aureooms/js-integer-big-endian

View on GitHub
src/core/arithmetic/mul/_karatsuba.js

Summary

Maintainability
A
2 hrs
Test Coverage
import assert from 'assert';

import add from '../../../api/arithmetic/add/add.js';
import iadd from '../../../api/arithmetic/add/iadd.js';
import _copy from '../../array/_copy.js';
import _zeros from '../../array/_zeros.js';
import _isub from '../sub/_isub.js';

import _karatsuba_right_op_is_small from './_karatsuba_right_op_is_small.js';
import _mul from './_mul.js';

/**
 *
 * Multiply two big endian arrays using karatsuba algorithm,
 * |A| >= |B| >= 1, |C| >= |A| + |B|, |A| >= 2.
 *
 * /!\ BLOCK MULTIPLICATION RESULT MUST HOLD IN THE JAVASCRIPT NUMBER TYPE
 *     (DOUBLE i.e. 53 bits)
 *
 * EXPLANATION
 * ###########
 *
 * We consider the numbers a and b, both of size N = 2n.
 *
 * We divide a and b into their lower and upper parts.
 *
 * a = a1 r^{n} + a0 (1)
 * b = b1 r^{n} + b0 (2)
 *
 * We express the product of a and b using their lower and upper parts.
 *
 * a b = (a1 r^{n} + a0) (b1 r^{n} + b0) (3)
 *     = a1 b1 r^{2n} + (a1 b0 + a0 b1) r^{n} + a0 b0 (4)
 *
 * This gives us 4 multiplications with operands of size n.
 * Using a simple trick, we can reduce this computation to 3 multiplications.
 *
 * We give the 3 terms of (4) the names z0, z1 and z2.
 *
 * z2 = a1 b1
 * z1 = a1 b0 + a0 b1
 * z0 = a0 b0
 *
 * a b  = z2 r^{2n} + z1 r^{n} + z0
 *
 * We then express z1 using z0, z2 and one additional multiplication.
 *
 * (a1 + a0)(b1 + b0) = a1 b1 + a0 b0 + (a1 b0 + a0 b1)
 *                    = z2 + z0 + z1
 *
 * z1 = (a1 + a0)(b1 + b0) - z2 - z0
 *
 * AN ANOTHER WAY AROUND (not used here)
 *
 * (a1 - a0)(b1 - b0) = (a1 b1 + a0 b0) - (a1 b0 + a0 b1)
 * (a0 - a1)(b1 - b0) = (a1 b0 + a0 b1) - (a1 b1 + a0 b0)
 * a b = (r^{2n} + r^{n})a1 b1 + r^{n}(a0 - a1)(b1 - b0) + (r^{n} + 1)a0 b0
 *
 * This algorithm is a specific case of the Toom-Cook algorithm, when m = n =
 * 2.
 *
 * For further reference, see
 *  - http://en.wikipedia.org/wiki/Karatsuba_algorithm
 *  - http://en.wikipedia.org/wiki/Toom–Cook_multiplication
 *
 * @param {Number} r base (radix)
 * @param {Array} a first operand
 * @param {Number} ai a left
 * @param {Number} aj a right
 * @param {Array} b second operand
 * @param {Number} bi b left
 * @param {Number} bj b right
 * @param {Array} c result, must be 0 initialized
 * @param {Number} ci c left
 * @param {Number} cj c right
 */

export default function _karatsuba(r, a, ai, aj, b, bi, bj, c, ci, cj) {
    assert(r >= 2);
    assert(ai >= 0 && aj <= a.length);
    assert(bi >= 0 && bj <= b.length);
    assert(ci >= 0 && cj <= c.length);
    assert(aj - ai >= 2);
    assert(bj - bi >= 1);
    assert(aj - ai >= bj - bi);
    assert(cj - ci >= aj - ai + (bj - bi));

    const i = aj - ai;
    const j = bj - bi;

    const n = Math.ceil(i / 2);

    if (j <= n)
        return _karatsuba_right_op_is_small(r, a, ai, aj, b, bi, bj, c, ci, cj);

    const I = i + j;
    const N = 2 * n;
    const N_ = I - N;
    const i_ = aj - n;
    const j_ = bj - n;

    const t1 = _zeros(n + 1); // + 1 to handle addition overflows
    const t2 = _zeros(n + 1); // And guarantee reducing k for the
    const t3 = _zeros(N + 2); // Recursive calls
    const z2 = _zeros(N_);
    const z0 = _zeros(N);

    // RECURSIVE CALLS
    _mul(r, a, ai, i_, b, bi, j_, z2, 0, N_); // Z2 = a1.b1
    _mul(r, a, i_, aj, b, j_, bj, z0, 0, N); // Z0 = a0.b0
    add(r, a, ai, i_, a, i_, aj, t1, 0, n + 1); // (a0 + a1)
    add(r, b, bi, j_, b, j_, bj, t2, 0, n + 1); // (b1 + b0)
    _mul(r, t1, 1, n + 1, t2, 1, n + 1, t3, 2, N + 2); // (a0 + a1)(b1 + b0)

    // BUILD OUTPUT
    _copy(z2, 0, N_, c, cj - I); // + z2 . r^{2n}
    _copy(z0, 0, N, c, cj - N); // + z0

    // overflow on t1, add t2 . r^{n}
    if (t1[0]) iadd(r, t3, 0, n + 2, t2, 0, n + 1);

    // Overflow on t2, add t1 . r^{n} (except t1[0])
    if (t2[0]) iadd(r, t3, 0, n + 2, t1, 1, n + 1);

    iadd(r, c, ci, cj - n, t3, 0, N + 2); // + (a0 + a1)(b1 + b0) . r^{n}
    _isub(r, c, ci, cj - n, z2, 0, N_); // - z2 . r^{n}
    _isub(r, c, ci, cj - n, z0, 0, N); // - z1 . r^{n}
}