps(extra)
@validates("extra_json")
def ensure_extra_json_is_not_none(
self,
_: str,
value: Optional[dict[str, Any]],
) -> Any:
if value is None:
return "{}"
return value
class CertificationMixin:
"""Mixin to add extra certification fields"""
extra = sa.Column(sa.Text, default="{}")
def get_extra_dict(self) -> dict[str, Any]:
try:
return json.loads(self.extra)
except (TypeError, json.JSONDecodeError):
return {}
@property
def is_certified(self) -> bool:
return bool(self.get_extra_dict().get("certification"))
@property
def certified_by(self) -> Optional[str]:
return self.get_extra_dict().get("certification", {}).get("certified_by")
@property
def certification_details(self) -> Optional[str]:
return self.get_extra_dict().get("certification", {}).get("details")
@property
def warning_markdown(self) -> Optional[str]:
return self.get_extra_dict().get("warning_markdown")
def clone_model(
target: Model,
ignore: Optional[list[str]] = None,
keep_relations: Optional[list[str]] = None,
**kwargs: Any,
) -> Model:
"""
Clone a SQLAlchemy model. By default will only clone naive column attributes.
To include relationship attributes, use `keep_relations`.
"""
ignore = ignore or []
table = target.__table__
primary_keys = table.primary_key.columns.keys()
data = {
attr: getattr(target, attr)
for attr in list(table.columns.keys()) + (keep_relations or [])
if attr not in primary_keys and attr not in ignore
}
data.update(kwargs)
return target.__class__(**data)
# todo(hugh): centralize where this code lives
class QueryStringExtended(NamedTuple):
applied_template_filters: Optional[list[str]]
applied_filter_columns: list[ColumnTyping]
rejected_filter_columns: list[ColumnTyping]
labels_expected: list[str]
prequeries: list[str]
sql: str
class SqlaQuery(NamedTuple):
applied_template_filters: list[str]
applied_filter_columns: list[ColumnTyping]
rejected_filter_columns: list[ColumnTyping]
cte: Optional[str]
extra_cache_keys: list[Any]
labels_expected: list[str]
prequeries: list[str]
sqla_query: Select
class ExploreMixin: # pylint: disable=too-many-public-methods
"""
Allows any flask_appbuilder.Model (Query, Table, etc.)
to be used to power a chart inside /explore
"""
sqla_aggregations = {
"COUNT_DISTINCT": lambda column_name: sa.func.COUNT(sa.distinct(column_name)),
"COUNT": sa.func.COUNT,
"SUM": sa.func.SUM,
"AVG": sa.func.AVG,
"MIN": sa.func.MIN,
"MAX": sa.func.MAX,
}
fetch_values_predicate = None
@property
def type(self) -> str:
raise NotImplementedError()
@property
def db_extra(self) -> Optional[dict[str, Any]]:
raise NotImplementedError()
def query(self, query_obj: QueryObjectDict) -> QueryResult:
raise NotImplementedError()
@property
def database_id(self) -> int:
raise NotImplementedError()
@property
def owners_data(self) -> list[Any]:
raise NotImplementedError()
@property
def metrics(self) -> list[Any]:
return []
@property
def uid(self) -> str:
raise NotImplementedError()
@property
def is_rls_supported(self) -> bool:
raise NotImplementedError()
@property
def cache_timeout(self) -> int:
raise NotImplementedError()
@property
def column_names(self) -> list[str]:
raise NotImplementedError()
@property
def offset(self) -> int:
raise NotImplementedError()
@property
def main_dttm_col(self) -> Optional[str]:
raise NotImplementedError()
@property
def always_filter_main_dttm(self) -> Optional[bool]:
return False
@property
def dttm_cols(self) -> list[str]:
raise NotImplementedError()
@property
def db_engine_spec(self) -> builtins.type["BaseEngineSpec"]:
raise NotImplementedError()
@property
def database(self) -> "Database":
raise NotImplementedError()
@property
def catalog(self) -> str:
raise NotImplementedError()
@property
def schema(self) -> str:
raise NotImplementedError()
@property
def sql(self) -> str:
raise NotImplementedError()
@property
def columns(self) -> list[Any]:
raise NotImplementedError()
def get_extra_cache_keys(self, query_obj: dict[str, Any]) -> list[Hashable]:
raise NotImplementedError()
def get_template_processor(self, **kwargs: Any) -> BaseTemplateProcessor:
raise NotImplementedError()
def get_fetch_values_predicate(
self,
template_processor: Optional[ # pylint: disable=unused-argument
BaseTemplateProcessor
] = None,
) -> TextClause:
return self.fetch_values_predicate
def get_sqla_row_level_filters(
self,
template_processor: Optional[BaseTemplateProcessor] = None, # pylint: disable=unused-argument
) -> list[TextClause]:
# TODO: We should refactor this mixin and remove this method
# as it exists in the BaseDatasource and is not applicable
# for datasources of type query
return []
def _process_sql_expression( # pylint: disable=too-many-arguments
self,
expression: Optional[str],
database_id: int,
engine: str,
schema: str,
template_processor: Optional[BaseTemplateProcessor],
) -> Optional[str]:
if template_processor and expression:
expression = template_processor.process_template(expression)
if expression:
expression = validate_adhoc_subquery(
expression,
database_id,
engine,
schema,
)
try:
expression = sanitize_clause(expression)
except QueryClauseValidationException as ex:
raise QueryObjectValidationError(ex.message) from ex
return expression
def make_sqla_column_compatible(
self, sqla_col: ColumnElement, label: Optional[str] = None
) -> ColumnElement:
"""Takes a sqlalchemy column object and adds label info if supported by engine.
