alexandrebarachant/pyRiemann

View on GitHub
pyriemann/clustering.py

Summary

Maintainability
D
2 days
Test Coverage
"""Clustering functions."""
import numpy as np
from joblib import Parallel, delayed
from scipy.stats import norm, chi2
import sklearn
from sklearn.base import (BaseEstimator, ClassifierMixin, TransformerMixin,
                          ClusterMixin, clone)
from sklearn.cluster import KMeans as _KMeans

from .classification import MDM
from .utils.mean import mean_covariance
from .utils.geodesic import geodesic
from .utils.utils import check_metric


def _init_centroids(X, n_clusters, init, random_state, x_squared_norms):
    if random_state is not None:
        random_state = np.random.RandomState(random_state)
    if sklearn.__version__ < '1.3.0':
        return _KMeans(n_clusters=n_clusters, init=init)._init_centroids(
            X,
            x_squared_norms,
            init,
            random_state,
        )
    else:
        n_samples = X.shape[0]
        return _KMeans(n_clusters=n_clusters, init=init)._init_centroids(
            X,
            x_squared_norms,
            init,
            random_state,
            sample_weight=np.ones(n_samples) / n_samples,
        )


#######################################################################


def _fit_single(X, y=None, n_clusters=2, init='random', random_state=None,
                metric='riemann', max_iter=100, tol=1e-4, n_jobs=1):
    """helper to fit a single run of centroid."""
    # init random state if provided
    mdm = MDM(metric=metric, n_jobs=n_jobs)
    mdm.metric_mean, mdm.metric_dist = check_metric(metric)
    squared_norms = [np.linalg.norm(x, ord='fro')**2 for x in X]
    mdm.covmeans_ = _init_centroids(X, n_clusters, init,
                                    random_state=random_state,
                                    x_squared_norms=squared_norms)
    if y is not None:
        mdm.classes_ = np.unique(y)
    else:
        mdm.classes_ = np.arange(n_clusters)

    labels = mdm.predict(X)
    k = 0
    while True:
        old_labels = labels.copy()
        mdm.fit(X, old_labels)
        dist = mdm._predict_distances(X)
        labels = mdm.classes_[dist.argmin(axis=1)]
        k += 1
        if (k > max_iter) | (np.mean(labels == old_labels) > (1 - tol)):
            break
    inertia = sum([sum(dist[labels == mdm.classes_[i], i])
                   for i in range(len(mdm.classes_))])
    return labels, inertia, mdm


class Kmeans(BaseEstimator, ClassifierMixin, ClusterMixin, TransformerMixin):

    """Clustering by k-means with SPD matrices as inputs.

    Find clusters that minimize the sum of squared distance to their centroids.
    This is a direct implementation of the k-means algorithm with a Riemannian
    metric.

    Parameters
    ----------
    n_cluster : int, default=2
        Number of clusters.
    max_iter : int, default=100
        The maximum number of iteration to reach convergence.
    metric : string | dict, default="riemann"
        Metric used for mean estimation (for the list of supported metrics,
        see :func:`pyriemann.utils.mean.mean_covariance`) and
        for distance estimation
        (see :func:`pyriemann.utils.distance.distance`).
        The metric can be a dict with two keys, "mean" and "distance"
        in order to pass different metrics.
    random_state : integer or np.RandomState, optional
        The generator used to initialize the centers. If an integer is
        given, it fixes the seed. Defaults to the global numpy random
        number generator.
    init : 'random' or ndarray, shape (n_clusters, n_channels, n_channels), \
            default='random'
        Method for initialization of centers.
        'random': choose k observations (rows) at random from data for
        the initial centroids.
        If an ndarray is passed, it should be of shape
        (n_clusters, n_channels, n_channels) and gives the initial centers.
    n_init : int, default=10
        Number of time the k-means algorithm will be run with different
        centroid seeds. The final results will be the best output of
        n_init consecutive runs in terms of inertia.
    n_jobs : int, default=1
        The number of jobs to use for the computation. This works by computing
        each of the n_init runs in parallel.
        If -1 all CPUs are used. If 1 is given, no parallel computing code is
        used at all, which is useful for debugging. For n_jobs below -1,
        (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one
        are used.
    tol : float, default=1e-4
        The stopping criterion to stop convergence, representing the minimum
        amount of change in labels between two iterations.

