ECMAScript 6 allows programmers to create variables with block scope instead of function scope using the let
and const keywords. Block scope is common in many other programming languages and helps programmers avoid mistakes
such as:
var count = people.length;
var enoughFood = count > sandwiches.length;
if(enoughFood){
var count = sandwiches.length;// accidentally overriding the count variable
console.log("We have "+ count +" sandwiches for everyone. Plenty for all!");
}
// our count variable is no longer accurate
console.log("We have "+ count +" people and "+ sandwiches.length +" sandwiches!");
Rule Details
This rule is aimed at discouraging the use of var and encouraging the use of const or let instead.
Examples
Examples of incorrect code for this rule:
/*eslint no-var: "error"*/
var x ="y";
varCONFIG={};
Examples of correct code for this rule:
/*eslint no-var: "error"*/
/*eslint-env es6*/
let x ="y";
constCONFIG={};
When Not To Use It
In addition to non-ES6 environments, existing JavaScript projects that are beginning to introduce ES6 into their
codebase may not want to apply this rule if the cost of migrating from var to let is too costly.
Source: http://eslint.org/docs/rules/
require let or const instead of var (no-var)
ECMAScript 6 allows programmers to create variables with block scope instead of function scope using the let
and const keywords. Block scope is common in many other programming languages and helps programmers avoid mistakes
such as:
var count = people.length;
var enoughFood = count > sandwiches.length;
if(enoughFood){
var count = sandwiches.length;// accidentally overriding the count variable
console.log("We have "+ count +" sandwiches for everyone. Plenty for all!");
}
// our count variable is no longer accurate
console.log("We have "+ count +" people and "+ sandwiches.length +" sandwiches!");
Rule Details
This rule is aimed at discouraging the use of var and encouraging the use of const or let instead.
Examples
Examples of incorrect code for this rule:
/*eslint no-var: "error"*/
var x ="y";
varCONFIG={};
Examples of correct code for this rule:
/*eslint no-var: "error"*/
/*eslint-env es6*/
let x ="y";
constCONFIG={};
When Not To Use It
In addition to non-ES6 environments, existing JavaScript projects that are beginning to introduce ES6 into their
codebase may not want to apply this rule if the cost of migrating from var to let is too costly.
Source: http://eslint.org/docs/rules/
disallow dangling underscores in identifiers (no-underscore-dangle)
As far as naming conventions for identifiers go, dangling underscores may be the most polarizing in JavaScript. Dangling underscores are underscores at either the beginning or end of an identifier, such as:
var _foo;
There is actually a long history of using dangling underscores to indicate "private" members of objects in JavaScript (though JavaScript doesn't have truly private members, this convention served as a warning). This began with SpiderMonkey adding nonstandard methods such as __defineGetter__(). The intent with the underscores was to make it obvious that this method was special in some way. Since that time, using a single underscore prefix has become popular as a way to indicate "private" members of objects.
Whether or not you choose to allow dangling underscores in identifiers is purely a convention and has no effect on performance, readability, or complexity. It's purely a preference.
Rule Details
This rule disallows dangling underscores in identifiers.
Examples of incorrect code for this rule:
/*eslint no-underscore-dangle: "error"*/
var foo_;
var __proto__ ={};
foo._bar();
Examples of correct code for this rule:
/*eslint no-underscore-dangle: "error"*/
var _ =require('underscore');
var obj = _.contains(items, item);
obj.__proto__ ={};
var file = __filename;
Options
This rule has an object option:
"allow" allows specified identifiers to have dangling underscores
"allowAfterThis": false (default) disallows dangling underscores in members of the this object
"allowAfterSuper": false (default) disallows dangling underscores in members of the super object
allow
Examples of additional correct code for this rule with the { "allow": ["foo_", "_bar"] } option:
If you want to allow dangling underscores in identifiers, then you can safely turn this rule off.
Source: http://eslint.org/docs/rules/
Disallow Early Use (no-use-before-define)
In JavaScript, prior to ES6, variable and function declarations are hoisted to the top of a scope, so it's possible to use identifiers before their formal declarations in code. This can be confusing and some believe it is best to always declare variables and functions before using them.
In ES6, block-level bindings (let and const) introduce a "temporal dead zone" where a ReferenceError will be thrown with any attempt to access the variable before its declaration.
Rule Details
This rule will warn when it encounters a reference to an identifier that has not yet been declared.
functions (boolean) -
The flag which shows whether or not this rule checks function declarations.
If this is true, this rule warns every reference to a function before the function declaration.
Otherwise, ignores those references.
Function declarations are hoisted, so it's safe.
Default is true.
classes (boolean) -
The flag which shows whether or not this rule checks class declarations of upper scopes.
