Showing 6,062 of 6,062 total issues
Similar blocks of code found in 3 locations. Consider refactoring. Open
$.fn.writeJsonAttribute = function(key, value, type) {
var attribute = new JsonAttribute(this);
return attribute.write(key, value, type)
};
- Read upRead up
- Create a ticketCreate a ticket
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 47.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 3 locations. Consider refactoring. Open
$.fn.readJsonAttribute = function(key, value, type) {
var attribute = new JsonAttribute(this);
return attribute.read(key, value, type)
};
- Read upRead up
- Create a ticketCreate a ticket
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 47.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
var platforms = $.map(constraints.exclude_platform, function(c_version, c_platform) {
return (platform === c_platform) && self.equalOrMatchVersion(platform_version, c_version);
});
- Read upRead up
- Create a ticketCreate a ticket
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 47.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
var platforms = $.map(constraints.platform, function(c_version, c_platform) {
return (platform === c_platform) && self.equalOrMatchVersion(platform_version, c_version);
});
- Read upRead up
- Create a ticketCreate a ticket
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 47.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Method create_configs
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def create_configs(ses_service)
# This function creates the /etc/ceph/ceph.conf
# and the keyring files needed by the services
# ses_service is the name of the service using ceph
# which should be nova, cinder, glance
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method apply_role_pre_chef_call
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def apply_role_pre_chef_call(old_role, role, all_nodes)
Rails.logger.debug("Network apply_role_pre_chef_call: entering #{all_nodes.inspect}")
role.default_attributes["network"]["networks"].each do |k,net|
db = Chef::DataBag.load("crowbar/#{k}_network") rescue nil
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method select_nodes_for_role
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def select_nodes_for_role(all_nodes, role, preferred_intended_role = nil)
# do not modify array given by caller
valid_nodes = all_nodes.dup
valid_nodes.delete_if { |n| n.nil? }
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method node_status
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def node_status
not_upgraded = []
upgraded = []
if ::Crowbar::UpgradeStatus.new.finished?
upgraded = ::Node.all.reject(&:admin?).map(&:name)
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method disable_all_repositories
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def disable_all_repositories
Rails.logger.debug("Disabling all repositories.")
all_db = begin
Chef::DataBag.list
rescue Net::HTTPServerException
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method restore_to_ready
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def restore_to_ready(nodes)
with_lock "BA-LOCK" do
nodes_to_save = []
nodes.each do |node_name|
node = Node.find_by_name(node_name)
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method upgrade_nodes_disruptive
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def upgrade_nodes_disruptive(elements_to_upgrade)
elements_to_upgrade.each do |element|
# If role has a cluster assigned ugprade that cluster (reuse the non-disruptive code here)
if ServiceObject.is_cluster?(element)
cluster = ServiceObject.cluster_name element
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method proposal_create
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def proposal_create(params)
base_id = params["id"]
params["id"] = "#{@bc_name}-#{params["id"]}"
if FORBIDDEN_PROPOSAL_NAMES.any?{ |n| n == base_id }
return [403,I18n.t("model.service.illegal_name", names: FORBIDDEN_PROPOSAL_NAMES.to_sentence)]
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method disable_repository
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def disable_repository(platform, arch, repo)
repo_object = Crowbar::Repository.where(platform: platform, arch: arch, repo: repo).first
if repo_object.nil?
message = "#{repo} repository for #{platform} / #{arch} does not exist."
Rails.logger.debug(message)
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method check_for_running_instances
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def check_for_running_instances
controller = ::Node.find("run_list_map:nova-controller").first
if controller.nil?
Rails.logger.info("No nova-controller node found.")
return
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method set_to_applying
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def set_to_applying(nodes, inst, pre_cached_nodes)
with_lock "BA-LOCK" do
nodes_to_save = []
nodes.each do |node_name|
node = pre_cached_nodes[node_name]
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method restore
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def restore(options = {})
background = options.fetch(:background, false)
from_upgrade = options.fetch(:from_upgrade, false)
if Crowbar::Backup::Restore.restore_steps_path.exist?
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method release
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def release
logger.debug("Release #{name} lock enter: #{@file.inspect}")
if @file
@file.flock(File::LOCK_UN) if locked?
@file.close unless @file.closed?
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method export_supportconfig
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def export_supportconfig
begin
base = "supportconfig-#{Time.now.strftime("%Y%m%d-%H%M%S")}"
filename = "#{base}.tbz"
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method disk_claim
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def disk_claim(device, owner)
if device
crowbar_wall[:claimed_disks] ||= {}
unless disk_owner(device).to_s.empty?
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method initialize
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def initialize(node, role = nil)
@role = if role.nil?
RoleObject.find_role_by_name Node.make_role_name(node.name)
else
role
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"