    Attributes
    ----------
    mdm_ : MDM instance.
        MDM instance containing the centroids.
    labels_ :
        Labels of each point.
    inertia_ : float
        Sum of distances of samples to their closest cluster center.

    Notes
    -----
    .. versionadded:: 0.2.2

    See Also
    --------
    Kmeans
    MDM
    """

    def __init__(self, n_clusters=2, max_iter=100, metric="riemann",
                 random_state=None, init='random', n_init=10, n_jobs=1,
                 tol=1e-4):
        """Init."""
        self.metric = metric
        self.n_clusters = n_clusters
        self.max_iter = max_iter
        self.seed = random_state
        self.init = init
        self.n_init = n_init
        self.tol = tol
        self.n_jobs = n_jobs

    def fit(self, X, y=None):
        """Fit (estimates) the clusters.

        Parameters
        ----------
        X : ndarray, shape (n_matrices, n_channels, n_channels)
            Set of SPD matrices.
        y : ndarray, shape (n_matrices,) | None, default=None
            Not used, here for compatibility with sklearn API.

        Returns
        -------
        self : Kmeans instance
            The Kmeans instance.
        """
        if isinstance(self.init, str) and self.init == 'random':
            np.random.seed(self.seed)
            seeds = np.random.randint(
                np.iinfo(np.int32).max, size=self.n_init)
            if self.n_jobs == 1:
                res = []
                for i in range(self.n_init):
                    res.append(_fit_single(X, y,
                                           n_clusters=self.n_clusters,
                                           init=self.init,
                                           random_state=seeds[i],
                                           metric=self.metric,
                                           max_iter=self.max_iter,
                                           tol=self.tol))
                labels, inertia, mdm = zip(*res)
            else:

                res = Parallel(n_jobs=self.n_jobs, verbose=0)(
                    delayed(_fit_single)(X, y,
                                         n_clusters=self.n_clusters,
                                         init=self.init,
                                         random_state=seed,
                                         metric=self.metric,
                                         max_iter=self.max_iter,
                                         tol=self.tol,
                                         n_jobs=1)
                    for seed in seeds)
                labels, inertia, mdm = zip(*res)

            best = np.argmin(inertia)
            mdm = mdm[best]
            labels = labels[best]
            inertia = inertia[best]

        else:
            # no need to iterate if init is not random
            labels, inertia, mdm = _fit_single(X, y,
                                               n_clusters=self.n_clusters,
                                               init=self.init,
                                               random_state=self.seed,
                                               metric=self.metric,
                                               max_iter=self.max_iter,
                                               tol=self.tol,
                                               n_jobs=self.n_jobs)

        self.mdm_ = mdm
        self.inertia_ = inertia
        self.labels_ = labels

        return self

    def predict(self, X):
        """Get the predictions.

        Parameters
        ----------
        X : ndarray, shape (n_matrices, n_channels, n_channels)
            Set of SPD matrices.

        Returns
        -------
        pred : ndarray of int, shape (n_matrices,)
            Prediction for each matrix according to the closest centroid.
        """
        return self.mdm_.predict(X)

    def transform(self, X):
        """Get the distance to each centroid.

        Parameters
        ----------
        X : ndarray, shape (n_matrices, n_channels, n_channels)
            Set of SPD matrices.

        Returns
        -------
        dist : ndarray, shape (n_matrices, n_cluster)
            The distance to each centroid according to the metric.
        """
        return self.mdm_.transform(X)

    def centroids(self):
        """Helper for fast access to the centroid.

        Returns
        -------
        centroids : list of SPD matrices, len (n_cluster)
            Return a list containing the centroid of each cluster.
        """
        return self.mdm_.covmeans_


class KmeansPerClassTransform(BaseEstimator, TransformerMixin):
    """Clustering by k-means for each class with SPD matrices as inputs.

