Class Form
has 24 methods (exceeds 20 allowed). Consider refactoring. Open
class Form
include Virtus.model
include ActiveModel::Validations
attr_reader :context
Rectify::Form#valid? has approx 7 statements Open
def valid?(options = {})
- Read upRead up
- Exclude checks
A method with Too Many Statements
is any method that has a large number of lines.
Too Many Statements
warns about any method that has more than 5 statements. Reek's smell detector for Too Many Statements
counts +1 for every simple statement in a method and +1 for every statement within a control structure (if
, else
, case
, when
, for
, while
, until
, begin
, rescue
) but it doesn't count the control structure itself.
So the following method would score +6 in Reek's statement-counting algorithm:
def parse(arg, argv, &error)
if !(val = arg) and (argv.empty? or /\A-/ =~ (val = argv[0]))
return nil, block, nil # +1
end
opt = (val = parse_arg(val, &error))[1] # +2
val = conv_arg(*val) # +3
if opt and !arg
argv.shift # +4
else
val[0] = nil # +5
end
val # +6
end
(You might argue that the two assigments within the first @if@ should count as statements, and that perhaps the nested assignment should count as +2.)
Rectify::Form#with_context has approx 7 statements Open
def with_context(new_context)
- Read upRead up
- Exclude checks
A method with Too Many Statements
is any method that has a large number of lines.
Too Many Statements
warns about any method that has more than 5 statements. Reek's smell detector for Too Many Statements
counts +1 for every simple statement in a method and +1 for every statement within a control structure (if
, else
, case
, when
, for
, while
, until
, begin
, rescue
) but it doesn't count the control structure itself.
So the following method would score +6 in Reek's statement-counting algorithm:
def parse(arg, argv, &error)
if !(val = arg) and (argv.empty? or /\A-/ =~ (val = argv[0]))
return nil, block, nil # +1
end
opt = (val = parse_arg(val, &error))[1] # +2
val = conv_arg(*val) # +3
if opt and !arg
argv.shift # +4
else
val[0] = nil # +5
end
val # +6
end
(You might argue that the two assigments within the first @if@ should count as statements, and that perhaps the nested assignment should count as +2.)
Rectify::Form#with_context calls 'f.with_context(context)' 2 times Open
.each { |f| f.with_context(context) }
array_attributes_that_respond_to(:with_context)
.each { |f| f.with_context(context) }
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
Rectify::Form#array_attributes_that_respond_to manually dispatches method call Open
.select { |f| f.respond_to?(message) }
- Read upRead up
- Exclude checks
Reek reports a Manual Dispatch smell if it finds source code that manually checks whether an object responds to a method before that method is called. Manual dispatch is a type of Simulated Polymorphism which leads to code that is harder to reason about, debug, and refactor.
Example
class MyManualDispatcher
attr_reader :foo
def initialize(foo)
@foo = foo
end
def call
foo.bar if foo.respond_to?(:bar)
end
end
Reek would emit the following warning:
test.rb -- 1 warning:
[9]: MyManualDispatcher manually dispatches method call (ManualDispatch)
Rectify::Form has no descriptive comment Open
class Form
- Read upRead up
- Exclude checks
Classes and modules are the units of reuse and release. It is therefore considered good practice to annotate every class and module with a brief comment outlining its responsibilities.
Example
Given
class Dummy
# Do things...
end
Reek would emit the following warning:
test.rb -- 1 warning:
[1]:Dummy has no descriptive comment (IrresponsibleModule)
Fixing this is simple - just an explaining comment:
# The Dummy class is responsible for ...
class Dummy
# Do things...
end
Rectify::Form#self.hash_from manually dispatches method call Open
params = params.to_unsafe_h if params.respond_to?(:to_unsafe_h)
- Read upRead up
- Exclude checks
Reek reports a Manual Dispatch smell if it finds source code that manually checks whether an object responds to a method before that method is called. Manual dispatch is a type of Simulated Polymorphism which leads to code that is harder to reason about, debug, and refactor.