:param sqla_col: sqlalchemy column instance
:param label: alias/label that column is expected to have
:return: either a sql alchemy column or label instance if supported by engine
"""
label_expected = label or sqla_col.name
db_engine_spec = self.db_engine_spec
# add quotes to tables
if db_engine_spec.get_allows_alias_in_select(self.database):
label = db_engine_spec.make_label_compatible(label_expected)
sqla_col = sqla_col.label(label)
sqla_col.key = label_expected
return sqla_col
@staticmethod
def _apply_cte(sql: str, cte: Optional[str]) -> str:
"""
Append a CTE before the SELECT statement if defined
:param sql: SELECT statement
:param cte: CTE statement
:return:
"""
if cte:
sql = f"{cte}\n{sql}"
return sql
def get_query_str_extended(
self,
query_obj: QueryObjectDict,
mutate: bool = True,
) -> QueryStringExtended:
sqlaq = self.get_sqla_query(**query_obj)
sql = self.database.compile_sqla_query(sqlaq.sqla_query)
sql = self._apply_cte(sql, sqlaq.cte)
if mutate:
sql = self.database.mutate_sql_based_on_config(sql)
return QueryStringExtended(
applied_template_filters=sqlaq.applied_template_filters,
applied_filter_columns=sqlaq.applied_filter_columns,
rejected_filter_columns=sqlaq.rejected_filter_columns,
labels_expected=sqlaq.labels_expected,
prequeries=sqlaq.prequeries,
sql=sql,
)
def _normalize_prequery_result_type(
self,
row: pd.Series,
dimension: str,
columns_by_name: dict[str, "TableColumn"],
) -> Union[str, int, float, bool, str]:
"""
Convert a prequery result type to its equivalent Python type.
Some databases like Druid will return timestamps as strings, but do not perform
automatic casting when comparing these strings to a timestamp. For cases like
this we convert the value via the appropriate SQL transform.
:param row: A prequery record
:param dimension: The dimension name
:param columns_by_name: The mapping of columns by name
:return: equivalent primitive python type
"""
value = row[dimension]
if isinstance(value, np.generic):
value = value.item()
column_ = columns_by_name[dimension]
db_extra: dict[str, Any] = self.database.get_extra()
if isinstance(column_, dict):
if (
column_.get("type")
and column_.get("is_temporal")
and isinstance(value, str)
):
sql = self.db_engine_spec.convert_dttm(
column_.get("type"), dateutil.parser.parse(value), db_extra=None
)
if sql:
value = self.db_engine_spec.get_text_clause(sql)
else:
if column_.type and column_.is_temporal and isinstance(value, str):
sql = self.db_engine_spec.convert_dttm(
column_.type, dateutil.parser.parse(value), db_extra=db_extra
)
if sql:
value = self.text(sql)
return value
def make_orderby_compatible(
self, select_exprs: list[ColumnElement], orderby_exprs: list[ColumnElement]
) -> None:
"""
If needed, make sure aliases for selected columns are not used in
`ORDER BY`.
In some databases (e.g. Presto), `ORDER BY` clause is not able to
automatically pick the source column if a `SELECT` clause alias is named
the same as a source column. In this case, we update the SELECT alias to
another name to avoid the conflict.
"""
if self.db_engine_spec.allows_alias_to_source_column:
return
def is_alias_used_in_orderby(col: ColumnElement) -> bool:
if not isinstance(col, Label):
return False
regexp = re.compile(f"\\(.*\\b{re.escape(col.name)}\\b.*\\)", re.IGNORECASE)
return any(regexp.search(str(x)) for x in orderby_exprs)
# Iterate through selected columns, if column alias appears in orderby
# use another `alias`. The final output columns will still use the
# original names, because they are updated by `labels_expected` after
# querying.
for col in select_exprs:
if is_alias_used_in_orderby(col):
col.name = f"{col.name}__"
def exc_query(self, qry: Any) -> QueryResult:
qry_start_dttm = datetime.now()
query_str_ext = self.get_query_str_extended(qry)
sql = query_str_ext.sql
status = QueryStatus.SUCCESS
errors = None
error_message = None
def assign_column_label(df: pd.DataFrame) -> Optional[pd.DataFrame]:
"""
Some engines change the case or generate bespoke column names, either by
default or due to lack of support for aliasing. This function ensures that
the column names in the DataFrame correspond to what is expected by
the viz components.
Sometimes a query may also contain only order by columns that are not used
as metrics or groupby columns, but need to present in the SQL `select`,
filtering by `labels_expected` make sure we only return columns users want.
:param df: Original DataFrame returned by the engine
:return: Mutated DataFrame
"""
labels_expected = query_str_ext.labels_expected
if df is not None and not df.empty:
if len(df.columns) < len(labels_expected):
raise QueryObjectValidationError(
_("Db engine did not return all queried columns")
)
if len(df.columns) > len(labels_expected):
df = df.iloc[:, 0 : len(labels_expected)]
df.columns = labels_expected
return df
try:
df = self.database.get_df(
sql,
self.catalog,
self.schema,
mutator=assign_column_label,
)
except Exception as ex: # pylint: disable=broad-except
df = pd.DataFrame()
status = QueryStatus.FAILED
logger.warning(
"Query %s on schema %s failed", sql, self.schema, exc_info=True
)
db_engine_spec = self.db_engine_spec
errors = [
dataclasses.asdict(error) for error in db_engine_spec.extract_errors(ex)
]
error_message = utils.error_msg_from_exception(ex)
return QueryResult(
applied_template_filters=query_str_ext.applied_template_filters,
applied_filter_columns=query_str_ext.applied_filter_columns,
rejected_filter_columns=query_str_ext.rejected_filter_columns,
status=status,
df=df,
duration=datetime.now() - qry_start_dttm,
query=sql,
errors=errors,
error_message=error_message,
)
def get_rendered_sql(
self,
template_processor: Optional[BaseTemplateProcessor] = None,
) -> str:
"""
Render sql with template engine (Jinja).
