cleaning.py
import nltk
import string
from nltk.tokenize import word_tokenize
from nltk.probability import FreqDist
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer
import matplotlib.pyplot as plt
import pandas as pd
import re
import numpy as np
import math
nltk.download('stopwords')
nltk.download('punkt')
stemming = PorterStemmer()
stops = set(stopwords.words("english"))
# cleaning text
def text_cleaning(raw):
# lowering word
lower_case = raw.lower()
# hapus punctuatioation & lower
hasil_punctuation = lower_case.translate(str.maketrans("","",string.punctuation))
# hapus whitespace
hasil_whitespace = hasil_punctuation.strip()
# hapus angka
hasil_hapusangka = re.sub(r"\d+", "", hasil_whitespace)
# tokenisasi
tokens = nltk.tokenize.word_tokenize(hasil_hapusangka)
# Stemming
stemmed_words = [stemming.stem(w) for w in tokens]
# Remove stop words
meaningful_words = [w for w in stemmed_words if not w in stops]
# Rejoin meaningful stemmed words
joined_words = ( " ".join(meaningful_words))
# Return cleaned data
return joined_words
# applying
def apply_cleaning(hasil):
cleaned_hasil = []
for element in hasil:
cleaned_hasil.append(text_cleaning(element))
return cleaned_hasil
# fungsi ini digunakan untuk mengecek data secara keseluruhan dataset tertentu
def fulldataset(index0, index1):
x1 = pd.ExcelFile(index0)
dfs = {sh:x1.parse(sh) for sh in x1.sheet_names}[index1]
return dfs
# normalizer
def l2_normalizer(vec):
denom = np.sum([el**2 for el in vec])
return [(el / math.sqrt(denom)) for el in vec]
# doc_term_matrix_l2 = []
# for vec in doc_array:
# doc_term_matrix_l2.append(l2_normalizer(vec))
def build_lexicon(corpus):
lexicon = set()
for doc in corpus:
lexicon.update([word for word in doc.split()])
return lexicon
def freq(term, document):
return document.split().count(term)
def numDocsContaining(word, doclist):
doccount = 0
for doc in doclist:
if freq(word, doc) > 0:
doccount +=1
return doccount
def idf(word, doclist):
n_samples = len(doclist)
df = numDocsContaining(word, doclist)
return np.log(n_samples / 1+df)
def build_idf_matrix(idf_vector):
idf_mat = np.zeros((len(idf_vector), len(idf_vector)))
np.fill_diagonal(idf_mat, idf_vector)
return idf_mat