    See Also
    --------
    Kmeans
    """

    def __init__(self, n_clusters=2, **params):
        """Init."""
        params['n_clusters'] = n_clusters
        self.km = Kmeans(**params)
        self.metric = self.km.metric

    def fit(self, X, y):
        """Fit."""
        self.covmeans_ = []
        self.classes_ = np.unique(y)
        for c in self.classes_:
            self.km.fit(X[y == c])
            self.covmeans_.extend(self.km.centroids())
        return self

    def transform(self, X):
        """Transform."""
        mdm = MDM(metric=self.metric, n_jobs=self.km.n_jobs)
        mdm.metric_mean, mdm.metric_dist = check_metric(self.metric)
        mdm.covmeans_ = self.covmeans_
        return mdm._predict_distances(X)


class Potato(BaseEstimator, TransformerMixin, ClassifierMixin):
    """Artefact detection with the Riemannian Potato.

    The Riemannian Potato [1]_ is a clustering method used to detect artifact
    in EEG signals. The algorithm iteratively estimates the centroid of clean
    signal by rejecting every trial that is too far from it.

    Parameters
    ----------
    metric : string | dict, default="riemann"
        Metric used for mean estimation (for the list of supported metrics,
        see :func:`pyriemann.utils.mean.mean_covariance`) and
        for distance estimation
        (see :func:`pyriemann.utils.distance.distance`).
        The metric can be a dict with two keys, "mean" and "distance"
        in order to pass different metrics.
    threshold : float, default=3
        Threshold on z-score of distance to reject artifacts. It is the number
        of standard deviations from the mean of distances to the centroid.
    n_iter_max : int, default=100
        The maximum number of iteration to reach convergence.
    pos_label : int, default=1
        The positive label corresponding to clean data.
    neg_label : int, default=0
        The negative label corresponding to artifact data.

    Notes
    -----
    .. versionadded:: 0.2.3

    Attributes
    ----------
    covmean_ : ndarray, shape (n_channels, n_channels)
        Centroid of potato.

    See Also
    --------
    Kmeans
    MDM

    References
    ----------
    .. [1] `The Riemannian Potato: an automatic and adaptive artifact detection
        method for online experiments using Riemannian geometry
        <https://hal.archives-ouvertes.fr/hal-00781701>`_
        A. Barachant, A Andreev, and M. Congedo. TOBI Workshop lV, Jan 2013,
        Sion, Switzerland. pp.19-20.
    .. [2] `The Riemannian Potato Field: A Tool for Online Signal Quality Index
        of EEG
        <https://hal.archives-ouvertes.fr/hal-02015909>`_
        Q. Barthélemy, L. Mayaud, D. Ojeda, and M. Congedo. IEEE Transactions
        on Neural Systems and Rehabilitation Engineering, IEEE Institute of
        Electrical and Electronics Engineers, 2019, 27 (2), pp.244-255
    """

    def __init__(self, metric='riemann', threshold=3, n_iter_max=100,
                 pos_label=1, neg_label=0):
        """Init."""
        self.metric = metric
        self.threshold = threshold
        self.n_iter_max = n_iter_max
        self.pos_label = pos_label
        self.neg_label = neg_label

    def fit(self, X, y=None):
        """Fit the potato from covariance matrices.

        Fit the potato from covariance matrices, with an iterative outlier
        removal to obtain a reliable potato.

        Parameters
        ----------
        X : ndarray, shape (n_matrices, n_channels, n_channels)
            Set of SPD matrices.
        y : None | ndarray, shape (n_matrices,), default=None
            Labels corresponding to each matrix: positive (resp. negative)
            label corresponds to a clean (resp. artifact) matrix.
            If None, all matrices are considered as clean.

        Returns
        -------
        self : Potato instance
            The Potato instance.
        """
        if self.pos_label == self.neg_label:
            raise ValueError("Positive and negative labels must be different")

        self._mdm = MDM(metric=self.metric)
        self._mdm.metric_mean, self._mdm.metric_dist = check_metric(
            self.metric
        )

        y_old = self._check_labels(X, y)

        for _ in range(self.n_iter_max):
            ix = (y_old == 1)
            if not any(ix):
                raise ValueError("Iterative outlier removal has rejected all "
                                 "matrices. Choose a higher threshold.")
            self._mdm.fit(X[ix], y_old[ix])
            y = np.zeros(len(X))
            d = np.squeeze(np.log(self._mdm.transform(X[ix])))
            self._mean = np.mean(d)
            self._std = np.std(d)
            y[ix] = self._get_z_score(d) < self.threshold

            if np.array_equal(y, y_old):
                break
            else:
                y_old = y

        self.covmean_ = self._mdm.covmeans_[0]
        return self

    def partial_fit(self, X, y=None, alpha=0.1):
        """Partially fit the potato from covariance matrices.