"""
sql = self.sql.strip("\t\r\n; ")
if template_processor:
try:
sql = template_processor.process_template(sql)
except TemplateError as ex:
raise QueryObjectValidationError(
_(
"Error while rendering virtual dataset query: %(msg)s",
msg=ex.message,
)
) from ex
script = SQLScript(sql, engine=self.db_engine_spec.engine)
if len(script.statements) > 1:
raise QueryObjectValidationError(
_("Virtual dataset query cannot consist of multiple statements")
)
if not sql:
raise QueryObjectValidationError(_("Virtual dataset query cannot be empty"))
return sql
def text(self, clause: str) -> TextClause:
return self.db_engine_spec.get_text_clause(clause)
def get_from_clause(
self, template_processor: Optional[BaseTemplateProcessor] = None
) -> tuple[Union[TableClause, Alias], Optional[str]]:
"""
Return where to select the columns and metrics from. Either a physical table
or a virtual table with it's own subquery. If the FROM is referencing a
CTE, the CTE is returned as the second value in the return tuple.
"""
from_sql = self.get_rendered_sql(template_processor) + "\n"
parsed_query = ParsedQuery(from_sql, engine=self.db_engine_spec.engine)
if not (
parsed_query.is_unknown()
or self.db_engine_spec.is_readonly_query(parsed_query)
):
raise QueryObjectValidationError(
_("Virtual dataset query must be read-only")
)
cte = self.db_engine_spec.get_cte_query(from_sql)
from_clause = (
sa.table(self.db_engine_spec.cte_alias)
if cte
else TextAsFrom(self.text(from_sql), []).alias(VIRTUAL_TABLE_ALIAS)
)
return from_clause, cte
def adhoc_metric_to_sqla(
self,
metric: AdhocMetric,
columns_by_name: dict[str, "TableColumn"], # pylint: disable=unused-argument
template_processor: Optional[BaseTemplateProcessor] = None,
) -> ColumnElement:
"""
Turn an adhoc metric into a sqlalchemy column.
:param dict metric: Adhoc metric definition
:param dict columns_by_name: Columns for the current table
:param template_processor: template_processor instance
:returns: The metric defined as a sqlalchemy column
:rtype: sqlalchemy.sql.column
"""
expression_type = metric.get("expressionType")
label = utils.get_metric_name(metric)
if expression_type == utils.AdhocMetricExpressionType.SIMPLE:
metric_column = metric.get("column") or {}
column_name = cast(str, metric_column.get("column_name"))
sqla_column = sa.column(column_name)
sqla_metric = self.sqla_aggregations[metric["aggregate"]](sqla_column)
elif expression_type == utils.AdhocMetricExpressionType.SQL:
expression = self._process_sql_expression(
expression=metric["sqlExpression"],
database_id=self.database_id,
engine=self.database.backend,
schema=self.schema,
template_processor=template_processor,
)
sqla_metric = literal_column(expression)
else:
raise QueryObjectValidationError("Adhoc metric expressionType is invalid")
return self.make_sqla_column_compatible(sqla_metric, label)
@property
def template_params_dict(self) -> dict[Any, Any]:
return {}
@staticmethod
def filter_values_handler( # pylint: disable=too-many-arguments
values: Optional[FilterValues],
operator: str,
target_generic_type: utils.GenericDataType,
target_native_type: Optional[str] = None,
is_list_target: bool = False,
db_engine_spec: Optional[
builtins.type["BaseEngineSpec"]
] = None, # fix(hughhh): Optional[Type[BaseEngineSpec]]
db_extra: Optional[dict[str, Any]] = None,
) -> Optional[FilterValues]:
if values is None:
return None
def handle_single_value(value: Optional[FilterValue]) -> Optional[FilterValue]:
if operator == utils.FilterOperator.TEMPORAL_RANGE:
return value
if (
isinstance(value, (float, int))
and target_generic_type == utils.GenericDataType.TEMPORAL
and target_native_type is not None
and db_engine_spec is not None
):
value = db_engine_spec.convert_dttm(
target_type=target_native_type,
dttm=datetime.utcfromtimestamp(value / 1000),
db_extra=db_extra,
)
value = literal_column(value)
if isinstance(value, str):
value = value.strip("\t\n")
if (
target_generic_type == utils.GenericDataType.NUMERIC
and operator
not in {
utils.FilterOperator.ILIKE,
utils.FilterOperator.LIKE,
}
):
# For backwards compatibility and edge cases
# where a column data type might have changed
return utils.cast_to_num(value)
if value == NULL_STRING:
return None
if value == EMPTY_STRING:
return ""
if target_generic_type == utils.GenericDataType.BOOLEAN:
return utils.cast_to_boolean(value)
return value
if isinstance(values, (list, tuple)):
values = [handle_single_value(v) for v in values] # type: ignore
else:
values = handle_single_value(values)
if is_list_target and not isinstance(values, (tuple, list)):
values = [values] # type: ignore
elif not is_list_target and isinstance(values, (tuple, list)):
values = values[0] if values else None
return values
def get_query_str(self, query_obj: QueryObjectDict) -> str:
query_str_ext = self.get_query_str_extended(query_obj)
all_queries = query_str_ext.prequeries + [query_str_ext.sql]
return ";\n\n".join(all_queries) + ";"
def _get_series_orderby(
self,
series_limit_metric: Metric,
metrics_by_name: dict[str, "SqlMetric"],
columns_by_name: dict[str, "TableColumn"],
template_processor: Optional[BaseTemplateProcessor] = None,
) -> Column:
if utils.is_adhoc_metric(series_limit_metric):
assert isinstance(series_limit_metric, dict)
ob = self.adhoc_metric_to_sqla(series_limit_metric, columns_by_name)
elif (
isinstance(series_limit_metric, str)
and series_limit_metric in metrics_by_name
):
ob = metrics_by_name[series_limit_metric].get_sqla_col(
template_processor=template_processor
)
else:
raise QueryObjectValidationError(
_("Metric '%(metric)s' does not exist", metric=series_limit_metric)
)
return ob
def adhoc_column_to_sqla(
self,
col: "AdhocColumn", # type: ignore # noqa: F821
force_type_check: bool = False,
template_processor: Optional[BaseTemplateProcessor] = None,
) -> ColumnElement:
raise NotImplementedError()
def _get_top_groups(
self,
df: pd.DataFrame,
dimensions: list[str],
groupby_exprs: dict[str, Any],
columns_by_name: dict[str, "TableColumn"],
) -> ColumnElement:
groups = []
for _unused, row in df.iterrows():
group = []
for dimension in dimensions:
value = self._normalize_prequery_result_type(
row,
dimension,
columns_by_name,
)
group.append(groupby_exprs[dimension] == value)
groups.append(and_(*group))
return or_(*groups)
def dttm_sql_literal(self, dttm: datetime, col: "TableColumn") -> str:
"""Convert datetime object to a SQL expression string"""
sql = (
self.db_engine_spec.convert_dttm(col.type, dttm, db_extra=self.db_extra)
if col.type
else None
)
if sql:
