File virtualenv.py
has 1566 lines of code (exceeds 250 allowed). Consider refactoring. Open
#!/usr/bin/env python
"""Create a "virtual" Python installation
"""
# If you change the version here, change it in setup.py
Function install_python
has a Cognitive Complexity of 89 (exceeds 5 allowed). Consider refactoring. Open
def install_python(home_dir, lib_dir, inc_dir, bin_dir, site_packages, clear):
"""Install just the base environment, no distutils patches etc"""
if sys.executable.startswith(bin_dir):
print('Please use the *system* python to run this script')
return
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function call_subprocess
has a Cognitive Complexity of 43 (exceeds 5 allowed). Consider refactoring. Open
def call_subprocess(cmd, show_stdout=True,
filter_stdout=None, cwd=None,
raise_on_returncode=True, extra_env=None,
remove_from_env=None):
cmd_parts = []
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function _install_req
has a Cognitive Complexity of 35 (exceeds 5 allowed). Consider refactoring. Open
def _install_req(py_executable, unzip=False, distribute=False,
search_dirs=None, never_download=False):
if search_dirs is None:
search_dirs = file_search_dirs()
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function fixup_pth_and_egg_link
has a Cognitive Complexity of 26 (exceeds 5 allowed). Consider refactoring. Open
def fixup_pth_and_egg_link(home_dir, sys_path=None):
"""Makes .pth and .egg-link files use relative paths"""
home_dir = os.path.normcase(os.path.abspath(home_dir))
if sys_path is None:
sys_path = sys.path
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function log
has a Cognitive Complexity of 23 (exceeds 5 allowed). Consider refactoring. Open
def log(self, level, msg, *args, **kw):
if args:
if kw:
raise TypeError(
"You may give positional or keyword arguments, not both")
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function main
has a Cognitive Complexity of 16 (exceeds 5 allowed). Consider refactoring. Open
def main():
parser = optparse.OptionParser(
version=virtualenv_version,
usage="%prog [OPTIONS] DEST_DIR")
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function fixup_scripts
has a Cognitive Complexity of 14 (exceeds 5 allowed). Consider refactoring. Open
def fixup_scripts(home_dir):
# This is what we expect at the top of scripts:
shebang = '#!%s/bin/python' % os.path.normcase(os.path.abspath(home_dir))
# This is what we'll put:
new_shebang = '#!/usr/bin/env python%s' % sys.version[:3]
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function copy_required_modules
has a Cognitive Complexity of 13 (exceeds 5 allowed). Consider refactoring. Open
def copy_required_modules(dst_prefix):
import imp
for modname in REQUIRED_MODULES:
if modname in sys.builtin_module_names:
logger.info("Ignoring built-in bootstrap module: %s" % modname)
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function install_python
has 33 lines of code (exceeds 25 allowed). Consider refactoring. Open
def install_python(home_dir, lib_dir, inc_dir, bin_dir, site_packages, clear):
"""Install just the base environment, no distutils patches etc"""
if sys.executable.startswith(bin_dir):
print('Please use the *system* python to run this script')
return
Function main
has 28 lines of code (exceeds 25 allowed). Consider refactoring. Open
def main():
parser = optparse.OptionParser(
version=virtualenv_version,
usage="%prog [OPTIONS] DEST_DIR")
Function filter_ez_setup
has a Cognitive Complexity of 10 (exceeds 5 allowed). Consider refactoring. Open
def filter_ez_setup(line, project_name='setuptools'):
if not line.strip():
return Logger.DEBUG
if project_name == 'distribute':
for prefix in ('Extracting', 'Now working', 'Installing', 'Before',
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function create_environment
has 8 arguments (exceeds 4 allowed). Consider refactoring. Open
def create_environment(home_dir, site_packages=True, clear=False,
Function fixup_pth_file
has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring. Open
def fixup_pth_file(filename):
lines = []
prev_lines = []
f = open(filename)
prev_lines = f.readlines()
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function path_locations
has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring. Open
def path_locations(home_dir):
"""Return the path locations for the environment (where libraries are,
where scripts go, etc)"""
# XXX: We'd use distutils.sysconfig.get_python_inc/lib but its
# prefix arg is broken: http://bugs.python.org/issue3386
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function install_pip
has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring. Open
def install_pip(py_executable, search_dirs=None, never_download=False):
if search_dirs is None:
search_dirs = file_search_dirs()
filenames = []
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function copyfile
has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring. Open
def copyfile(src, dest, symlink=True):
if not os.path.exists(src):
# Some bad symlink in the src
logger.warn('Cannot find file %s (bad symlink)', src)
return
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function call_subprocess
has 7 arguments (exceeds 4 allowed). Consider refactoring. Open
def call_subprocess(cmd, show_stdout=True,
Function resolve_interpreter
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
def resolve_interpreter(exe):
"""
If the executable given isn't an absolute path, search $PATH for the interpreter
"""
if os.path.abspath(exe) != exe:
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function install_activate
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
def install_activate(home_dir, bin_dir, prompt=None):
if sys.platform == 'win32' or is_jython and os._name == 'nt':
files = {'activate.bat': ACTIVATE_BAT,
'deactivate.bat': DEACTIVATE_BAT}
if os.environ.get('OS') == 'Windows_NT' and os.environ.get('OSTYPE') == 'cygwin':
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function install_python
has 6 arguments (exceeds 4 allowed). Consider refactoring. Open
def install_python(home_dir, lib_dir, inc_dir, bin_dir, site_packages, clear):
Function writefile
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
def writefile(dest, content, overwrite=True):
if not os.path.exists(dest):
logger.info('Writing %s', dest)
f = open(dest, 'wb')
f.write(content.encode('utf-8'))
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function _install_req
has 5 arguments (exceeds 4 allowed). Consider refactoring. Open
def _install_req(py_executable, unzip=False, distribute=False,
Function level_matches
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def level_matches(self, level, consumer_level):
"""
>>> l = Logger([])
>>> l.level_matches(3, 4)
False
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Avoid too many return
statements within this function. Open
return Logger.INFO
Identical blocks of code found in 2 locations. Consider refactoring. Open
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 10096.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76