If this is true, this rule warns every reference to a class before the class declaration.
Otherwise, ignores those references if the declaration is in upper function scopes.
Class declarations are not hoisted, so it might be danger.
Default is true.
variables (boolean) -
This flag determines whether or not the rule checks variable declarations in upper scopes.
If this is true, the rule warns every reference to a variable before the variable declaration.
Otherwise, the rule ignores a reference if the declaration is in an upper scope, while still reporting the reference if it's in the same scope as the declaration.
Default is true.
This rule accepts "nofunc" string as an option.
"nofunc" is the same as { "functions": false, "classes": true }.
functions
Examples of correct code for the { "functions": false } option:
In JavaScript, prior to ES6, variable and function declarations are hoisted to the top of a scope, so it's possible to use identifiers before their formal declarations in code. This can be confusing and some believe it is best to always declare variables and functions before using them.
In ES6, block-level bindings (let and const) introduce a "temporal dead zone" where a ReferenceError will be thrown with any attempt to access the variable before its declaration.
Rule Details
This rule will warn when it encounters a reference to an identifier that has not yet been declared.
functions (boolean) -
The flag which shows whether or not this rule checks function declarations.
If this is true, this rule warns every reference to a function before the function declaration.
Otherwise, ignores those references.
Function declarations are hoisted, so it's safe.
Default is true.
classes (boolean) -
The flag which shows whether or not this rule checks class declarations of upper scopes.
If this is true, this rule warns every reference to a class before the class declaration.
Otherwise, ignores those references if the declaration is in upper function scopes.
Class declarations are not hoisted, so it might be danger.
Default is true.
variables (boolean) -
This flag determines whether or not the rule checks variable declarations in upper scopes.
If this is true, the rule warns every reference to a variable before the variable declaration.
Otherwise, the rule ignores a reference if the declaration is in an upper scope, while still reporting the reference if it's in the same scope as the declaration.
Default is true.
This rule accepts "nofunc" string as an option.
"nofunc" is the same as { "functions": false, "classes": true }.
functions
Examples of correct code for the { "functions": false } option:
ECMAScript 6 allows programmers to create variables with block scope instead of function scope using the let
and const keywords. Block scope is common in many other programming languages and helps programmers avoid mistakes
such as:
var count = people.length;
var enoughFood = count > sandwiches.length;
if(enoughFood){
var count = sandwiches.length;// accidentally overriding the count variable
console.log("We have "+ count +" sandwiches for everyone. Plenty for all!");
}
// our count variable is no longer accurate
console.log("We have "+ count +" people and "+ sandwiches.length +" sandwiches!");
Rule Details
This rule is aimed at discouraging the use of var and encouraging the use of const or let instead.
Examples
Examples of incorrect code for this rule:
/*eslint no-var: "error"*/
var x ="y";
varCONFIG={};
Examples of correct code for this rule:
/*eslint no-var: "error"*/
/*eslint-env es6*/
let x ="y";
constCONFIG={};
When Not To Use It
In addition to non-ES6 environments, existing JavaScript projects that are beginning to introduce ES6 into their
codebase may not want to apply this rule if the cost of migrating from var to let is too costly.
Source: http://eslint.org/docs/rules/
require let or const instead of var (no-var)
ECMAScript 6 allows programmers to create variables with block scope instead of function scope using the let
and const keywords. Block scope is common in many other programming languages and helps programmers avoid mistakes
such as:
var count = people.length;
var enoughFood = count > sandwiches.length;
if(enoughFood){
var count = sandwiches.length;// accidentally overriding the count variable
console.log("We have "+ count +" sandwiches for everyone. Plenty for all!");
}
// our count variable is no longer accurate
console.log("We have "+ count +" people and "+ sandwiches.length +" sandwiches!");
Rule Details
This rule is aimed at discouraging the use of var and encouraging the use of const or let instead.
Examples
Examples of incorrect code for this rule:
/*eslint no-var: "error"*/
var x ="y";
varCONFIG={};
Examples of correct code for this rule:
/*eslint no-var: "error"*/
/*eslint-env es6*/
let x ="y";
constCONFIG={};
When Not To Use It
In addition to non-ES6 environments, existing JavaScript projects that are beginning to introduce ES6 into their
codebase may not want to apply this rule if the cost of migrating from var to let is too costly.
Source: http://eslint.org/docs/rules/
enforce consistent indentation (indent)
There are several common guidelines which require specific indentation of nested blocks and statements, like:
functionhello(indentSize, type){
if(indentSize ===4&& type !=='tab'){
console.log('Each next indentation will increase on 4 spaces');
}
}
These are the most common scenarios recommended in different style guides:
Two spaces, not longer and no tabs: Google, npm, Node.js, Idiomatic, Felix
Tabs: jQuery
Four spaces: Crockford
Rule Details
This rule enforces a consistent indentation style. The default style is 4 spaces.
