scripts/msg_status.py

Summary

Maintainability
A
1 hr
Test Coverage

Cyclomatic complexity is too high in function check_dir. (8)
Open

def check_dir(root):
    '''
    Check the directory for incoming, outgoing, reject
    or accept directories.  If they exist, check them for
    messages.
Severity: Minor
Found in scripts/msg_status.py by radon

Cyclomatic Complexity

Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.

Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:

Construct Effect on CC Reasoning
if +1 An if statement is a single decision.
elif +1 The elif statement adds another decision.
else +0 The else statement does not cause a new decision. The decision is at the if.
for +1 There is a decision at the start of the loop.
while +1 There is a decision at the while statement.
except +1 Each except branch adds a new conditional path of execution.
finally +0 The finally block is unconditionally executed.
with +1 The with statement roughly corresponds to a try/except block (see PEP 343 for details).
assert +1 The assert statement internally roughly equals a conditional statement.
Comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop.
Boolean Operator +1 Every boolean operator (and, or) adds a decision point.

Source: http://radon.readthedocs.org/en/latest/intro.html

Function check_dir has a Cognitive Complexity of 10 (exceeds 5 allowed). Consider refactoring.
Open

def check_dir(root):
    '''
    Check the directory for incoming, outgoing, reject
    or accept directories.  If they exist, check them for
    messages.
Severity: Minor
Found in scripts/msg_status.py - About 1 hr to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function check_empty_dirs has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring.
Open

def check_empty_dirs(q):
    empty_dirs = []
    path = q.path
    print("Checking path %s " % path)
    for item in os.listdir(path):
Severity: Minor
Found in scripts/msg_status.py - About 25 mins to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Expected 2 blank lines, found 1
Open

def check_empty_dirs(q):
Severity: Minor
Found in scripts/msg_status.py by pep8

Separate top-level function and class definitions with two blank lines.

Method definitions inside a class are separated by a single blank
line.

Extra blank lines may be used (sparingly) to separate groups of
related functions.  Blank lines may be omitted between a bunch of
related one-liners (e.g. a set of dummy implementations).

Use blank lines in functions, sparingly, to indicate logical
sections.

Okay: def a():\n    pass\n\n\ndef b():\n    pass
Okay: def a():\n    pass\n\n\nasync def b():\n    pass
Okay: def a():\n    pass\n\n\n# Foo\n# Bar\n\ndef b():\n    pass
Okay: default = 1\nfoo = 1
Okay: classify = 1\nfoo = 1

E301: class Foo:\n    b = 0\n    def bar():\n        pass
E302: def a():\n    pass\n\ndef b(n):\n    pass
E302: def a():\n    pass\n\nasync def b(n):\n    pass
E303: def a():\n    pass\n\n\n\ndef b(n):\n    pass
E303: def a():\n\n\n\n    pass
E304: @decorator\n\ndef a():\n    pass
E305: def a():\n    pass\na()
E306: def a():\n    def b():\n        pass\n    def c():\n        pass

Too many blank lines (4)
Open

def clear_locks(q):
Severity: Minor
Found in scripts/msg_status.py by pep8

Separate top-level function and class definitions with two blank lines.

Method definitions inside a class are separated by a single blank
line.

Extra blank lines may be used (sparingly) to separate groups of
related functions.  Blank lines may be omitted between a bunch of
related one-liners (e.g. a set of dummy implementations).

Use blank lines in functions, sparingly, to indicate logical
sections.

Okay: def a():\n    pass\n\n\ndef b():\n    pass
Okay: def a():\n    pass\n\n\nasync def b():\n    pass
Okay: def a():\n    pass\n\n\n# Foo\n# Bar\n\ndef b():\n    pass
Okay: default = 1\nfoo = 1
Okay: classify = 1\nfoo = 1

E301: class Foo:\n    b = 0\n    def bar():\n        pass
E302: def a():\n    pass\n\ndef b(n):\n    pass
E302: def a():\n    pass\n\nasync def b(n):\n    pass
E303: def a():\n    pass\n\n\n\ndef b(n):\n    pass
E303: def a():\n\n\n\n    pass
E304: @decorator\n\ndef a():\n    pass
E305: def a():\n    pass\na()
E306: def a():\n    def b():\n        pass\n    def c():\n        pass

Block comment should start with '# '
Open

                #empty_dirs.append(ipath)
Severity: Minor
Found in scripts/msg_status.py by pep8

Separate inline comments by at least two spaces.

An inline comment is a comment on the same line as a statement.
Inline comments should be separated by at least two spaces from the
statement. They should start with a # and a single space.

Each line of a block comment starts with a # and a single space
(unless it is indented text inside the comment).

Okay: x = x + 1  # Increment x
Okay: x = x + 1    # Increment x
Okay: # Block comment
E261: x = x + 1 # Increment x
E262: x = x + 1  #Increment x
E262: x = x + 1  #  Increment x
E265: #Block comment
E266: ### Block comment

Block comment should start with '# '
Open

        #check_empty_dirs(q)
Severity: Minor
Found in scripts/msg_status.py by pep8

Separate inline comments by at least two spaces.

An inline comment is a comment on the same line as a statement.
Inline comments should be separated by at least two spaces from the
statement. They should start with a # and a single space.

Each line of a block comment starts with a # and a single space
(unless it is indented text inside the comment).

Okay: x = x + 1  # Increment x
Okay: x = x + 1    # Increment x
Okay: # Block comment
E261: x = x + 1 # Increment x
E262: x = x + 1  #Increment x
E262: x = x + 1  #  Increment x
E265: #Block comment
E266: ### Block comment

Too many blank lines (2)
Open

    print(empty_dirs)
Severity: Minor
Found in scripts/msg_status.py by pep8

Separate top-level function and class definitions with two blank lines.

Method definitions inside a class are separated by a single blank
line.

Extra blank lines may be used (sparingly) to separate groups of
related functions.  Blank lines may be omitted between a bunch of
related one-liners (e.g. a set of dummy implementations).

Use blank lines in functions, sparingly, to indicate logical
sections.

Okay: def a():\n    pass\n\n\ndef b():\n    pass
Okay: def a():\n    pass\n\n\nasync def b():\n    pass
Okay: def a():\n    pass\n\n\n# Foo\n# Bar\n\ndef b():\n    pass
Okay: default = 1\nfoo = 1
Okay: classify = 1\nfoo = 1

E301: class Foo:\n    b = 0\n    def bar():\n        pass
E302: def a():\n    pass\n\ndef b(n):\n    pass
E302: def a():\n    pass\n\nasync def b(n):\n    pass
E303: def a():\n    pass\n\n\n\ndef b(n):\n    pass
E303: def a():\n\n\n\n    pass
E304: @decorator\n\ndef a():\n    pass
E305: def a():\n    pass\na()
E306: def a():\n    def b():\n        pass\n    def c():\n        pass

There are no issues that match your filters.

Category
Status