return sql
tf = col.python_date_format
# Fallback to the default format (if defined).
if not tf and self.db_extra:
tf = self.db_extra.get("python_date_format_by_column_name", {}).get(
col.column_name
)
if tf:
if tf in {"epoch_ms", "epoch_s"}:
seconds_since_epoch = int(dttm.timestamp())
if tf == "epoch_s":
return str(seconds_since_epoch)
return str(seconds_since_epoch * 1000)
return f"'{dttm.strftime(tf)}'"
return f"""'{dttm.strftime("%Y-%m-%d %H:%M:%S.%f")}'"""
def get_time_filter( # pylint: disable=too-many-arguments
self,
time_col: "TableColumn",
start_dttm: Optional[sa.DateTime],
end_dttm: Optional[sa.DateTime],
time_grain: Optional[str] = None,
label: Optional[str] = "__time",
template_processor: Optional[BaseTemplateProcessor] = None,
) -> ColumnElement:
col = (
time_col.get_timestamp_expression(
time_grain=time_grain,
label=label,
template_processor=template_processor,
)
if time_grain
else self.convert_tbl_column_to_sqla_col(
time_col, label=label, template_processor=template_processor
)
)
l = [] # noqa: E741
if start_dttm:
l.append(
col
>= self.db_engine_spec.get_text_clause(
self.dttm_sql_literal(start_dttm, time_col)
)
)
if end_dttm:
l.append(
col
< self.db_engine_spec.get_text_clause(
self.dttm_sql_literal(end_dttm, time_col)
)
)
return and_(*l)
def values_for_column( # pylint: disable=too-many-locals
self,
column_name: str,
limit: int = 10000,
denormalize_column: bool = False,
) -> list[Any]:
# denormalize column name before querying for values
# unless disabled in the dataset configuration
db_dialect = self.database.get_dialect()
column_name_ = (
self.database.db_engine_spec.denormalize_name(db_dialect, column_name)
if denormalize_column
else column_name
)
cols = {col.column_name: col for col in self.columns}
target_col = cols[column_name_]
tp = self.get_template_processor()
tbl, cte = self.get_from_clause(tp)
qry = (
sa.select(
# The alias (label) here is important because some dialects will
# automatically add a random alias to the projection because of the
# call to DISTINCT; others will uppercase the column names. This
# gives us a deterministic column name in the dataframe.
[target_col.get_sqla_col(template_processor=tp).label("column_values")]
)
.select_from(tbl)
.distinct()
)
if limit:
qry = qry.limit(limit)
if self.fetch_values_predicate:
qry = qry.where(self.get_fetch_values_predicate(template_processor=tp))
rls_filters = self.get_sqla_row_level_filters(template_processor=tp)
qry = qry.where(and_(*rls_filters))
with self.database.get_sqla_engine() as engine:
sql = str(qry.compile(engine, compile_kwargs={"literal_binds": True}))
sql = self._apply_cte(sql, cte)
sql = self.database.mutate_sql_based_on_config(sql)
# pylint: disable=protected-access
if engine.dialect.identifier_preparer._double_percents:
sql = sql.replace("%%", "%")
df = pd.read_sql_query(sql=sql, con=engine)
# replace NaN with None to ensure it can be serialized to JSON
df = df.replace({np.nan: None})
return df["column_values"].to_list()
def get_timestamp_expression(
self,
column: dict[str, Any],
time_grain: Optional[str],
label: Optional[str] = None,
template_processor: Optional[BaseTemplateProcessor] = None,
) -> Union[TimestampExpression, Label]:
"""
Return a SQLAlchemy Core element representation of self to be used in a query.