Options
This rule has a mixed option:
For example, for 2-space indentation:
{
"indent": ["error", 2]
}
Or for tabbed indentation:
{
"indent": ["error", "tab"]
}
Examples of incorrect code for this rule with the default options:
/*eslint indent: "error"*/
if(a){
b=c;
functionfoo(d){
e=f;
}
}
Examples of correct code for this rule with the default options:
/*eslint indent: "error"*/
if(a){
b=c;
functionfoo(d){
e=f;
}
}
This rule has an object option:
"SwitchCase" (default: 0) enforces indentation level for case clauses in switch statements
"VariableDeclarator" (default: 1) enforces indentation level for var declarators; can also take an object to define separate rules for var, let and const declarations.
"outerIIFEBody" (default: 1) enforces indentation level for file-level IIFEs.
"MemberExpression" (off by default) enforces indentation level for multi-line property chains (except in variable declarations and assignments)
"FunctionDeclaration" takes an object to define rules for function declarations.
parameters (off by default) enforces indentation level for parameters in a function declaration. This can either be a number indicating indentation level, or the string "first" indicating that all parameters of the declaration must be aligned with the first parameter.
body (default: 1) enforces indentation level for the body of a function declaration.
"FunctionExpression" takes an object to define rules for function expressions.
parameters (off by default) enforces indentation level for parameters in a function expression. This can either be a number indicating indentation level, or the string "first" indicating that all parameters of the expression must be aligned with the first parameter.
body (default: 1) enforces indentation level for the body of a function expression.
"CallExpression" takes an object to define rules for function call expressions.
arguments (off by default) enforces indentation level for arguments in a call expression. This can either be a number indicating indentation level, or the string "first" indicating that all arguments of the expression must be aligned with the first argument.
"ArrayExpression" (default: 1) enforces indentation level for elements in arrays. It can also be set to the string "first", indicating that all the elements in the array should be aligned with the first element.
"ObjectExpression" (default: 1) enforces indentation level for properties in objects. It can be set to the string "first", indicating that all properties in the object should be aligned with the first property.
Level of indentation denotes the multiple of the indent specified. Example:
Indent of 4 spaces with VariableDeclarator set to 2 will indent the multi-line variable declarations with 8 spaces.
Indent of 2 spaces with VariableDeclarator set to 2 will indent the multi-line variable declarations with 4 spaces.
Indent of 2 spaces with VariableDeclarator set to {"var": 2, "let": 2, "const": 3} will indent the multi-line variable declarations with 4 spaces for var and let, 6 spaces for const statements.
Indent of tab with VariableDeclarator set to 2 will indent the multi-line variable declarations with 2 tabs.
Indent of 2 spaces with SwitchCase set to 0 will not indent case clauses with respect to switch statements.
Indent of 2 spaces with SwitchCase set to 1 will indent case clauses with 2 spaces with respect to switch statements.
Indent of 2 spaces with SwitchCase set to 2 will indent case clauses with 4 spaces with respect to switch statements.
Indent of tab with SwitchCase set to 2 will indent case clauses with 2 tabs with respect to switch statements.
Indent of 2 spaces with MemberExpression set to 0 will indent the multi-line property chains with 0 spaces.
Indent of 2 spaces with MemberExpression set to 1 will indent the multi-line property chains with 2 spaces.
Indent of 2 spaces with MemberExpression set to 2 will indent the multi-line property chains with 4 spaces.
Indent of 4 spaces with MemberExpression set to 0 will indent the multi-line property chains with 0 spaces.
Indent of 4 spaces with MemberExpression set to 1 will indent the multi-line property chains with 4 spaces.
Indent of 4 spaces with MemberExpression set to 2 will indent the multi-line property chains with 8 spaces.
tab
Examples of incorrect code for this rule with the "tab" option:
/*eslint indent: ["error", "tab"]*/
if(a){
b=c;
functionfoo(d){
e=f;
}
}
Examples of correct code for this rule with the "tab" option:
/*eslint indent: ["error", "tab"]*/
if(a){
/*tab*/b=c;
/*tab*/functionfoo(d){
/*tab*//*tab*/e=f;
/*tab*/}
}
SwitchCase
Examples of incorrect code for this rule with the 2, { "SwitchCase": 1 } options:
ECMAScript 6 allows programmers to create variables with block scope instead of function scope using the let
and const keywords. Block scope is common in many other programming languages and helps programmers avoid mistakes
such as:
var count = people.length;
var enoughFood = count > sandwiches.length;
if(enoughFood){
var count = sandwiches.length;// accidentally overriding the count variable
console.log("We have "+ count +" sandwiches for everyone. Plenty for all!");
}
// our count variable is no longer accurate
console.log("We have "+ count +" people and "+ sandwiches.length +" sandwiches!");
Rule Details
This rule is aimed at discouraging the use of var and encouraging the use of const or let instead.
