cea-sec/miasm

View on GitHub

Showing 3,020 of 3,020 total issues

Similar blocks of code found in 2 locations. Consider refactoring.
Open

    def func_ret_stdcall(self, ret_addr, ret_value1=None, ret_value2=None):
        self.pc = self.cpu.EIP = ret_addr
        if ret_value1 is not None:
            self.cpu.EAX = ret_value1
        if ret_value2 is not None:
Severity: Major
Found in miasm/arch/x86/jit.py and 1 other location - About 3 hrs to fix
miasm/arch/x86/jit.py on lines 141..146

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 62.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Function st_ld_m has a Cognitive Complexity of 21 (exceeds 5 allowed). Consider refactoring.
Open

def st_ld_m(ir, instr, a, b, store=False, postinc=False, updown=False):
    e = []
    wb = False
    dst = None
    if isinstance(a, ExprOp) and a.op == 'wback':
Severity: Minor
Found in miasm/arch/arm/sem.py - About 2 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function do_it_block has a Cognitive Complexity of 21 (exceeds 5 allowed). Consider refactoring.
Open

    def do_it_block(self, loc, index, block, assignments, gen_pc_updt):
        instr = block.lines[index]
        it_hints, it_cond = self.parse_itt(instr)
        cond_num = cond_dct_inv[it_cond.name]
        cond_eq = tab_cond[cond_num]
Severity: Minor
Found in miasm/arch/arm/sem.py - About 2 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function encode has a Cognitive Complexity of 21 (exceeds 5 allowed). Consider refactoring.
Open

    def encode(self):
        if not isinstance(self.expr, ExprInt):
            return
        arg0_expr = self.parent.args[0].expr
        self.parent.rex_w.value = 0
Severity: Minor
Found in miasm/arch/x86/arch.py - About 2 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function arg2str has a Cognitive Complexity of 21 (exceeds 5 allowed). Consider refactoring.
Open

    def arg2str(expr, index=None, loc_db=None):
        if expr.is_id() or expr.is_int():
            o = str(expr)
        elif expr.is_loc():
            if loc_db is not None:
Severity: Minor
Found in miasm/arch/x86/arch.py - About 2 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function gete has a Cognitive Complexity of 21 (exceeds 5 allowed). Consider refactoring.
Open

    def gete(self, raw, off):
        if not off:
            return None, off
        if off >= len(self.parent_head.img_rva):
            log.warning('cannot parse resources, %X' % off)
Severity: Minor
Found in miasm/loader/pe.py - About 2 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function handle_exception has a Cognitive Complexity of 21 (exceeds 5 allowed). Consider refactoring.
Open

    def handle_exception(self, res):
        if not res:
            # A breakpoint has stopped the execution
            return DebugBreakpointTerminate(res)

Severity: Minor
Found in miasm/analysis/debugging.py - About 2 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function ast_eval_int has a Cognitive Complexity of 21 (exceeds 5 allowed). Consider refactoring.
Open

    def ast_eval_int(self, ast):
        """Eval a C ast object integer

        @ast: parsed pycparser.c_ast object
        """
Severity: Minor
Found in miasm/core/ctypesmngr.py - About 2 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function guess_mnemo has a Cognitive Complexity of 21 (exceeds 5 allowed). Consider refactoring.
Open

    def guess_mnemo(cls, bs, attrib, pre_dis_info, offset):
        candidates = []

        candidates = set()

Severity: Minor
Found in miasm/core/cpu.py - About 2 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function __new__ has a Cognitive Complexity of 21 (exceeds 5 allowed). Consider refactoring.
Open

    def __new__(mcs, name, bases, dct):
        if name == "cls_mn" or name.startswith('mn_'):
            return type.__new__(mcs, name, bases, dct)
        alias = dct.get('alias', False)

Severity: Minor
Found in miasm/core/cpu.py - About 2 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Identical blocks of code found in 2 locations. Consider refactoring.
Open

    def visit(self, expr, *args, **kwargs):
        if expr in self.cache:
            return self.cache[expr]
        ret = self.visit_inner(expr, *args, **kwargs)
        self.cache[expr] = ret
Severity: Major
Found in miasm/expression/expression.py and 1 other location - About 2 hrs to fix
miasm/expression/expression.py on lines 374..379