:param column: column object
:param time_grain: Optional time grain, e.g. P1Y
:param label: alias/label that column is expected to have
:param template_processor: template processor
:return: A TimeExpression object wrapped in a Label if supported by db
"""
label = label or utils.DTTM_ALIAS
column_spec = self.db_engine_spec.get_column_spec(column.get("type"))
type_ = column_spec.sqla_type if column_spec else sa.DateTime
col = sa.column(column.get("column_name"), type_=type_)
if template_processor:
expression = template_processor.process_template(column["column_name"])
col = sa.literal_column(expression, type_=type_)
time_expr = self.db_engine_spec.get_timestamp_expr(col, None, time_grain)
return self.make_sqla_column_compatible(time_expr, label)
def convert_tbl_column_to_sqla_col(
self,
tbl_column: "TableColumn",
label: Optional[str] = None,
template_processor: Optional[BaseTemplateProcessor] = None,
) -> Column:
label = label or tbl_column.column_name
db_engine_spec = self.db_engine_spec
column_spec = db_engine_spec.get_column_spec(self.type, db_extra=self.db_extra)
type_ = column_spec.sqla_type if column_spec else None
if expression := tbl_column.expression:
if template_processor:
expression = template_processor.process_template(expression)
col = literal_column(expression, type_=type_)
else:
col = sa.column(tbl_column.column_name, type_=type_)
col = self.make_sqla_column_compatible(col, label)
return col
def get_sqla_query( # pylint: disable=too-many-arguments,too-many-locals,too-many-branches,too-many-statements
self,
apply_fetch_values_predicate: bool = False,
columns: Optional[list[Column]] = None,
extras: Optional[dict[str, Any]] = None,
filter: Optional[ # pylint: disable=redefined-builtin
list[utils.QueryObjectFilterClause]
] = None,
from_dttm: Optional[datetime] = None,
granularity: Optional[str] = None,
groupby: Optional[list[Column]] = None,
inner_from_dttm: Optional[datetime] = None,
inner_to_dttm: Optional[datetime] = None,
is_rowcount: bool = False,
is_timeseries: bool = True,
metrics: Optional[list[Metric]] = None,
orderby: Optional[list[OrderBy]] = None,
order_desc: bool = True,
to_dttm: Optional[datetime] = None,
series_columns: Optional[list[Column]] = None,
series_limit: Optional[int] = None,
series_limit_metric: Optional[Metric] = None,
row_limit: Optional[int] = None,
row_offset: Optional[int] = None,
timeseries_limit: Optional[int] = None,
timeseries_limit_metric: Optional[Metric] = None,
time_shift: Optional[str] = None,
) -> SqlaQuery:
"""Querying any sqla table from this common interface"""
if granularity not in self.dttm_cols and granularity is not None:
granularity = self.main_dttm_col
extras = extras or {}
time_grain = extras.get("time_grain_sqla")
template_kwargs = {
"columns": columns,
"from_dttm": from_dttm.isoformat() if from_dttm else None,
"groupby": groupby,
"metrics": metrics,
"row_limit": row_limit,
"row_offset": row_offset,
"time_column": granularity,
"time_grain": time_grain,
"to_dttm": to_dttm.isoformat() if to_dttm else None,
"table_columns": [col.column_name for col in self.columns],
"filter": filter,
}
columns = columns or []
groupby = groupby or []
rejected_adhoc_filters_columns: list[Union[str, ColumnTyping]] = []
applied_adhoc_filters_columns: list[Union[str, ColumnTyping]] = []
db_engine_spec = self.db_engine_spec
series_column_labels = [
db_engine_spec.make_label_compatible(column)
for column in utils.get_column_names(
columns=series_columns or [],
)
]
# deprecated, to be removed in 2.0
if is_timeseries and timeseries_limit:
series_limit = timeseries_limit
series_limit_metric = series_limit_metric or timeseries_limit_metric
template_kwargs.update(self.template_params_dict)
extra_cache_keys: list[Any] = []
template_kwargs["extra_cache_keys"] = extra_cache_keys
removed_filters: list[str] = []
applied_template_filters: list[str] = []
template_kwargs["removed_filters"] = removed_filters
template_kwargs["applied_filters"] = applied_template_filters
template_processor = self.get_template_processor(**template_kwargs)
prequeries: list[str] = []
orderby = orderby or []
need_groupby = bool(metrics is not None or groupby)
metrics = metrics or []
# For backward compatibility
if granularity not in self.dttm_cols and granularity is not None:
granularity = self.main_dttm_col
columns_by_name: dict[str, "TableColumn"] = {
col.column_name: col for col in self.columns
}
metrics_by_name: dict[str, "SqlMetric"] = {
m.metric_name: m for m in self.metrics
}
if not granularity and is_timeseries:
raise QueryObjectValidationError(
_(
"Datetime column not provided as part table configuration "
"and is required by this type of chart"
)
)
if not metrics and not columns and not groupby:
raise QueryObjectValidationError(_("Empty query?"))
metrics_exprs: list[ColumnElement] = []
for metric in metrics:
if utils.is_adhoc_metric(metric):
assert isinstance(metric, dict)
metrics_exprs.append(
self.adhoc_metric_to_sqla(
metric=metric,
columns_by_name=columns_by_name,
template_processor=template_processor,
)
)
elif isinstance(metric, str) and metric in metrics_by_name:
metrics_exprs.append(
metrics_by_name[metric].get_sqla_col(
template_processor=template_processor
)
)
else:
raise QueryObjectValidationError(
_("Metric '%(metric)s' does not exist", metric=metric)
)
if metrics_exprs:
main_metric_expr = metrics_exprs[0]
else:
main_metric_expr, label = literal_column("COUNT(*)"), "ccount"
main_metric_expr = self.make_sqla_column_compatible(main_metric_expr, label)