Examples
Examples of incorrect code for this rule:
/*eslint no-var: "error"*/
var x ="y";
varCONFIG={};
Examples of correct code for this rule:
/*eslint no-var: "error"*/
/*eslint-env es6*/
let x ="y";
constCONFIG={};
When Not To Use It
In addition to non-ES6 environments, existing JavaScript projects that are beginning to introduce ES6 into their
codebase may not want to apply this rule if the cost of migrating from var to let is too costly.
Source: http://eslint.org/docs/rules/
require let or const instead of var (no-var)
ECMAScript 6 allows programmers to create variables with block scope instead of function scope using the let
and const keywords. Block scope is common in many other programming languages and helps programmers avoid mistakes
such as:
var count = people.length;
var enoughFood = count > sandwiches.length;
if(enoughFood){
var count = sandwiches.length;// accidentally overriding the count variable
console.log("We have "+ count +" sandwiches for everyone. Plenty for all!");
}
// our count variable is no longer accurate
console.log("We have "+ count +" people and "+ sandwiches.length +" sandwiches!");
Rule Details
This rule is aimed at discouraging the use of var and encouraging the use of const or let instead.
Examples
Examples of incorrect code for this rule:
/*eslint no-var: "error"*/
var x ="y";
varCONFIG={};
Examples of correct code for this rule:
/*eslint no-var: "error"*/
/*eslint-env es6*/
let x ="y";
constCONFIG={};
When Not To Use It
In addition to non-ES6 environments, existing JavaScript projects that are beginning to introduce ES6 into their
codebase may not want to apply this rule if the cost of migrating from var to let is too costly.
Source: http://eslint.org/docs/rules/
Require Brace Style (brace-style)
Brace style is closely related to indent style in programming and describes the placement of braces relative to their control statement and body. There are probably a dozen, if not more, brace styles in the world.
The one true brace style is one of the most common brace styles in JavaScript, in which the opening brace of a block is placed on the same line as its corresponding statement or declaration. For example:
if(foo){
bar();
}else{
baz();
}
One common variant of one true brace style is called Stroustrup, in which the else statements in an if-else construct, as well as catch and finally, must be on its own line after the preceding closing brace. For example:
if(foo){
bar();
}
else{
baz();
}
Another style is called Allman, in which all the braces are expected to be on their own lines without any extra indentation. For example:
if(foo)
{
bar();
}
else
{
baz();
}
While no style is considered better than the other, most developers agree that having a consistent style throughout a project is important for its long-term maintainability.
Rule Details
This rule enforces consistent brace style for blocks.
Options
This rule has a string option:
"1tbs" (default) enforces one true brace style
"stroustrup" enforces Stroustrup style
"allman" enforces Allman style
This rule has an object option for an exception:
"allowSingleLine": true (default false) allows the opening and closing braces for a block to be on the same line
1tbs
Examples of incorrect code for this rule with the default "1tbs" option:
/*eslint brace-style: "error"*/
functionfoo()
{
returntrue;
}
if(foo)
{
bar();
}
try
{
somethingRisky();
}catch(e)
{
handleError();
}
if(foo){
bar();
}
else{
baz();
}
Examples of correct code for this rule with the default "1tbs" option:
/*eslint brace-style: "error"*/
functionfoo(){
returntrue;
}
if(foo){
bar();
}
if(foo){
bar();
}else{
baz();
}
try{
somethingRisky();
}catch(e){
handleError();
}
// when there are no braces, there are no problems
if(foo)bar();
elseif(baz)boom();
Examples of correct code for this rule with the "1tbs", { "allowSingleLine": true } options:
EcmaScript 6 provides a concise form for defining object literal methods and properties. This
syntax can make defining complex object literals much cleaner.
Here are a few common examples using the ES5 syntax:
// properties
var foo ={
x: x,
y: y,
z: z,
};
// methods
var foo ={
a:function(){},
b:function(){}
};
Now here are ES6 equivalents:
/*eslint-env es6*/
// properties
var foo ={x, y, z};
// methods
var foo ={
a(){},
b(){}
};
Rule Details
This rule enforces the use of the shorthand syntax. This applies
to all methods (including generators) defined in object literals and any
properties defined where the key name matches name of the assigned variable.