Example
class MyManualDispatcher
attr_reader :foo
def initialize(foo)
@foo = foo
end
def call
foo.bar if foo.respond_to?(:bar)
end
end
Reek would emit the following warning:
test.rb -- 1 warning:
[9]: MyManualDispatcher manually dispatches method call (ManualDispatch)
Rectify::Form#attributes_that_respond_to manually dispatches method call Open
.select { |f| f.respond_to?(message) }
- Read upRead up
- Exclude checks
Reek reports a Manual Dispatch smell if it finds source code that manually checks whether an object responds to a method before that method is called. Manual dispatch is a type of Simulated Polymorphism which leads to code that is harder to reason about, debug, and refactor.
Example
class MyManualDispatcher
attr_reader :foo
def initialize(foo)
@foo = foo
end
def call
foo.bar if foo.respond_to?(:bar)
end
end
Reek would emit the following warning:
test.rb -- 1 warning:
[9]: MyManualDispatcher manually dispatches method call (ManualDispatch)
Rectify::Form#attributes_with_values performs a nil-check Open
attributes.reject { |attribute| public_send(attribute).nil? }
- Read upRead up
- Exclude checks
A NilCheck
is a type check. Failures of NilCheck
violate the "tell, don't ask" principle.
Additionally, type checks often mask bigger problems in your source code like not using OOP and / or polymorphism when you should.
Example
Given
class Klass
def nil_checker(argument)
if argument.nil?
puts "argument isn't nil!"
end
end
end
Reek would emit the following warning:
test.rb -- 1 warning:
[3]:Klass#nil_checker performs a nil-check. (NilCheck)
Rectify::Form#map_model has unused parameter 'model' Open
def map_model(model)
- Read upRead up
- Exclude checks
Unused Parameter
refers to methods with parameters that are unused in scope of the method.
Having unused parameters in a method is code smell because leaving dead code in a method can never improve the method and it makes the code confusing to read.
Example
Given:
class Klass
def unused_parameters(x,y,z)
puts x,y # but not z
end
end
Reek would emit the following warning:
[2]:Klass#unused_parameters has unused parameter 'z' (UnusedParameters)
Rectify::Form#attributes_that_respond_to has the variable name 'f' Open
.select { |f| f.respond_to?(message) }
- Read upRead up
- Exclude checks
An Uncommunicative Variable Name
is a variable name that doesn't communicate its intent well enough.
Poor names make it hard for the reader to build a mental picture of what's going on in the code. They can also be mis-interpreted; and they hurt the flow of reading, because the reader must slow down to interpret the names.
Rectify::Form#with_context has the variable name 'f' Open
.each { |f| f.with_context(context) }
array_attributes_that_respond_to(:with_context)
.each { |f| f.with_context(context) }
- Read upRead up
- Exclude checks
An Uncommunicative Variable Name
is a variable name that doesn't communicate its intent well enough.
Poor names make it hard for the reader to build a mental picture of what's going on in the code. They can also be mis-interpreted; and they hurt the flow of reading, because the reader must slow down to interpret the names.
Rectify::Form#array_attributes_that_respond_to has the variable name 'f' Open
.select { |f| f.respond_to?(message) }
- Read upRead up
- Exclude checks
An Uncommunicative Variable Name
is a variable name that doesn't communicate its intent well enough.
Poor names make it hard for the reader to build a mental picture of what's going on in the code. They can also be mis-interpreted; and they hurt the flow of reading, because the reader must slow down to interpret the names.
Rectify::Form#array_attributes_that_respond_to has the variable name 'a' Open
.select { |a| a.is_a?(Array) }
- Read upRead up
- Exclude checks
An Uncommunicative Variable Name
is a variable name that doesn't communicate its intent well enough.
Poor names make it hard for the reader to build a mental picture of what's going on in the code. They can also be mis-interpreted; and they hurt the flow of reading, because the reader must slow down to interpret the names.