        This partial fit can be used to update dynamic or semi-dymanic online
        potatoes with clean EEG.

        Parameters
        ----------
        X : ndarray, shape (n_matrices, n_channels, n_channels)
            Set of SPD matrices.
        y : None | ndarray, shape (n_matrices,), default=None
            Labels corresponding to each matrix: positive (resp. negative)
            label corresponds to a clean (resp. artifact) matrix.
            If None, all matrices are considered as clean.
        alpha : float, default=0.1
            Update rate in [0, 1] for the centroid, and mean and standard
            deviation of log-distances: 0 for no update, 1 for full update.

        Returns
        -------
        self : Potato instance
            The Potato instance.
        """
        if not hasattr(self, '_mdm'):
            raise ValueError(
                'Partial fit can be called only on an already fitted potato.')

        n_matrices, n_channels, _ = X.shape
        if n_channels != self._mdm.covmeans_[0].shape[0]:
            raise ValueError(
                'X does not have the good number of channels. Should be %d but'
                ' got %d.' % (self._mdm.covmeans_[0].shape[0], n_channels))

        y = self._check_labels(X, y)

        if not 0 <= alpha <= 1:
            raise ValueError('Parameter alpha must be in [0, 1]')

        if alpha > 0:
            if n_matrices > 1:  # mini-batch update
                Xm = mean_covariance(X[(y == self.pos_label)],
                                     metric=self.metric)
            else:             # pure online update
                Xm = X[0]
            self._mdm.covmeans_[0] = geodesic(
                self._mdm.covmeans_[0], Xm, alpha, metric=self.metric)

            d = np.squeeze(np.log(self._mdm.transform(Xm[np.newaxis, ...])))
            self._mean = (1 - alpha) * self._mean + alpha * d
            self._std = np.sqrt(
                (1 - alpha) * self._std**2 + alpha * (d - self._mean)**2)

        self.covmean_ = self._mdm.covmeans_[0]
        return self

    def transform(self, X):
        """Return the normalized log-distance to the centroid (z-score).

        Parameters
        ----------
        X : ndarray, shape (n_matrices, n_channels, n_channels)
            Set of SPD matrices.

        Returns
        -------
        z : ndarray, shape (n_matrices,)
            the normalized log-distance to the centroid.
        """
        d = np.squeeze(np.log(self._mdm.transform(X)), axis=1)
        z = self._get_z_score(d)
        return z

    def predict(self, X):
        """Predict artefact from data.

        Parameters
        ----------
        X : ndarray, shape (n_matrices, n_channels, n_channels)
            Set of SPD matrices.

        Returns
        -------
        pred : ndarray of bool, shape (n_matrices,)
            The artefact detection: True if the matrix is clean, and False if
            the matrix contain an artefact.
        """
        z = self.transform(X)
        pred = z < self.threshold
        out = np.zeros_like(z) + self.neg_label
        out[pred] = self.pos_label
        return out

    def predict_proba(self, X):
        """Return probability of belonging to the potato / being clean.

        It is the probability to reject the null hypothesis "clean data",
        computing the right-tailed probability from z-score.

        Parameters
        ----------
        X : ndarray, shape (n_matrices, n_channels, n_channels)
            Set of SPD matrices.

        Returns
        -------
        proba : ndarray, shape (n_matrices,)
            Matrix is considered as normal/clean for high value of proba.
            It is considered as abnormal/artifacted for low value of proba.
        """
        z = self.transform(X)
        proba = self._get_proba(z)
        return proba

    def _check_labels(self, X, y):
        """Check validity of labels."""
        if y is not None:
            if len(y) != len(X):
                raise ValueError('y must be the same length of X')

            classes = np.int32(np.unique(y))

            if len(classes) > 2:
                raise ValueError('number of classes must be maximum 2')

            if self.pos_label not in classes:
                raise ValueError('y must contain a positive class')

            y = np.int32(np.array(y) == self.pos_label)

        else:
            y = np.ones(len(X))

        return y

    def _get_z_score(self, d):
        """Get z-score from distance."""
        z = (d - self._mean) / self._std
        return z

    def _get_proba(self, z):
        """Get right-tailed proba from z-score."""
        proba = 1 - norm.cdf(z)
        return proba


def _check_n_matrices(X, n_matrices):
    """Check number of matrices in ndarray."""
    if X.shape[0] != n_matrices:
        raise ValueError(
            'Unequal n_matrices between ndarray of X. Should be %d but'
            ' got %d.' % (n_matrices, X.shape[0]))


class PotatoField(BaseEstimator, TransformerMixin, ClassifierMixin):
    """Artefact detection with the Riemannian Potato Field.