Each of the following properties would warn:
/*eslint object-shorthand: "error"*/
/*eslint-env es6*/
var foo ={
w:function(){},
x:function*(){},
[y]:function(){},
z: z
};
In that case the expected syntax would have been:
/*eslint object-shorthand: "error"*/
/*eslint-env es6*/
var foo ={
w(){},
*x(){},
[y](){},
z
};
This rule does not flag arrow functions inside of object literals.
The following will not warn:
/*eslint object-shorthand: "error"*/
/*eslint-env es6*/
var foo ={
x:(y)=> y
};
Options
The rule takes an option which specifies when it should be applied. It can be set to one of the following values:
"always" (default) expects that the shorthand will be used whenever possible.
"methods" ensures the method shorthand is used (also applies to generators).
"properties" ensures the property shorthand is used (where the key and variable name match).
"never" ensures that no property or method shorthand is used in any object literal.
"consistent" ensures that either all shorthand or all longform will be used in an object literal.
"consistent-as-needed" ensures that either all shorthand or all longform will be used in an object literal, but ensures all shorthand whenever possible.
You can set the option in configuration like this:
{
"object-shorthand": ["error", "always"]
}
Additionally, the rule takes an optional object configuration:
"avoidQuotes": true indicates that longform syntax is preferred whenever the object key is a string literal (default: false). Note that this option can only be enabled when the string option is set to "always", "methods", or "properties".
"ignoreConstructors": true can be used to prevent the rule from reporting errors for constructor functions. (By default, the rule treats constructors the same way as other functions.) Note that this option can only be enabled when the string option is set to "always" or "methods".
"avoidExplicitReturnArrows": true indicates that methods are preferred over explicit-return arrow functions for function properties. (By default, the rule allows either of these.) Note that this option can only be enabled when the string option is set to "always" or "methods".
Anyone not yet in an ES6 environment would not want to apply this rule. Others may find the terseness of the shorthand
syntax harder to read and may not want to encourage it with this rule.
EcmaScript 6 provides a concise form for defining object literal methods and properties. This
syntax can make defining complex object literals much cleaner.
Here are a few common examples using the ES5 syntax:
// properties
var foo ={
x: x,
y: y,
z: z,
};
// methods
var foo ={
a:function(){},
b:function(){}
};
Now here are ES6 equivalents:
/*eslint-env es6*/
// properties
var foo ={x, y, z};
// methods
var foo ={
a(){},
b(){}
};
Rule Details
This rule enforces the use of the shorthand syntax. This applies
to all methods (including generators) defined in object literals and any
properties defined where the key name matches name of the assigned variable.
Each of the following properties would warn:
/*eslint object-shorthand: "error"*/
/*eslint-env es6*/
var foo ={
w:function(){},
x:function*(){},
[y]:function(){},
z: z
};
In that case the expected syntax would have been:
/*eslint object-shorthand: "error"*/
/*eslint-env es6*/
var foo ={
w(){},
*x(){},
[y](){},
z
};
This rule does not flag arrow functions inside of object literals.
The following will not warn:
/*eslint object-shorthand: "error"*/
/*eslint-env es6*/
var foo ={
x:(y)=> y
};
Options
The rule takes an option which specifies when it should be applied. It can be set to one of the following values:
"always" (default) expects that the shorthand will be used whenever possible.
"methods" ensures the method shorthand is used (also applies to generators).
"properties" ensures the property shorthand is used (where the key and variable name match).
"never" ensures that no property or method shorthand is used in any object literal.
"consistent" ensures that either all shorthand or all longform will be used in an object literal.
"consistent-as-needed" ensures that either all shorthand or all longform will be used in an object literal, but ensures all shorthand whenever possible.
You can set the option in configuration like this:
{
"object-shorthand": ["error", "always"]
}
Additionally, the rule takes an optional object configuration:
"avoidQuotes": true indicates that longform syntax is preferred whenever the object key is a string literal (default: false). Note that this option can only be enabled when the string option is set to "always", "methods", or "properties".
"ignoreConstructors": true can be used to prevent the rule from reporting errors for constructor functions. (By default, the rule treats constructors the same way as other functions.) Note that this option can only be enabled when the string option is set to "always" or "methods".
"avoidExplicitReturnArrows": true indicates that methods are preferred over explicit-return arrow functions for function properties. (By default, the rule allows either of these.) Note that this option can only be enabled when the string option is set to "always" or "methods".
Anyone not yet in an ES6 environment would not want to apply this rule. Others may find the terseness of the shorthand
syntax harder to read and may not want to encourage it with this rule.
