superset/utils/pandas_postprocessing/flatten.py
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from collections.abc import Iterable, Sequence
from typing import Any, Union
import pandas as pd
from superset.utils.pandas_postprocessing.utils import (
_is_multi_index_on_columns,
escape_separator,
FLAT_COLUMN_SEPARATOR,
)
def is_sequence(seq: Any) -> bool:
if isinstance(seq, str):
return False
return isinstance(seq, Iterable)
def flatten(
df: pd.DataFrame,
reset_index: bool = True,
drop_levels: Union[Sequence[int], Sequence[str]] = (),
) -> pd.DataFrame:
"""
Convert N-dimensional DataFrame to a flat DataFrame
:param df: N-dimensional DataFrame.
:param reset_index: Convert index to column when df.index isn't RangeIndex
:param drop_levels: index of level or names of level might be dropped
if df is N-dimensional
:return: a flat DataFrame
Examples
-----------
Convert DatetimeIndex into columns.
>>> index = pd.to_datetime(["2021-01-01", "2021-01-02", "2021-01-03",])
>>> index.name = "__timestamp"
>>> df = pd.DataFrame(index=index, data={"metric": [1, 2, 3]})
>>> df
metric
__timestamp
2021-01-01 1
2021-01-02 2
2021-01-03 3
>>> df = flatten(df)
>>> df
__timestamp metric
0 2021-01-01 1
1 2021-01-02 2
2 2021-01-03 3
Convert DatetimeIndex and MultipleIndex into columns
>>> iterables = [["foo", "bar"], ["one", "two"]]
>>> columns = pd.MultiIndex.from_product(iterables, names=["level1", "level2"])
>>> df = pd.DataFrame(index=index, columns=columns, data=1)
>>> df
level1 foo bar
level2 one two one two
__timestamp
2021-01-01 1 1 1 1
2021-01-02 1 1 1 1
2021-01-03 1 1 1 1
>>> flatten(df)
__timestamp foo, one foo, two bar, one bar, two
0 2021-01-01 1 1 1 1
1 2021-01-02 1 1 1 1
2 2021-01-03 1 1 1 1
"""
if _is_multi_index_on_columns(df):
df.columns = df.columns.droplevel(drop_levels)
_columns = []
for series in df.columns.to_flat_index():
_cells = []
for cell in series if is_sequence(series) else [series]:
if pd.notnull(cell):
# every cell should be converted to string and escape comma
_cells.append(escape_separator(str(cell)))
_columns.append(FLAT_COLUMN_SEPARATOR.join(_cells))
df.columns = _columns
if reset_index and not isinstance(df.index, pd.RangeIndex):
df = df.reset_index(level=0)
return df