Showing 687 of 687 total issues
Method complex_content?
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def complex_content?(node)
node.children.any? do |sym|
return false if DELIMITERS.include?(sym.source)
content = *sym
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method on_kwoptarg
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def on_kwoptarg(node)
kwarg_nodes = node.right_siblings.select(&:kwarg_type?)
return if kwarg_nodes.empty?
add_offense(node) do |corrector|
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method autocorrect
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def autocorrect(corrector, kwsplat_node, hash_node, other_hash_node)
other_hash_node_replacement =
other_hash_node.map do |node|
if node.hash_type?
if node.braces?
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method on_def
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def on_def(node)
return if allowed_method?(node.method_name)
node.arguments.each do |arg|
next unless arg.optarg_type?
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method replacement_method
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def replacement_method(arg, method)
case arg
when 0
method == :== ? :even : :odd
when 1
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method on_dstr
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def on_dstr(node)
# Strings which are continued across multiple lines using \
# are parsed as a `dstr` node with `str` children
# If one part of that continued string contains interpolations,
# then it will be parsed as a nested `dstr` node
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method on_send
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def on_send(node)
return unless node.access_modifier?
return if ALLOWED_NODE_TYPES.include?(node.parent&.type)
return if allow_modifiers_on_symbols?(node)
return if allow_modifiers_on_attrs?(node)
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method on_send
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def on_send(node)
return unless date_time?(node) || (to_datetime?(node) && disallow_coercion?)
return if historic_date?(node)
message = to_datetime?(node) ? COERCION_MSG : CLASS_MSG
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method on_block
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def on_block(node)
return unless suspect_enumerable?(node)
if style == :for
return unless node.receiver
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method inspect_offense_for_expand_path
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def inspect_offense_for_expand_path(node, current_path, default_dir)
return unless unrecommended_argument?(default_dir) && current_path.str_type?
current_path = strip_surrounded_quotes!(current_path.source)
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method on_send
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def on_send(node)
return if target_ruby_version < 2.6 && FILTER_METHODS.include?(node.method_name)
return unless (range = offense_range(node))
return if allowed_receiver?(node.receiver)
return if target_ruby_version <= 3.0 && to_enum_method?(node)
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method preferred_send_condition
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def preferred_send_condition(node) # rubocop:disable Metrics/CyclomaticComplexity
receiver_source = node.receiver&.source
return receiver_source if node.method?(:!)
# receiver may be implicit (self)
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method last_heredoc_argument
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def last_heredoc_argument(node)
return unless node&.call_type?
return unless (arguments = node&.arguments)
heredoc = arguments.reverse.detect { |arg| arg.str_type? && arg.heredoc? }
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method autocorrect
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def autocorrect(corrector, node)
unless args_on_beginning_line?(node)
autocorrect_arguments(corrector, node)
expr_before_body = node.arguments.source_range.end
end
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method allowed_escape?
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def allowed_escape?(node, range)
escaped = range.source[(1..-1)]
# Inside a single-quoted string, escapes (except \\ and \') do not have special meaning,
# and so are not redundant, as they are a literal backslash.
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method closing_bracket
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def closing_bracket(tokens, opening_bracket)
i = tokens.index(opening_bracket)
inner_left_brackets_needing_closure = 0
tokens[i..].each do |token|
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method on_block
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def on_block(node)
node.send_node.each_node(:send, :csend) do |send_node|
receiver = send_node.receiver
next unless (receiver&.block_type? || receiver&.numblock_type?) && receiver&.multiline?
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method offending_range
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def offending_range(node)
receiver = node.receiver
return unless receiver&.block_type?
receiver_location = receiver.loc
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method check
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def check(hash_node, left_parenthesis)
return if ignored_node?(hash_node)
left_brace = hash_node.loc.begin
first_pair = hash_node.pairs.first
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method check_block_alignment
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def check_block_alignment(start_node, block_node)
end_loc = block_node.loc.end
return unless begins_its_line?(end_loc)
start_loc = start_node.source_range
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"