EcmaScript 6 provides a concise form for defining object literal methods and properties. This
syntax can make defining complex object literals much cleaner.
Here are a few common examples using the ES5 syntax:
// properties
var foo ={
x: x,
y: y,
z: z,
};
// methods
var foo ={
a:function(){},
b:function(){}
};
Now here are ES6 equivalents:
/*eslint-env es6*/
// properties
var foo ={x, y, z};
// methods
var foo ={
a(){},
b(){}
};
Rule Details
This rule enforces the use of the shorthand syntax. This applies
to all methods (including generators) defined in object literals and any
properties defined where the key name matches name of the assigned variable.
Each of the following properties would warn:
/*eslint object-shorthand: "error"*/
/*eslint-env es6*/
var foo ={
w:function(){},
x:function*(){},
[y]:function(){},
z: z
};
In that case the expected syntax would have been:
/*eslint object-shorthand: "error"*/
/*eslint-env es6*/
var foo ={
w(){},
*x(){},
[y](){},
z
};
This rule does not flag arrow functions inside of object literals.
The following will not warn:
/*eslint object-shorthand: "error"*/
/*eslint-env es6*/
var foo ={
x:(y)=> y
};
Options
The rule takes an option which specifies when it should be applied. It can be set to one of the following values:
"always" (default) expects that the shorthand will be used whenever possible.
"methods" ensures the method shorthand is used (also applies to generators).
"properties" ensures the property shorthand is used (where the key and variable name match).
"never" ensures that no property or method shorthand is used in any object literal.
"consistent" ensures that either all shorthand or all longform will be used in an object literal.
"consistent-as-needed" ensures that either all shorthand or all longform will be used in an object literal, but ensures all shorthand whenever possible.
You can set the option in configuration like this:
{
"object-shorthand": ["error", "always"]
}
Additionally, the rule takes an optional object configuration:
"avoidQuotes": true indicates that longform syntax is preferred whenever the object key is a string literal (default: false). Note that this option can only be enabled when the string option is set to "always", "methods", or "properties".
"ignoreConstructors": true can be used to prevent the rule from reporting errors for constructor functions. (By default, the rule treats constructors the same way as other functions.) Note that this option can only be enabled when the string option is set to "always" or "methods".
"avoidExplicitReturnArrows": true indicates that methods are preferred over explicit-return arrow functions for function properties. (By default, the rule allows either of these.) Note that this option can only be enabled when the string option is set to "always" or "methods".
Anyone not yet in an ES6 environment would not want to apply this rule. Others may find the terseness of the shorthand
syntax harder to read and may not want to encourage it with this rule.
This rule can help you locate potential ReferenceErrors resulting from misspellings of variable and parameter names, or accidental implicit globals (for example, from forgetting the var keyword in a for loop initializer).
Rule Details
Any reference to an undeclared variable causes a warning, unless the variable is explicitly mentioned in a /*global ...*/ comment.
Examples of incorrect code for this rule:
/*eslint no-undef: "error"*/
var a =someFunction();
b =10;
Examples of correct code for this rule with global declaration:
/*global someFunction b:true*/
/*eslint no-undef: "error"*/
var a =someFunction();
b =10;
The b:true syntax in /*global */ indicates that assignment to b is correct.
Examples of incorrect code for this rule with global declaration:
/*global b*/
/*eslint no-undef: "error"*/
b =10;
By default, variables declared in /*global */ are read-only, therefore assignment is incorrect.
Options
typeof set to true will warn for variables used inside typeof check (Default false).
typeof
Examples of correct code for the default { "typeof": false } option:
/*eslint no-undef: "error"*/
if(typeof UndefinedIdentifier ==="undefined"){
// do something ...
}
You can use this option if you want to prevent typeof check on a variable which has not been declared.
Examples of incorrect code for the { "typeof": true } option:
For convenience, ESLint provides shortcuts that pre-define global variables exposed by popular libraries and runtime environments. This rule supports these environments, as listed in Specifying Environments. A few examples are given below.
browser
Examples of correct code for this rule with browser environment:
/*eslint no-undef: "error"*/
/*eslint-env browser*/
setTimeout(function(){
alert("Hello");
});
node
Examples of correct code for this rule with node environment:
/*eslint no-undef: "error"*/
/*eslint-env node*/
var fs =require("fs");
module.exports=function(){
console.log(fs);
};
When Not To Use It
If explicit declaration of global variables is not to your taste.
Require Variable Declarations to be at the top of their scope (vars-on-top)
The vars-on-top rule generates warnings when variable declarations are not used serially at the top of a function scope or the top of a program.
By default variable declarations are always moved (“hoisted”) invisibly to the top of their containing scope by the JavaScript interpreter.