    The Riemannian Potato Field [1]_ is a clustering method used to detect
    artifact in EEG signals. The algorithm combines several potatoes of low
    dimension, each one being designed to capture specific artifact typically
    affecting specific subsets of channels and/or specific frequency bands.

    Parameters
    ----------
    n_potatoes : int, default=1
        Number of potatoes in the field.
    p_threshold : float, default=0.01
        Threshold on probability to being clean, in (0, 1), combining
        probabilities of potatoes using Fisher's method.
    z_threshold : float, default=3
        Threshold on z-score of distance to reject artifacts. It is the number
        of standard deviations from the mean of distances to the centroid.
    metric : string | dict, default="riemann"
        Metric used for mean estimation (for the list of supported metrics,
        see :func:`pyriemann.utils.mean.mean_covariance`) and
        for distance estimation
        (see :func:`pyriemann.utils.distance.distance`).
        The metric can be a dict with two keys, "mean" and "distance"
        in order to pass different metrics.
    n_iter_max : int, default=10
        The maximum number of iteration to reach convergence.
    pos_label: int, default=1
        The positive label corresponding to clean data.
    neg_label: int, default=0
        The negative label corresponding to artifact data.

    Notes
    -----
    .. versionadded:: 0.3

    See Also
    --------
    Potato

    References
    ----------
    .. [1] `The Riemannian Potato Field: A Tool for Online Signal Quality Index
        of EEG
        <https://hal.archives-ouvertes.fr/hal-02015909>`_
        Q. Barthélemy, L. Mayaud, D. Ojeda, and M. Congedo. IEEE Transactions
        on Neural Systems and Rehabilitation Engineering, IEEE Institute of
        Electrical and Electronics Engineers, 2019, 27 (2), pp.244-255
    """

    def __init__(self, n_potatoes=1, p_threshold=0.01, z_threshold=3,
                 metric="riemann", n_iter_max=10, pos_label=1, neg_label=0):
        """Init."""
        self.n_potatoes = int(n_potatoes)
        self.p_threshold = p_threshold
        self.metric = metric
        self.z_threshold = z_threshold
        self.n_iter_max = n_iter_max
        self.pos_label = pos_label
        self.neg_label = neg_label

    def fit(self, X, y=None):
        """Fit the potato field from covariance matrices.

        Fit the potato field from covariance matrices, with iterative
        outlier removal to obtain reliable potatoes.

        Parameters
        ----------
        X : list of n_potatoes ndarrays of shape (n_matrices, n_channels, \
                n_channels) with same n_matrices but potentially different \
                n_channels
            List of sets of SPD matrices, each corresponding to a different
            subset of EEG channels and/or filtering with a specific frequency
            band.
        y : None | ndarray, shape (n_matrices,), default=None
            Labels corresponding to each matrix: positive (resp. negative)
            label corresponds to a clean (resp. artifact) matrix.
            If None, all matrices are considered as clean.

        Returns
        -------
        self : PotatoField instance
            The PotatoField instance.
        """
        if self.n_potatoes < 1:
            raise ValueError('Parameter n_potatoes must be at least 1')
        if not 0 < self.p_threshold < 1:
            raise ValueError('Parameter p_threshold must be in (0, 1)')
        self._check_length(X)
        n_matrices = X[0].shape[0]

        pt = Potato(
            metric=self.metric,
            threshold=self.z_threshold,
            n_iter_max=self.n_iter_max,
            pos_label=self.pos_label,
            neg_label=self.neg_label)
        self._potatoes = []
        for i in range(self.n_potatoes):
            _check_n_matrices(X[i], n_matrices)
            self._potatoes.append(clone(pt))
            self._potatoes[i].fit(X[i], y)

        return self

    def partial_fit(self, X, y=None, alpha=0.1):
        """Partially fit the potato field from covariance matrices.