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 61.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Identical blocks of code found in 2 locations. Consider refactoring.
Open

def check_ops_msb(a, b, c):
    if not a or not b or not c or a != b or a != c:
        raise ValueError('bad ops size %s %s %s' % (a, b, c))
Severity: Major
Found in miasm/arch/aarch64/sem.py and 1 other location - About 2 hrs to fix
miasm/arch/x86/sem.py on lines 184..186

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 61.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Identical blocks of code found in 2 locations. Consider refactoring.
Open

def check_ops_msb(a, b, c):
    if not a or not b or not c or a != b or a != c:
        raise ValueError('bad ops size %s %s %s' % (a, b, c))
Severity: Major
Found in miasm/arch/x86/sem.py and 1 other location - About 2 hrs to fix
miasm/arch/aarch64/sem.py on lines 767..769

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 61.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Identical blocks of code found in 2 locations. Consider refactoring.
Open

    def visit(self, expr, *args, **kwargs):
        if expr in self.cache:
            return self.cache[expr]
        ret = self.visit_inner(expr, *args, **kwargs)
        self.cache[expr] = ret
Severity: Major
Found in miasm/expression/expression.py and 1 other location - About 2 hrs to fix
miasm/expression/expression.py on lines 399..404

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 61.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Similar blocks of code found in 2 locations. Consider refactoring.
Open

def sys_generic_setuid(jitter, linux_env):
    # Parse arguments
    uid, = jitter.syscall_args_systemv(1)
    log.debug("sys_setuid(%x)", uid)

Severity: Major
Found in miasm/os_dep/linux/syscall.py and 1 other location - About 2 hrs to fix
miasm/os_dep/linux/syscall.py on lines 811..821

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 61.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Similar blocks of code found in 2 locations. Consider refactoring.
Open

    def ast_to_typeid(self, ast):
        """Return the CTypeBase of the @ast
        @ast: pycparser.c_ast instance"""
        cls = ast.__class__
        if not cls in self.ast_to_typeid_rules:
Severity: Major
Found in miasm/core/ctypesmngr.py and 1 other location - About 2 hrs to fix
miasm/core/ctypesmngr.py on lines 742..751

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 61.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Similar blocks of code found in 2 locations. Consider refactoring.
Open

def setno(_, instr, dst):
    e = []
    e.append(
        m2_expr.ExprAssign(
            dst,
Severity: Major
Found in miasm/arch/x86/sem.py and 1 other location - About 2 hrs to fix
miasm/arch/x86/sem.py on lines 1097..1109

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 61.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Similar blocks of code found in 2 locations. Consider refactoring.
Open

def setnp(_, instr, dst):
    e = []
    e.append(
        m2_expr.ExprAssign(
            dst,
Severity: Major
Found in miasm/arch/x86/sem.py and 1 other location - About 2 hrs to fix
miasm/arch/x86/sem.py on lines 1145..1157

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 61.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Similar blocks of code found in 2 locations. Consider refactoring.
Open

    def ast_parse_declaration(self, ast):
        """Add one ast type declaration to the type manager
        (packed style in type manager)

        @ast: parsed pycparser.c_ast object
Severity: Major
Found in miasm/core/ctypesmngr.py and 1 other location - About 2 hrs to fix
miasm/core/ctypesmngr.py on lines 663..669

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 61.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Similar blocks of code found in 2 locations. Consider refactoring.
Open

def sys_generic_setgid(jitter, linux_env):
    # Parse arguments
    gid, = jitter.syscall_args_systemv(1)
    log.debug("sys_setgid(%x)", gid)

Severity: Major
Found in miasm/os_dep/linux/syscall.py and 1 other location - About 2 hrs to fix
miasm/os_dep/linux/syscall.py on lines 824..834

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 61.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Severity
Category
Status
Source
Language