This rule forces the programmer to represent that behaviour by manually moving the variable declaration to the top of its containing scope.
Rule Details
This rule aims to keep all variable declarations in the leading series of statements.
Allowing multiple declarations helps promote maintainability and is thus allowed.
Examples of incorrect code for this rule:
/*eslint vars-on-top: "error"*/
// Variable declarations in a block:
functiondoSomething(){
var first;
if(true){
first =true;
}
var second;
}
// Variable declaration in for initializer:
functiondoSomething(){
for(var i=0; i<10; i++){}
}
/*eslint vars-on-top: "error"*/
// Variables after other statements:
f();
var a;
Examples of correct code for this rule:
/*eslint vars-on-top: "error"*/
functiondoSomething(){
var first;
var second;//multiple declarations are allowed at the top
There are several common guidelines which require specific indentation of nested blocks and statements, like:
functionhello(indentSize, type){
if(indentSize ===4&& type !=='tab'){
console.log('Each next indentation will increase on 4 spaces');
}
}
These are the most common scenarios recommended in different style guides:
Two spaces, not longer and no tabs: Google, npm, Node.js, Idiomatic, Felix
Tabs: jQuery
Four spaces: Crockford
Rule Details
This rule enforces a consistent indentation style. The default style is 4 spaces.
Options
This rule has a mixed option:
For example, for 2-space indentation:
{
"indent": ["error", 2]
}
Or for tabbed indentation:
{
"indent": ["error", "tab"]
}
Examples of incorrect code for this rule with the default options:
/*eslint indent: "error"*/
if(a){
b=c;
functionfoo(d){
e=f;
}
}
Examples of correct code for this rule with the default options:
/*eslint indent: "error"*/
if(a){
b=c;
functionfoo(d){
e=f;
}
}
This rule has an object option:
"SwitchCase" (default: 0) enforces indentation level for case clauses in switch statements
"VariableDeclarator" (default: 1) enforces indentation level for var declarators; can also take an object to define separate rules for var, let and const declarations.
"outerIIFEBody" (default: 1) enforces indentation level for file-level IIFEs.
"MemberExpression" (off by default) enforces indentation level for multi-line property chains (except in variable declarations and assignments)
"FunctionDeclaration" takes an object to define rules for function declarations.
parameters (off by default) enforces indentation level for parameters in a function declaration. This can either be a number indicating indentation level, or the string "first" indicating that all parameters of the declaration must be aligned with the first parameter.
body (default: 1) enforces indentation level for the body of a function declaration.
"FunctionExpression" takes an object to define rules for function expressions.
parameters (off by default) enforces indentation level for parameters in a function expression. This can either be a number indicating indentation level, or the string "first" indicating that all parameters of the expression must be aligned with the first parameter.
body (default: 1) enforces indentation level for the body of a function expression.
"CallExpression" takes an object to define rules for function call expressions.
arguments (off by default) enforces indentation level for arguments in a call expression. This can either be a number indicating indentation level, or the string "first" indicating that all arguments of the expression must be aligned with the first argument.
"ArrayExpression" (default: 1) enforces indentation level for elements in arrays. It can also be set to the string "first", indicating that all the elements in the array should be aligned with the first element.
"ObjectExpression" (default: 1) enforces indentation level for properties in objects. It can be set to the string "first", indicating that all properties in the object should be aligned with the first property.
Level of indentation denotes the multiple of the indent specified. Example:
Indent of 4 spaces with VariableDeclarator set to 2 will indent the multi-line variable declarations with 8 spaces.
Indent of 2 spaces with VariableDeclarator set to 2 will indent the multi-line variable declarations with 4 spaces.
Indent of 2 spaces with VariableDeclarator set to {"var": 2, "let": 2, "const": 3} will indent the multi-line variable declarations with 4 spaces for var and let, 6 spaces for const statements.
Indent of tab with VariableDeclarator set to 2 will indent the multi-line variable declarations with 2 tabs.
Indent of 2 spaces with SwitchCase set to 0 will not indent case clauses with respect to switch statements.
Indent of 2 spaces with SwitchCase set to 1 will indent case clauses with 2 spaces with respect to switch statements.
Indent of 2 spaces with SwitchCase set to 2 will indent case clauses with 4 spaces with respect to switch statements.
Indent of tab with SwitchCase set to 2 will indent case clauses with 2 tabs with respect to switch statements.
Indent of 2 spaces with MemberExpression set to 0 will indent the multi-line property chains with 0 spaces.
Indent of 2 spaces with MemberExpression set to 1 will indent the multi-line property chains with 2 spaces.
Indent of 2 spaces with MemberExpression set to 2 will indent the multi-line property chains with 4 spaces.
