alexandrebarachant/pyRiemann

View on GitHub
pyriemann/embedding.py

Summary

Maintainability
C
7 hrs
Test Coverage
"""Embedding SPD matrices via manifold learning techniques."""

import warnings

import numpy as np
from scipy.linalg import solve, eigh
from scipy.sparse import csr_matrix
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.manifold import spectral_embedding

from .utils.distance import pairwise_distance
from .utils.kernel import kernel as kernel_fct


class SpectralEmbedding(BaseEstimator):
    """Spectral embedding of SPD matrices into an Euclidean space.

    It uses Laplacian Eigenmaps [1]_ to embed SPD matrices into an Euclidean
    space of smaller dimension. The basic hypothesis is that high-dimensional
    data lives in a low-dimensional manifold, whose intrinsic geometry can be
    described via the Laplacian matrix of a graph. The vertices of this graph
    are the SPD matrices and the weights of the links are determined by the
    Riemannian distance between each pair of them.

    Parameters
    ----------
    n_components : integer, default=2
        The dimension of the projected subspace.
    metric : string, default="riemann"
        Metric used for defining pairwise distance between SPD matrices.
        For the list of supported metrics,
        see :func:`pyriemann.utils.distance.pairwise_distance`.
    eps : None | float, default=None
        The scaling of the Gaussian kernel. If none is given it will use the
        square of the median of pairwise distances between points.

    References
    ----------
    .. [1] `Laplacian Eigenmaps for dimensionality
        reduction and data representation
        <https://ieeexplore.ieee.org/document/6789755>`_
        M. Belkin and P. Niyogi, in Neural Computation, vol. 15, no. 6,
        p. 1373-1396 , 2003
    """

    def __init__(self, n_components=2, metric="riemann", eps=None):
        """Init."""
        self.metric = metric
        self.n_components = n_components
        self.eps = eps

    def _get_affinity_matrix(self, X, eps):

        # make matrix with pairwise distances between points
        distmatrix = pairwise_distance(X, metric=self.metric)

        # determine which scale for the gaussian kernel
        if self.eps is None:
            eps = np.median(distmatrix)**2 / 2

        # make kernel matrix from the distance matrix
        kernel = np.exp(-distmatrix**2 / (4 * eps))

        # normalize the kernel matrix
        q = np.dot(kernel, np.ones(len(kernel)))
        kernel_n = np.divide(kernel, np.outer(q, q))

        return kernel_n

    def fit(self, X, y=None):
        """Fit the model from data in X.

        Parameters
        ----------
        X : ndarray, shape (n_matrices, n_channels, n_channels)
            Set of SPD matrices.
        y : None
            Not used, here for compatibility with sklearn API.

        Returns
        -------
        self : object
            Returns the instance itself.

        """
        _check_dimensions(X, n_components=self.n_components)

        affinity_matrix = self._get_affinity_matrix(X, self.eps)
        embd = spectral_embedding(
            adjacency=affinity_matrix,
            n_components=self.n_components,
            norm_laplacian=True,
        )

        # normalize the embedding between -1 and +1
        embdn = 2*(embd - embd.min(0)) / embd.ptp(0) - 1
        self.embedding_ = embdn

        return self

    def fit_transform(self, X, y=None):
        """Calculate the coordinates of the embedded points.

        Parameters
        ----------
        X : ndarray, shape (n_matrices, n_channels, n_channels)
            Set of SPD matrices.
        y : None
            Not used, here for compatibility with sklearn API.

        Returns
        -------
        X_new : ndarray, shape (n_matrices, n_components)
            Coordinates of embedded matrices.

        """
        self.fit(X)
        return self.embedding_


class LocallyLinearEmbedding(BaseEstimator, TransformerMixin):
    """Locally Linear Embedding (LLE) of SPD matrices.

    As proposed in [1]_, Locally Linear Embedding (LLE) is a non-linear,
    neighborhood-preserving dimensionality reduction algorithm which
    consists of three main steps. For each point x,

    1.  find its k nearest neighbors KNN(x) and
    2.  calculate the best reconstruction of x based on its KNN.
    3.  Then calculate a low-dimensional embedding for all points based on
        the weights in step 2.

    This implementation using SPD matrices is based on [2]_.

    Parameters
    ----------
    n_components : int | None, default=2
        Dimensionality of projected space.
        If None, ``n_components`` is set to ``n_matrices - 1``.
    n_neighbors : int | None, default=5
        Number of neighbors for reconstruction of each matrix.
        If None, all available matrices are used.
        If ``n_neighbors > n_matrices``, ``n_neighbors`` is set to
        ``n_matrices - 1``.
    metric : {"euclid", "logeuclid", "riemann"}, default: "riemann"
        Metric used for KNN and Kernel estimation.
    kernel : callable | None, default=None
        Kernel function to use for the embedding. If None, the canonical
        kernel specified by the metric is used. Must be a function that
        takes the arguments (X, Cref, metric).
    reg : float, default=1e-3
        Regularization parameter.