# To ensure correct handling of the ORDER BY labeling we need to reference the
# metric instance if defined in the SELECT clause.
# use the key of the ColumnClause for the expected label
metrics_exprs_by_label = {m.key: m for m in metrics_exprs}
metrics_exprs_by_expr = {str(m): m for m in metrics_exprs}
# Since orderby may use adhoc metrics, too; we need to process them first
orderby_exprs: list[ColumnElement] = []
for orig_col, ascending in orderby:
col: Union[AdhocMetric, ColumnElement] = orig_col
if isinstance(col, dict):
col = cast(AdhocMetric, col)
if col.get("sqlExpression"):
col["sqlExpression"] = self._process_sql_expression(
expression=col["sqlExpression"],
database_id=self.database_id,
engine=self.database.backend,
schema=self.schema,
template_processor=template_processor,
)
if utils.is_adhoc_metric(col):
# add adhoc sort by column to columns_by_name if not exists
col = self.adhoc_metric_to_sqla(col, columns_by_name)
# if the adhoc metric has been defined before
# use the existing instance.
col = metrics_exprs_by_expr.get(str(col), col)
need_groupby = True
elif col in columns_by_name:
col = self.convert_tbl_column_to_sqla_col(
columns_by_name[col], template_processor=template_processor
)
elif col in metrics_exprs_by_label:
col = metrics_exprs_by_label[col]
need_groupby = True
elif col in metrics_by_name:
col = metrics_by_name[col].get_sqla_col(
template_processor=template_processor
)
need_groupby = True
if isinstance(col, ColumnElement):
orderby_exprs.append(col)
else:
# Could not convert a column reference to valid ColumnElement
raise QueryObjectValidationError(
_("Unknown column used in orderby: %(col)s", col=orig_col)
)
select_exprs: list[Union[Column, Label]] = []
groupby_all_columns = {}
groupby_series_columns = {}
# filter out the pseudo column __timestamp from columns
columns = [col for col in columns if col != utils.DTTM_ALIAS]
dttm_col = columns_by_name.get(granularity) if granularity else None
if need_groupby:
# dedup columns while preserving order
columns = groupby or columns
for selected in columns:
if isinstance(selected, str):
# if groupby field/expr equals granularity field/expr
if selected == granularity:
table_col = columns_by_name[selected]
outer = table_col.get_timestamp_expression(
time_grain=time_grain,
label=selected,
template_processor=template_processor,
)
# if groupby field equals a selected column
elif selected in columns_by_name:
outer = self.convert_tbl_column_to_sqla_col(
columns_by_name[selected],
template_processor=template_processor,
)
else:
selected = validate_adhoc_subquery(
selected,
self.database_id,
self.database.backend,
self.schema,
)
outer = literal_column(f"({selected})")
outer = self.make_sqla_column_compatible(outer, selected)
else:
outer = self.adhoc_column_to_sqla(
col=selected, template_processor=template_processor
)
groupby_all_columns[outer.name] = outer
if (
is_timeseries and not series_column_labels
) or outer.name in series_column_labels:
groupby_series_columns[outer.name] = outer
select_exprs.append(outer)
elif columns:
for selected in columns:
if is_adhoc_column(selected):
_sql = selected["sqlExpression"]
_column_label = selected["label"]
elif isinstance(selected, str):
_sql = selected
_column_label = selected
selected = validate_adhoc_subquery(
_sql,
self.database_id,
self.database.backend,
self.schema,
)
select_exprs.append(
self.convert_tbl_column_to_sqla_col(
columns_by_name[selected],
template_processor=template_processor,
label=_column_label,
)
if isinstance(selected, str) and selected in columns_by_name
else self.make_sqla_column_compatible(
literal_column(selected), _column_label
)
)
metrics_exprs = []
if granularity:
if granularity not in columns_by_name or not dttm_col:
raise QueryObjectValidationError(
_(
'Time column "%(col)s" does not exist in dataset',
col=granularity,
)
)
time_filters = []
if is_timeseries:
timestamp = dttm_col.get_timestamp_expression(
time_grain=time_grain, template_processor=template_processor
)
# always put timestamp as the first column
select_exprs.insert(0, timestamp)
groupby_all_columns[timestamp.name] = timestamp
# Use main dttm column to support index with secondary dttm columns.
if (
self.always_filter_main_dttm
and self.main_dttm_col in self.dttm_cols
and self.main_dttm_col != dttm_col.column_name
):
time_filters.append(
self.get_time_filter(
time_col=columns_by_name[self.main_dttm_col],
start_dttm=from_dttm,
end_dttm=to_dttm,
template_processor=template_processor,
)
)
time_filter_column = self.get_time_filter(
time_col=dttm_col,
start_dttm=from_dttm,
end_dttm=to_dttm,
template_processor=template_processor,
)
time_filters.append(time_filter_column)
# Always remove duplicates by column name, as sometimes `metrics_exprs`
# can have the same name as a groupby column (e.g. when users use
# raw columns as custom SQL adhoc metric).
select_exprs = remove_duplicates(
select_exprs + metrics_exprs, key=lambda x: x.name
)
# Expected output columns
labels_expected = [c.key for c in select_exprs]
# Order by columns are "hidden" columns, some databases require them
# always be present in SELECT if an aggregation function is used
if not db_engine_spec.allows_hidden_orderby_agg:
select_exprs = remove_duplicates(select_exprs + orderby_exprs)
qry = sa.select(select_exprs)
tbl, cte = self.get_from_clause(template_processor)
if groupby_all_columns:
qry = qry.group_by(*groupby_all_columns.values())
where_clause_and = []
having_clause_and = []
for flt in filter: # type: ignore
if not all(flt.get(s) for s in ["col", "op"]):
continue
flt_col = flt["col"]
val = flt.get("val")
flt_grain = flt.get("grain")
op = flt["op"].upper()
col_obj: Optional["TableColumn"] = None
sqla_col: Optional[Column] = None
if flt_col == utils.DTTM_ALIAS and is_timeseries and dttm_col:
col_obj = dttm_col
elif is_adhoc_column(flt_col):
try:
sqla_col = self.adhoc_column_to_sqla(flt_col, force_type_check=True)
applied_adhoc_filters_columns.append(flt_col)
except ColumnNotFoundException:
rejected_adhoc_filters_columns.append(flt_col)
continue
else:
col_obj = columns_by_name.get(cast(str, flt_col))
filter_grain = flt.get("grain")
if get_column_name(flt_col) in removed_filters:
