aliciawyy/dmining

View on GitHub

Showing 35 of 35 total issues

Identical blocks of code found in 2 locations. Consider refactoring.
Open

        if k < i:
            arr = arr[:k] + arr[i:i + 1] + arr[k:i] + arr[i + 1:]
Severity: Major
Found in puzzle/sorting.py and 1 other location - About 3 hrs to fix
puzzle/sorting.py on lines 44..45

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 73.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Identical blocks of code found in 2 locations. Consider refactoring.
Open

        if k < i:
            arr = arr[:k] + arr[i:i + 1] + arr[k:i] + arr[i + 1:]
Severity: Major
Found in puzzle/sorting.py and 1 other location - About 3 hrs to fix
puzzle/sorting.py on lines 31..32

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 73.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Function _partial_fit has a Cognitive Complexity of 23 (exceeds 5 allowed). Consider refactoring.
Open

    def _partial_fit(self, X, y, classes=None, _refit=False,
                     sample_weight=None):

        """
        Adapt the class with the same name in scikit-learn to accept missing 
Severity: Minor
Found in models/classifiers.py - About 3 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function match has a Cognitive Complexity of 17 (exceeds 5 allowed). Consider refactoring.
Open

def match(p1, p2):
    idx1 = idx2 = 0
    while idx1 < len(p1) and idx2 < len(p2):
        if p1[idx1] != "*" and p2[idx2] != "*":
            if p1[idx1] != p2[idx2]:
Severity: Minor
Found in puzzle/pattern_overlap.py - About 2 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Similar blocks of code found in 2 locations. Consider refactoring.
Open

rx.Observable.from_(items) \
    .map(lambda s: rx.Observable.from_(s.split("/"))) \
Severity: Major
Found in rx_tutorial/rx_tuto3.py and 1 other location - About 2 hrs to fix
rx_tutorial/rx_tuto3.py on lines 31..32

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 53.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Similar blocks of code found in 2 locations. Consider refactoring.
Open

rx.Observable.from_(items) \
    .map(lambda s: rx.Observable.from_(s.split("/"))) \
Severity: Major
Found in rx_tutorial/rx_tuto3.py and 1 other location - About 2 hrs to fix
rx_tutorial/rx_tuto3.py on lines 18..19

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 53.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Function longest_zig_zag has a Cognitive Complexity of 16 (exceeds 5 allowed). Consider refactoring.
Open

def longest_zig_zag(seq):
    """
    The complexity is n2 with DP.
    Auxiliary Space is n.
    """
Severity: Minor
Found in puzzle/dynamic_programming.py - About 2 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Similar blocks of code found in 2 locations. Consider refactoring.
Open

numbers.filter(lambda p: p < 60).reduce(lambda total, i: total + i) \
Severity: Major
Found in rx_tutorial/rx_tuto2.py and 1 other location - About 1 hr to fix
rx_tutorial/rx_tuto2.py on lines 27..27

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 46.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Similar blocks of code found in 2 locations. Consider refactoring.
Open

numbers.filter(lambda p: p < 60).scan(lambda total, i: total + i) \
Severity: Major
Found in rx_tutorial/rx_tuto2.py and 1 other location - About 1 hr to fix
rx_tutorial/rx_tuto2.py on lines 23..23

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 46.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Function construct_min_prices has a Cognitive Complexity of 13 (exceeds 5 allowed). Consider refactoring.
Open

    def construct_min_prices(self):
        zipped_info = [zip(self.info[0][j], self.info[1][j], self.info[2][j])
                       for j in range(self.n_prices)]

        def get_price_wrap(k):
Severity: Minor
Found in puzzle/booking/available.py - About 1 hr to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function min_strokes has a Cognitive Complexity of 10 (exceeds 5 allowed). Consider refactoring.
Open

    def min_strokes(self, stripes):
        self.set_stripes(stripes)
        n = len(self.stripes_)
        # n_strokes is a state matrix that shows how many moves are needed
        # from the position i to j
Severity: Minor
Found in puzzle/stripe_painter.py - About 1 hr to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Similar blocks of code found in 2 locations. Consider refactoring.
Open

        palindrome0 = base[0] + shortest_palindromes(base[1:]) + base[0]
Severity: Major
Found in puzzle/palindrome.py and 1 other location - About 1 hr to fix
puzzle/palindrome.py on lines 95..95

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 39.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Similar blocks of code found in 2 locations. Consider refactoring.
Open

        palindrome1 = base[-1] + shortest_palindromes(base[:-1]) + base[-1]
Severity: Major
Found in puzzle/palindrome.py and 1 other location - About 1 hr to fix
puzzle/palindrome.py on lines 94..94

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 39.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Function longest_common_sub_sequence has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring.
Open

def longest_common_sub_sequence(a, b):
    """
    http://www.geeksforgeeks.org/
    dynamic-programming-set-4-longest-common-subsequence/
    """
Severity: Minor
Found in puzzle/palindrome.py - About 55 mins to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function max_donation_from_neighbors has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring.
Open

def max_donation_from_neighbors(donations):
    # init
    dons = np.array(donations, dtype=np.int16)
    dons = np.roll(dons, -np.argmax(dons))

Severity: Minor
Found in puzzle/dynamic_programming.py - About 55 mins to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function max_score_sum has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring.
Open

    def max_score_sum(self):
        max_sum = {(self.budget, 0): 0}

        for cost, visit_time, score in self.attractions:
            new_max_sum = dict(max_sum)
Severity: Minor
Found in puzzle/booking/tripplanner.py - About 55 mins to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function eval_mcc has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring.
Open

def eval_mcc(y_true, y_prob, show=False):
    idx = np.argsort(y_prob)
    y_true = np.array(y_true, dtype=int)
    y_true_sort = y_true[idx]
    n = y_true.shape[0]
Severity: Minor
Found in models/metrics.py - About 45 mins to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function print_insertion_sort has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring.
Open

def print_insertion_sort(arr):
    for i in range(1, len(arr)):
        num_i = arr[i]
        k = i
        for j in range(i - 1, -1, -1):
Severity: Minor
Found in puzzle/sorting.py - About 45 mins to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function get_num_shift has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring.
Open

def get_num_shift(arr):
    cnt = 0
    for i in range(1, len(arr)):
        k = i
        for j in range(i - 1, -1, -1):
Severity: Minor
Found in puzzle/sorting.py - About 45 mins to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function grid has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring.
Open

    def grid(self):
        if self.n == 0:
            return "IO"
        elif self.n <= self.max_num_per_line:
            return self.horizontal_pattern * self.n
Severity: Minor
Found in puzzle/word.py - About 45 mins to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Severity
Category
Status
Source
Language