    Attributes
    ----------
    embedding_ : ndarray, shape (n_matrices, n_components)
        Stores the embedding vectors.
    error_ : float
        Reconstruction error associated with `embedding_`.
    data_ : ndarray, shape (n_matrices, n_channels, n_channels)
        Training data.

    Notes
    -----
    .. versionadded:: 0.3

    References
    ----------
    .. [1] `Nonlinear Dimensionality Reduction by
        Locally Linear Embedding
        <https://www.science.org/doi/10.1126/science.290.5500.2323>`_
        S. Roweis and L. K. Saul, in Science, Vol 290, Issue 5500, pp.
        2323-2326, 2000.
    .. [2] `Clustering and dimensionality reduction
        on Riemannian manifolds
        <https://ieeexplore.ieee.org/document/4587422>`_
        A. Goh and R. Vidal, in 2008 IEEE Conference on Computer Vision and
        Pattern Recognition
    """

    def __init__(self, n_components=2,
                 n_neighbors=5,
                 metric="riemann",
                 kernel=None,
                 reg=1e-3
                 ):
        self.n_components = n_components
        self.n_neighbors = n_neighbors
        self.metric = metric
        self.reg = reg
        self.kernel = kernel

    def fit(self, X, y=None):
        """Fit the model from data in X.

        Parameters
        ----------
        X : ndarray, shape (n_matrices, n_channels, n_channels)
            Set of SPD matrices.
        y : None
            Not used, here for compatibility with sklearn API.

        Returns
        -------
        self : object
            Returns the instance itself.

        """
        self.data_ = X
        self.n_components, self.n_neighbors = _check_dimensions(
            X,
            n_components=self.n_components,
            n_neighbors=self.n_neighbors,
        )

        embd, err = locally_linear_embedding(
            X,
            n_components=self.n_components,
            n_neighbors=self.n_neighbors,
            metric=self.metric,
            reg=self.reg,
            kernel=self.kernel
        )

        self.embedding_, self.error_ = embd, err
        return self

    def transform(self, X, y=None):
        """Calculate embedding coordinates.

        Calculate embedding coordinates for new data points based on fitted
        points.

        Parameters
        ----------
        X : ndarray, shape (n_matrices, n_channels, n_channels)
            Set of SPD matrices.
        y : None
            Not used, here for compatibility with sklearn API.

        Returns
        -------
        X_new : ndarray, shape (n_matrices, n_components)
            Coordinates of embedded matrices.
        """
        _check_dimensions(self.data_, X)
        pairwise_dists = pairwise_distance(X, self.data_, metric=self.metric)
        ind = np.array([
            np.argsort(dist)[1:self.n_neighbors + 1] for dist in pairwise_dists
        ])

        weights = barycenter_weights(
            X,
            self.data_,
            ind,
            metric=self.metric,
            reg=self.reg,
            kernel=self.kernel
        )

        X_new = np.empty((X.shape[0], self.n_components))
        for i in range(X.shape[0]):
            X_new[i] = np.dot(self.embedding_[ind[i]].T, weights[i])
        return X_new

    def fit_transform(self, X, y=None):
        """Calculate the coordinates of the embedded points.

        Parameters
        ----------
        X : ndarray, shape (n_matrices, n_channels, n_channels)
            Set of SPD matrices.
        y : None
            Not used, here for compatibility with sklearn API.

        Returns
        -------
        X_new : ndarray, shape (n_matrices, n_components)
            Coordinates of embedded matrices.
        """
        self.fit(X)
        return self.embedding_


def barycenter_weights(X, Y, indices, metric="riemann", kernel=None, reg=1e-3):
    """Compute Riemannian barycenter weights of X from Y along the first axis.

    Estimates the weights to assign to each point in Y[indices] to recover
    the point X[i] by geodesic interpolation. The barycenter weights sum to 1.

    Parameters
    ----------
    X : ndarray, shape (n_matrices, n_channels, n_channels)
        Set of SPD matrices.
    Y : ndarray, shape (n_matrices, n_channels, n_channels)
        Set of SPD matrices.
    indices : ndarray, shape (n_matrices, n_neighbors)
        Indices of the points in Y used to compute the barycenter
    metric : {"euclid", "logeuclid", "riemann"}, default="riemann"
        Kernel metric.
    kernel : callable | None, default=None
        Kernel function to use for the embedding. If None, the canonical
        kernel specified by the metric is used. Must be a function that
        takes the arguments (X, Cref, metric).
    reg : float, default=1e-3
        Amount of regularization to add for the problem to be
        well-posed in the case of ``n_neighbors > n_channels``.

    Returns
    -------
    B : ndarray, shape (n_matrices, n_neighbors)
        Interpolation weights.