# Skip generating SQLA filter when the jinja template handles it.
continue
if col_obj or sqla_col is not None:
if sqla_col is not None:
pass
elif col_obj and filter_grain:
sqla_col = col_obj.get_timestamp_expression(
time_grain=filter_grain, template_processor=template_processor
)
elif col_obj:
sqla_col = self.convert_tbl_column_to_sqla_col(
tbl_column=col_obj, template_processor=template_processor
)
col_type = col_obj.type if col_obj else None
col_spec = db_engine_spec.get_column_spec(native_type=col_type)
is_list_target = op in (
utils.FilterOperator.IN.value,
utils.FilterOperator.NOT_IN.value,
)
col_advanced_data_type = col_obj.advanced_data_type if col_obj else ""
if col_spec and not col_advanced_data_type:
target_generic_type = col_spec.generic_type
else:
target_generic_type = GenericDataType.STRING
eq = self.filter_values_handler(
values=val,
operator=op,
target_generic_type=target_generic_type,
target_native_type=col_type,
is_list_target=is_list_target,
db_engine_spec=db_engine_spec,
)
if (
col_advanced_data_type != ""
and feature_flag_manager.is_feature_enabled(
"ENABLE_ADVANCED_DATA_TYPES"
)
and col_advanced_data_type in ADVANCED_DATA_TYPES
):
values = eq if is_list_target else [eq] # type: ignore
bus_resp: AdvancedDataTypeResponse = ADVANCED_DATA_TYPES[
col_advanced_data_type
].translate_type(
{
"type": col_advanced_data_type,
"values": values,
}
)
if bus_resp["error_message"]:
raise AdvancedDataTypeResponseError(
_(bus_resp["error_message"])
)
where_clause_and.append(
ADVANCED_DATA_TYPES[col_advanced_data_type].translate_filter(
sqla_col, op, bus_resp["values"]
)
)
elif is_list_target:
assert isinstance(eq, (tuple, list))
if len(eq) == 0:
raise QueryObjectValidationError(
_("Filter value list cannot be empty")
)
if len(eq) > len(
eq_without_none := [x for x in eq if x is not None]
):
is_null_cond = sqla_col.is_(None)
if eq:
cond = or_(is_null_cond, sqla_col.in_(eq_without_none))
else:
cond = is_null_cond
else:
cond = sqla_col.in_(eq)
if op == utils.FilterOperator.NOT_IN.value:
cond = ~cond
where_clause_and.append(cond)
elif op == utils.FilterOperator.IS_NULL.value:
where_clause_and.append(sqla_col.is_(None))
elif op == utils.FilterOperator.IS_NOT_NULL.value:
where_clause_and.append(sqla_col.isnot(None))
elif op == utils.FilterOperator.IS_TRUE.value:
where_clause_and.append(sqla_col.is_(True))
elif op == utils.FilterOperator.IS_FALSE.value:
where_clause_and.append(sqla_col.is_(False))
else:
if (
op
not in {
utils.FilterOperator.EQUALS.value,
utils.FilterOperator.NOT_EQUALS.value,
}
and eq is None
):
raise QueryObjectValidationError(
_(
"Must specify a value for filters "
"with comparison operators"
)
)
if op == utils.FilterOperator.EQUALS.value:
where_clause_and.append(sqla_col == eq)
elif op == utils.FilterOperator.NOT_EQUALS.value:
where_clause_and.append(sqla_col != eq)
elif op == utils.FilterOperator.GREATER_THAN.value:
where_clause_and.append(sqla_col > eq)
elif op == utils.FilterOperator.LESS_THAN.value:
where_clause_and.append(sqla_col < eq)
elif op == utils.FilterOperator.GREATER_THAN_OR_EQUALS.value:
where_clause_and.append(sqla_col >= eq)
elif op == utils.FilterOperator.LESS_THAN_OR_EQUALS.value:
where_clause_and.append(sqla_col <= eq)
elif op in {
utils.FilterOperator.ILIKE.value,
utils.FilterOperator.LIKE.value,
}:
if target_generic_type != GenericDataType.STRING:
sqla_col = sa.cast(sqla_col, sa.String)
if op == utils.FilterOperator.LIKE.value:
where_clause_and.append(sqla_col.like(eq))
else:
where_clause_and.append(sqla_col.ilike(eq))
elif op in {utils.FilterOperator.NOT_LIKE.value}:
if target_generic_type != GenericDataType.STRING:
sqla_col = sa.cast(sqla_col, sa.String)
where_clause_and.append(sqla_col.not_like(eq))
elif (
op == utils.FilterOperator.TEMPORAL_RANGE.value
and isinstance(eq, str)
and col_obj is not None
):
_since, _until = get_since_until_from_time_range(
time_range=eq,
time_shift=time_shift,
extras=extras,
)
where_clause_and.append(
self.get_time_filter(
time_col=col_obj,
start_dttm=_since,
end_dttm=_until,
time_grain=flt_grain,
label=sqla_col.key,
template_processor=template_processor,
)
)
else:
raise QueryObjectValidationError(
_("Invalid filter operation type: %(op)s", op=op)
)
where_clause_and += self.get_sqla_row_level_filters(template_processor)
if extras:
where = extras.get("where")
if where:
try:
where = template_processor.process_template(f"({where})")
except TemplateError as ex:
raise QueryObjectValidationError(
_(
"Error in jinja expression in WHERE clause: %(msg)s",
msg=ex.message,
)
) from ex
where = self._process_sql_expression(
expression=where,
database_id=self.database_id,
engine=self.database.backend,
schema=self.schema,
template_processor=template_processor,
)
where_clause_and += [self.text(where)]
having = extras.get("having")
if having:
try:
having = template_processor.process_template(f"({having})")
except TemplateError as ex:
raise QueryObjectValidationError(
_(
"Error in jinja expression in HAVING clause: %(msg)s",
msg=ex.message,
)
) from ex
having = self._process_sql_expression(
expression=having,