        This partial fit can be used to update dynamic or semi-dymanic online
        potatoes with clean EEG.

        Parameters
        ----------
        X : list of n_potatoes ndarrays of shape (n_matrices, n_channels, \
                n_channels) with same n_matrices but potentially different \
                n_channels
            List of sets of SPD matrices, each corresponding to a different
            subset of EEG channels and/or filtering with a specific frequency
            band.
        y : None | ndarray, shape (n_matrices,), default=None
            Labels corresponding to each matrix: positive (resp. negative)
            label corresponds to a clean (resp. artifact) matrix.
            If None, all matrices are considered as clean.
        alpha : float, default=0.1
            Update rate in [0, 1] for the centroid, and mean and standard
            deviation of log-distances: 0 for no update, 1 for full update.

        Returns
        -------
        self : PotatoField instance
            The PotatoField instance.
        """
        self._check_length(X)
        n_matrices = X[0].shape[0]

        for i in range(self.n_potatoes):
            _check_n_matrices(X[i], n_matrices)
            self._potatoes[i].partial_fit(X[i], y, alpha=alpha)
        return self

    def transform(self, X):
        """Return the normalized log-distances to the centroids.

        Return the normalized log-distances to the centroids, ie geometric
        z-scores of distances.

        Parameters
        ----------
        X : list of n_potatoes ndarrays of shape (n_matrices, n_channels, \
                n_channels) with same n_matrices but potentially different \
                n_channels
            List of sets of SPD matrices, each corresponding to a different
            subset of EEG channels and/or filtering with a specific frequency
            band.

        Returns
        -------
        z : ndarray, shape (n_matrices, n_potatoes)
            The normalized log-distances to the centroids.
        """
        self._check_length(X)
        n_matrices = X[0].shape[0]

        z = np.zeros((n_matrices, self.n_potatoes))
        for i in range(self.n_potatoes):
            _check_n_matrices(X[i], n_matrices)
            z[:, i] = self._potatoes[i].transform(X[i])
        return z

    def predict(self, X):
        """Predict artefact from data.

        Parameters
        ----------
        X : list of n_potatoes ndarrays of shape (n_matrices, n_channels, \
                n_channels) with same n_matrices but potentially different \
                n_channels
            List of sets of SPD matrices, each corresponding to a different
            subset of EEG channels and/or filtering with a specific frequency
            band.

        Returns
        -------
        pred : ndarray of bool, shape (n_matrices,)
            The artefact detection: True if the matrix is clean, and False if
            the matrix contain an artefact.
        """
        p = self.predict_proba(X)
        pred = p > self.p_threshold
        out = np.zeros_like(p) + self.neg_label
        out[pred] = self.pos_label
        return out

    def predict_proba(self, X):
        """Predict probability obtained combining probabilities of potatoes.

        Predict probability obtained combining probabilities of potatoes using
        Fisher's method. A threshold of 0.01 can be used.

        Parameters
        ----------
        X : list of n_potatoes ndarrays of shape (n_matrices, n_channels, \
                n_channels) with same n_matrices but potentially different \
                n_channels
            List of sets of SPD matrices, each corresponding to a different
            subset of EEG channels and/or filtering with a specific frequency
            band.

        Returns
        -------
        proba : ndarray, shape (n_matrices,)
            Matrix is considered as normal/clean for high value of proba.
            It is considered as abnormal/artifacted for low value of proba.
        """
        self._check_length(X)
        n_matrices = X[0].shape[0]

        p = np.zeros((self.n_potatoes, n_matrices))
        for i in range(self.n_potatoes):
            _check_n_matrices(X[i], n_matrices)
            p[i] = self._potatoes[i].predict_proba(X[i])
        p[p < 1e-10] = 1e-10  # avoid trouble with log
        q = - 2 * np.sum(np.log(p), axis=0)
        proba = self._get_proba(q)
        return proba

    def _check_length(self, X):
        """Check validity of input length."""
        if len(X) != self.n_potatoes:
            raise ValueError(
                'Length of X is not equal to n_potatoes. Should be %d but got '
                '%d.' % (self.n_potatoes, len(X)))

    def _get_proba(self, q):
        """Get proba from a chi-squared value q."""
        proba = 1 - chi2.cdf(q, df=2 * self.n_potatoes)
        return proba