    Notes
    -----
    .. versionadded:: 0.3
    """
    n_matrices, n_neighbors = indices.shape
    msg = f"Number of index-sets in indices (is {n_matrices}) must match " \
          f"number of matrices in X (is {X.shape[0]})."
    assert X.shape[0] == n_matrices, msg
    if kernel is None:
        kernel = kernel_fct
    B = np.empty((n_matrices, n_neighbors), dtype=X.dtype)
    v = np.ones(n_neighbors, dtype=X.dtype)

    for i in range(n_matrices):
        X_neighbors = Y[indices[i]]
        G = kernel(X_neighbors, Cref=X[i], metric=metric)
        trace = np.trace(G)
        if trace > 0:
            R = reg * trace
        else:
            R = reg
        G.flat[:: n_neighbors + 1] += R
        w = solve(G, v, assume_a='pos')
        B[i] = w / np.sum(w)
    return B


def locally_linear_embedding(X,
                             *,
                             n_components=2,
                             n_neighbors=5,
                             metric="riemann",
                             kernel=None,
                             reg=1e-3):
    """Perform a Locally Linear Embedding (LLE) of SPD matrices.

    As proposed in [1]_, Locally Linear Embedding (LLE) is a non-linear,
    neighborhood-preserving dimensionality reduction algorithm which consists
    of three main steps. For each point xi,

    1.  find its k nearest neighbors KNN(xi),
    2.  calculate the best reconstruction of xi based on its
        k-nearest neighbors (Eq.9 in [1]_),
    3.  calculate a low-dimensional embedding for all points based on
        the weights in step 2.

    Parameters
    ----------
    X : ndarray, shape (n_matrices, n_channels, n_channels)
        Set of SPD matrices.
    n_components : int, default=2
        Dimensionality of projected space.
        If None, ``n_components`` is set to ``n_matrices - 1``.
    n_neighbors : int, default=5
        Number of neighbors for reconstruction of each point.
        If None, all available matrices are used.
        If ``n_neighbors > n_matrices``, ``n_neighbors`` is set to
        ``n_matrices - 1``.
    metric : {"euclid", "logeuclid", "riemann"}, default: "riemann"
        Metric used for KNN and Kernel estimation.
    kernel : callable | None, default=None
        Kernel function to use for the embedding. If None, the canonical
        kernel specified by the metric is used. Must be a function that
        takes the arguments (X, Cref, metric).
    reg : float, default=1e-3
        Regularization parameter.

    Returns
    -------
    embd : ndarray, shape (n_matrices, n_components)
        Locally linear embedding of matrices in X.
    error : float
        Error of the projected embedding.

    Notes
    -----
    .. versionadded:: 0.3

    References
    ----------
    .. [1] `Clustering and dimensionality reduction
        on Riemannian manifolds
        <https://ieeexplore.ieee.org/document/4587422>`_
        A. Goh and R. Vidal, in 2008 IEEE Conference on Computer Vision and
        Pattern Recognition
    """
    n_matrices, n_channels, n_channels = X.shape
    pairwise_distances = pairwise_distance(X, metric=metric)
    neighbors = np.array([np.argsort(dist)[1:n_neighbors + 1]
                          for dist in pairwise_distances])

    B = barycenter_weights(X, X, neighbors,
                           metric=metric,
                           reg=reg,
                           kernel=kernel)

    indptr = np.arange(0, n_matrices * n_neighbors + 1, n_neighbors)
    W = csr_matrix(
        (B.ravel(), neighbors.ravel(), indptr),
        shape=(n_matrices, n_matrices),
    )
    # M = (W - I).T * (W - I) = W.T * W - W.T - W + I
    # calculated in the two following lines
    M = (W.T * W - W.T - W).toarray()
    M.flat[:: M.shape[0] + 1] += 1

    eigen_values, eigen_vectors = eigh(
        M, subset_by_index=(1, n_components), overwrite_a=True
    )
    index = np.argsort(np.abs(eigen_values))
    embd, error = eigen_vectors[:, index], np.sum(eigen_values)

    return embd, error


def _check_dimensions(X, Y=None, n_components=None, n_neighbors=None):
    n_matrices, n_channels, n_channels = X.shape

    if Y is not None and Y.shape[1:] != (n_channels, n_channels):
        msg = f"Dimension of matrices in data to be transformed must match " \
              f"dimension of data used for fitting. Expected " \
              f"{(n_channels, n_channels)}, got {Y.shape[1:]}."
        raise ValueError(msg)

    if n_components is None:
        n_components = n_matrices - 1
    elif n_components >= n_matrices:
        msg = f"n_components (is {n_components}) must be smaller than " \
              f"n_matrices (is {n_matrices})."
        raise ValueError(msg)

    if n_neighbors is None:
        n_neighbors = n_matrices - 1
    elif n_matrices <= n_neighbors:
        warnings.warn(f"n_neighbors (is {n_neighbors}) must be smaller than "
                      f"n_matrices (is {n_matrices}). Setting n_neighbors to "
                      f"{n_matrices - 1}.")
        n_neighbors = n_matrices - 1

    return n_components, n_neighbors