database_id=self.database_id,
engine=self.database.backend,
schema=self.schema,
template_processor=template_processor,
)
having_clause_and += [self.text(having)]
if apply_fetch_values_predicate and self.fetch_values_predicate:
qry = qry.where(
self.get_fetch_values_predicate(template_processor=template_processor)
)
if granularity:
qry = qry.where(and_(*(time_filters + where_clause_and)))
else:
qry = qry.where(and_(*where_clause_and))
qry = qry.having(and_(*having_clause_and))
self.make_orderby_compatible(select_exprs, orderby_exprs)
for col, (orig_col, ascending) in zip(orderby_exprs, orderby):
if not db_engine_spec.allows_alias_in_orderby and isinstance(col, Label):
# if engine does not allow using SELECT alias in ORDER BY
# revert to the underlying column
col = col.element
if (
db_engine_spec.get_allows_alias_in_select(self.database)
and db_engine_spec.allows_hidden_cc_in_orderby
and col.name in [select_col.name for select_col in select_exprs]
):
with self.database.get_sqla_engine() as engine:
quote = engine.dialect.identifier_preparer.quote
col = literal_column(quote(col.name))
direction = sa.asc if ascending else sa.desc
qry = qry.order_by(direction(col))
if row_limit:
qry = qry.limit(row_limit)
if row_offset:
qry = qry.offset(row_offset)
if series_limit and groupby_series_columns:
if db_engine_spec.allows_joins and db_engine_spec.allows_subqueries:
# some sql dialects require for order by expressions
# to also be in the select clause -- others, e.g. vertica,
# require a unique inner alias
inner_main_metric_expr = self.make_sqla_column_compatible(
main_metric_expr, "mme_inner__"
)
inner_groupby_exprs = []
inner_select_exprs = []
for gby_name, gby_obj in groupby_series_columns.items():
inner = self.make_sqla_column_compatible(gby_obj, gby_name + "__")
inner_groupby_exprs.append(inner)
inner_select_exprs.append(inner)
inner_select_exprs += [inner_main_metric_expr]
subq = sa.select(inner_select_exprs).select_from(tbl)
inner_time_filter = []
if dttm_col and not db_engine_spec.time_groupby_inline:
inner_time_filter = [
self.get_time_filter(
time_col=dttm_col,
start_dttm=inner_from_dttm or from_dttm,
end_dttm=inner_to_dttm or to_dttm,
template_processor=template_processor,
)
]
subq = subq.where(and_(*(where_clause_and + inner_time_filter)))
subq = subq.group_by(*inner_groupby_exprs)
ob = inner_main_metric_expr
if series_limit_metric:
ob = self._get_series_orderby(
series_limit_metric=series_limit_metric,
metrics_by_name=metrics_by_name,
columns_by_name=columns_by_name,
template_processor=template_processor,
)
direction = sa.desc if order_desc else sa.asc
subq = subq.order_by(direction(ob))
subq = subq.limit(series_limit)
on_clause = []
for gby_name, gby_obj in groupby_series_columns.items():
# in this case the column name, not the alias, needs to be
# conditionally mutated, as it refers to the column alias in
# the inner query
col_name = db_engine_spec.make_label_compatible(gby_name + "__")
on_clause.append(gby_obj == sa.column(col_name))
tbl = tbl.join(subq.alias(SERIES_LIMIT_SUBQ_ALIAS), and_(*on_clause))
else:
if series_limit_metric:
orderby = [
(
self._get_series_orderby(
series_limit_metric=series_limit_metric,
metrics_by_name=metrics_by_name,
columns_by_name=columns_by_name,
template_processor=template_processor,
),
not order_desc,
)
]
# run prequery to get top groups
prequery_obj = {
"is_timeseries": False,
"row_limit": series_limit,
"metrics": metrics,
"granularity": granularity,
"groupby": groupby,
"from_dttm": inner_from_dttm or from_dttm,
"to_dttm": inner_to_dttm or to_dttm,
"filter": filter,
"orderby": orderby,
"extras": extras,
"columns": get_non_base_axis_columns(columns),
"order_desc": True,
}
result = self.query(prequery_obj)
prequeries.append(result.query)
dimensions = [
c
for c in result.df.columns
if c not in metrics and c in groupby_series_columns
]
top_groups = self._get_top_groups(
result.df, dimensions, groupby_series_columns, columns_by_name
)
qry = qry.where(top_groups)
qry = qry.select_from(tbl)
if is_rowcount:
if not db_engine_spec.allows_subqueries:
raise QueryObjectValidationError(
_("Database does not support subqueries")
)
label = "rowcount"
col = self.make_sqla_column_compatible(literal_column("COUNT(*)"), label)
qry = sa.select([col]).select_from(qry.alias("rowcount_qry"))
labels_expected = [label]
filter_columns = [flt.get("col") for flt in filter] if filter else []
rejected_filter_columns = [
col
for col in filter_columns
if col
and not is_adhoc_column(col)
and col not in self.column_names
and col not in applied_template_filters
] + rejected_adhoc_filters_columns
applied_filter_columns = [
col
for col in filter_columns
if col
and not is_adhoc_column(col)
and (col in self.column_names or col in applied_template_filters)
] + applied_adhoc_filters_columns
return SqlaQuery(
applied_template_filters=applied_template_filters,
cte=cte,
applied_filter_columns=applied_filter_columns,
rejected_filter_columns=rejected_filter_columns,
extra_cache_keys=extra_cache_keys,
labels_expected=labels_expected,
sqla_query=qry,
prequeries=prequeries,
)