Indent of 4 spaces with MemberExpression set to 0 will indent the multi-line property chains with 0 spaces.
Indent of 4 spaces with MemberExpression set to 1 will indent the multi-line property chains with 4 spaces.
Indent of 4 spaces with MemberExpression set to 2 will indent the multi-line property chains with 8 spaces.
tab
Examples of incorrect code for this rule with the "tab" option:
/*eslint indent: ["error", "tab"]*/
if(a){
b=c;
functionfoo(d){
e=f;
}
}
Examples of correct code for this rule with the "tab" option:
/*eslint indent: ["error", "tab"]*/
if(a){
/*tab*/b=c;
/*tab*/functionfoo(d){
/*tab*//*tab*/e=f;
/*tab*/}
}
SwitchCase
Examples of incorrect code for this rule with the 2, { "SwitchCase": 1 } options:
ECMAScript 6 allows programmers to create variables with block scope instead of function scope using the let
and const keywords. Block scope is common in many other programming languages and helps programmers avoid mistakes
such as:
var count = people.length;
var enoughFood = count > sandwiches.length;
if(enoughFood){
var count = sandwiches.length;// accidentally overriding the count variable
console.log("We have "+ count +" sandwiches for everyone. Plenty for all!");
}
// our count variable is no longer accurate
console.log("We have "+ count +" people and "+ sandwiches.length +" sandwiches!");
Rule Details
This rule is aimed at discouraging the use of var and encouraging the use of const or let instead.
Examples
Examples of incorrect code for this rule:
/*eslint no-var: "error"*/
var x ="y";
varCONFIG={};
Examples of correct code for this rule:
/*eslint no-var: "error"*/
/*eslint-env es6*/
let x ="y";
constCONFIG={};
When Not To Use It
In addition to non-ES6 environments, existing JavaScript projects that are beginning to introduce ES6 into their
codebase may not want to apply this rule if the cost of migrating from var to let is too costly.
Source: http://eslint.org/docs/rules/
require let or const instead of var (no-var)
ECMAScript 6 allows programmers to create variables with block scope instead of function scope using the let
and const keywords. Block scope is common in many other programming languages and helps programmers avoid mistakes
such as:
var count = people.length;
var enoughFood = count > sandwiches.length;
if(enoughFood){
var count = sandwiches.length;// accidentally overriding the count variable
console.log("We have "+ count +" sandwiches for everyone. Plenty for all!");
}
// our count variable is no longer accurate
console.log("We have "+ count +" people and "+ sandwiches.length +" sandwiches!");
Rule Details
This rule is aimed at discouraging the use of var and encouraging the use of const or let instead.
Examples
Examples of incorrect code for this rule:
/*eslint no-var: "error"*/
var x ="y";
varCONFIG={};
Examples of correct code for this rule:
/*eslint no-var: "error"*/
/*eslint-env es6*/
let x ="y";
constCONFIG={};
When Not To Use It
In addition to non-ES6 environments, existing JavaScript projects that are beginning to introduce ES6 into their
codebase may not want to apply this rule if the cost of migrating from var to let is too costly.
Source: http://eslint.org/docs/rules/
disallow dangling underscores in identifiers (no-underscore-dangle)
As far as naming conventions for identifiers go, dangling underscores may be the most polarizing in JavaScript. Dangling underscores are underscores at either the beginning or end of an identifier, such as:
var _foo;
There is actually a long history of using dangling underscores to indicate "private" members of objects in JavaScript (though JavaScript doesn't have truly private members, this convention served as a warning). This began with SpiderMonkey adding nonstandard methods such as __defineGetter__(). The intent with the underscores was to make it obvious that this method was special in some way. Since that time, using a single underscore prefix has become popular as a way to indicate "private" members of objects.
Whether or not you choose to allow dangling underscores in identifiers is purely a convention and has no effect on performance, readability, or complexity. It's purely a preference.
Rule Details
This rule disallows dangling underscores in identifiers.
Examples of incorrect code for this rule:
/*eslint no-underscore-dangle: "error"*/
var foo_;
var __proto__ ={};
foo._bar();
Examples of correct code for this rule:
/*eslint no-underscore-dangle: "error"*/
var _ =require('underscore');
var obj = _.contains(items, item);
obj.__proto__ ={};
var file = __filename;
Options
This rule has an object option:
"allow" allows specified identifiers to have dangling underscores
"allowAfterThis": false (default) disallows dangling underscores in members of the this object
"allowAfterSuper": false (default) disallows dangling underscores in members of the super object
allow
Examples of additional correct code for this rule with the { "allow": ["foo_", "_bar"] } option: