deeplearning4j/deeplearning4j

View on GitHub
libnd4j/include/ops/declarable/generic/loss/huberLoss.cpp

Summary

Maintainability
Test Coverage
/* ******************************************************************************
 *
 *
 * This program and the accompanying materials are made available under the
 * terms of the Apache License, Version 2.0 which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 *  See the NOTICE file distributed with this work for additional
 *  information regarding copyright ownership.
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 ******************************************************************************/

//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 23.11.2017
//

#include <system/op_boilerplate.h>
#if NOT_EXCLUDED(OP_huber_loss)

#include <ops/declarable/CustomOperations.h>

namespace sd {
namespace ops {

//////////////////////////////////////////////////////////////////////////
CUSTOM_OP_IMPL(huber_loss, 3, 1, false, 1, 1) {
  auto predictions = INPUT_VARIABLE(0);
  auto weights = INPUT_VARIABLE(1);
  auto labels = INPUT_VARIABLE(2);
  auto output = OUTPUT_VARIABLE(0);

  int reductionMode =
      INT_ARG(0);  // 0 - "none"; 1 - "weighted_sum";  2 - "weighted_mean";  3 - "weighted_sum_by_nonzero_weights"
  // FIXME: double?
  double delta = T_ARG(0);

  // input validation
  REQUIRE_TRUE(
      labels->isSameShape(predictions), 0,
      "HUBER_LOSS OP: labels and predictions arrays must have the same shapes, but got %s and %s correspondingly !",
      ShapeUtils::shapeAsString(labels).c_str(), ShapeUtils::shapeAsString(predictions).c_str());
  // weights array can be single scalar or has the same rank as labels, and must be broadcastable to labels
  REQUIRE_TRUE(weights->isScalar() || weights->rankOf() == labels->rankOf(), 0,
               "HUBER_LOSS OP: weights array should be scalar or have the same rank as labels array, but got %i and %i "
               "correspondingly!",
               weights->rankOf(), labels->rankOf());
  // check whether broadcast operation is possible for weights array
  REQUIRE_TRUE(weights->isScalar() || ShapeUtils::areShapesBroadcastable(*weights, *labels), 0,
               "HUBER_LOSS OP: shapes of weights and labels arrays should be broadcastable, but got weights = %s and "
               "labels = %s instead!",
               ShapeUtils::shapeAsString(weights).c_str(), ShapeUtils::shapeAsString(labels).c_str());
  // only 4 possible reduction modes exist
  REQUIRE_TRUE(
      reductionMode == 0 || reductionMode == 1 || reductionMode == 2 || reductionMode == 3, 0,
      "HUBER_LOSS OP: reduction mode value is not acceptable, possible values are 0, 1, 2, 3, but got %i instead!",
      reductionMode);

  // perform weights broadcasting/tile to predictions if needed
  auto weightsBroad = weights;
  if (!weights->isScalar() && !weights->isSameShape(predictions))
    weightsBroad = new NDArray(weights->tileToShape(predictions->shapeInfo()));

  auto error = *predictions - *labels;
  error.applyTransform(transform::Abs, error);
  NDArray quadratic(error.shapeInfo(), block.getWorkspace());
  error.applyScalar(scalar::MinPairwise, delta, quadratic);

  NDArray E = quadratic * quadratic * 0.5f + (error - quadratic) * delta;

  // multiply E on weights
  E *= *weightsBroad;

  switch (reductionMode) {
    case 0: {  // 0 - "none", un-reduced weighted losses with the same shape as labels.
      output->assign(E);
      break;
    }
    case 1: {  // 1 - "weighted_sum", output is scalar and equal to sum of all elements of E array
      E.reduceNumber(reduce::Sum, *output);
      break;
    }
    case 2: {  // 2 - "weighted_mean", output is scalar and equal to sum of all elements of E array divided by sum of
      // all elements of weightsBroad array
      NDArray sum;
      sum.setContext(block.launchContext());
      if (weights->isScalar())
        sum = *weights * E.lengthOf();
      else
        sum = weightsBroad->reduceNumber(reduce::Sum);

      if (sum.e<double>(0) == 0.)
        *output = 0.;
      else
        output->assign(E.reduceNumber(reduce::Sum) / sum);
      break;
    }
    case 3: {  // 3 - "weighted_sum_by_nonzero_weights", output is scalar and equal to scalar sum of all elements of E
      // array divided by number of non-zero weights
      sd::LongType numOfNonZeroWeights = 0;
      if (weights->isScalar()) {
        if (weights->e<double>(0) != 0.) numOfNonZeroWeights = E.lengthOf();
      } else {
        numOfNonZeroWeights = weightsBroad->reduceNumber(reduce::CountNonZero).e<sd::LongType>(0);
      }

      if (numOfNonZeroWeights == 0)
        (*output) = 0.;
      else
        output->assign(E.reduceNumber(reduce::Sum) / double(numOfNonZeroWeights));
      break;
    }
  }

  if (weightsBroad != weights) delete weightsBroad;

  return sd::Status::OK;
}

//////////////////////////////////////////////////////////////////////////
DECLARE_TYPES(huber_loss) {
  getOpDescriptor()->setAllowedInputTypes(sd::DataType::ANY)->setAllowedOutputTypes({ALL_FLOATS});
}

//////////////////////////////////////////////////////////////////////////
DECLARE_SHAPE_FN(huber_loss) {
  auto predictionsShapeInfo = inputShape->at(0);
  auto weightsShapeInfo = inputShape->at(1);
  auto labelsShapeInfo = inputShape->at(2);

  // labels and predictions must have the same shapes
  REQUIRE_TRUE(
      shape::shapeEquals(labelsShapeInfo, predictionsShapeInfo), 0,
      "HUBER_LOSS OP: labels and predictions arrays must have the same shapes, but got %s and %s correspondingly !",
      ShapeUtils::shapeAsString(labelsShapeInfo).c_str(), ShapeUtils::shapeAsString(predictionsShapeInfo).c_str());
  // weights array can be single scalar or has the same rank as labels, and must be broadcastable to labels
  REQUIRE_TRUE(shape::isScalar(weightsShapeInfo) || shape::rank(weightsShapeInfo) == shape::rank(labelsShapeInfo), 0,
               "HUBER_LOSS OP: weights array should be scalar or have the same rank as labels array, but got %i and %i "
               "correspondingly!",
               shape::rank(weightsShapeInfo), shape::rank(labelsShapeInfo));
  // check whether broadcast operation is possible for weights array
  REQUIRE_TRUE(
      shape::isScalar(weightsShapeInfo) || ShapeUtils::areShapesBroadcastable(weightsShapeInfo, labelsShapeInfo), 0,
      "HUBER_LOSS OP: shapes of weights and labels arrays should be broadcastable, but got weights = %s and labels = "
      "%s instead!",
      ShapeUtils::shapeAsString(weightsShapeInfo).c_str(), ShapeUtils::shapeAsString(labelsShapeInfo).c_str());

  DataType outType = DataTypeUtils::pickFloatingType(ArrayOptions::dataType(predictionsShapeInfo));
  sd::LongType const* outShapeInfo = nullptr;

  if (INT_ARG(0) != 0)  // in this case output is scalar
    outShapeInfo = ConstantShapeHelper::getInstance().scalarShapeInfo(outType);
  else {  // in this case output has the same shape as labels and predictions
    auto desc = new ShapeDescriptor(outType, shape::order(labelsShapeInfo), shape::shapeOf(labelsShapeInfo),
                                    shape::rank(labelsShapeInfo));
    outShapeInfo = ConstantShapeHelper::getInstance().createShapeInfo(desc);
    delete desc;
  }
  return SHAPELIST(outShapeInfo);
}

//////////////////////////////////////////////////////////////////////////
CUSTOM_OP_IMPL(huber_loss_grad, 3, 3, false, 1, 1) {
  auto predictions = INPUT_VARIABLE(0);
  auto weights = INPUT_VARIABLE(1);
  auto labels = INPUT_VARIABLE(2);

  auto dLdp = OUTPUT_VARIABLE(0);  // dL/dpredictions
  auto dLdw = OUTPUT_VARIABLE(1);  // dL/dweights
  auto dLdl = OUTPUT_VARIABLE(2);  // dL/dlabels

  auto delta = T_ARG(0);

  int reductionMode =
      INT_ARG(0);  // 0 - "none"; 1 - "weighted_sum";  2 - "weighted_mean";  3 - "weighted_sum_by_nonzero_weights"
  // take into account Alex's proposition to treat "none" the same as "weighted_sum" mode when calculating gradients
  if (reductionMode == 0) reductionMode = 1;

  // inputs validation
  REQUIRE_TRUE(labels->isSameShape(predictions), 0,
               "HUBER_LOSS_GRAD OP: labels and predictions arrays must have the same shapes, but got %s and %s "
               "correspondingly !",
               ShapeUtils::shapeAsString(labels).c_str(), ShapeUtils::shapeAsString(predictions).c_str());
  // weights array can be single scalar or has the same rank as labels, and must be broadcastable to labels
  REQUIRE_TRUE(weights->isScalar() || weights->rankOf() == labels->rankOf(), 0,
               "HUBER_LOSS_GRAD OP: weights array should be scalar or have the same rank as labels array, but got %i "
               "and %i correspondingly!",
               weights->rankOf(), labels->rankOf());
  // check whether broadcast operation is possible for weights array
  REQUIRE_TRUE(weights->isScalar() || ShapeUtils::areShapesBroadcastable(*weights, *labels), 0,
               "HUBER_LOSS_GRAD OP: shapes of weights and labels arrays should be broadcastable, but got weights = %s "
               "and labels = %s instead!",
               ShapeUtils::shapeAsString(weights).c_str(), ShapeUtils::shapeAsString(labels).c_str());
  // only 4 possible reduction modes exist
  REQUIRE_TRUE(
      reductionMode == 0 || reductionMode == 1 || reductionMode == 2 || reductionMode == 3, 0,
      "HUBER_LOSS_GRAD OP: reduction mode value is not acceptable, possible values are 0, 1, 2, 3, but got %i instead!",
      reductionMode);

  // perform weights broadcasting/tile to labels if needed
  auto weightsBroad = weights;
  if (!weights->isScalar() && !weights->isSameShape(predictions))
    weightsBroad = new NDArray(weights->tileToShape(predictions->shapeInfo()));

  NDArray diff = *predictions - *labels;
  NDArray absDiff(diff);
  absDiff.applyTransform(transform::Abs, absDiff);
  NDArray quadratic(absDiff);
  absDiff.applyScalar(scalar::MinPairwise, delta, quadratic);

  NDArray E = quadratic * quadratic * 0.5f + (absDiff - quadratic) * delta;

  NDArray lteMask(diff.shapeInfo(), BOOL, true, block.launchContext());
  absDiff.applyScalar(scalar::LessThanOrEqual, delta, lteMask);

  NDArray gtMask(diff.shapeInfo(), BOOL, true, block.launchContext());
  absDiff.applyScalar(scalar::GreaterThan, delta, gtMask);

  NDArray signDiff(diff);
  diff.applyTransform(transform::Sign, signDiff);

  auto gtMaskFloat = gtMask.cast(diff.dataType());
  auto lteMaskFloat = lteMask.cast(diff.dataType());

  dLdp->assign(lteMaskFloat * diff + gtMaskFloat * delta * signDiff);
  dLdl->assign(-lteMaskFloat * diff - gtMaskFloat * delta * signDiff);

  switch (reductionMode) {
    case 1: {  // 1 - "none" and "weighted_sum", output is scalar and equal to sum of all elements of E array

      *dLdp *= *weightsBroad;
      *dLdl *= *weightsBroad;

      if (weights->isScalar())
        dLdw->assign(E.reduceNumber(reduce::Sum));
      else if (weights != weightsBroad) {
        std::vector<LongType> axesToReduceAlong =
            ShapeUtils::evalBroadcastBackwardAxis(weights->shapeInfo(), weightsBroad->shapeInfo());
        E.reduceAlongDimension(reduce::Sum, *dLdw, &axesToReduceAlong, true);
      } else
        dLdw->assign(E);
      break;
    }
    case 2: {  // 2 - "weighted_mean", output is scalar and equal to sum of all elements of E array divided by sum of
      // all elements of weightsBroad array

      NDArray sum;
      sum.setContext(block.launchContext());
      if (weights->isScalar())
        sum = (*weights) * E.lengthOf();
      else
        sum = weightsBroad->reduceNumber(reduce::Sum);

      if (sum.e<double>(0) == 0.) {
        *dLdp = 0.;
        *dLdl = 0.;
        *dLdw = 0.;
      } else {
        *dLdp *= *weightsBroad / sum;
        *dLdl *= *weightsBroad / sum;

        if (weights->isScalar())
          *dLdw = 0.;
        else if (weights != weightsBroad) {
          std::vector<LongType> axesToReduceAlong =
              ShapeUtils::evalBroadcastBackwardAxis(weights->shapeInfo(), weightsBroad->shapeInfo());
          ((E * sum - (E * *weightsBroad).reduceNumber(reduce::Sum)) / (sum * sum))
              .reduceAlongDimension(reduce::Sum, *dLdw, &axesToReduceAlong, true);
        } else
          dLdw->assign((E * sum - (E * *weightsBroad).reduceNumber(reduce::Sum)) / (sum * sum));
      }
      break;
    }
    case 3: {  // 3 - "weighted_sum_by_nonzero_weights", output is scalar and equal to scalar sum of all elements of E
      // array divided by number of non-zero weights

      sd::LongType numOfNonZeroWeights = 0;
      if (weights->isScalar()) {
        if (weights->e<double>(0) != 0.) numOfNonZeroWeights = E.lengthOf();
      } else
        numOfNonZeroWeights = weightsBroad->reduceNumber(reduce::CountNonZero).e<sd::LongType>(0);

      if (numOfNonZeroWeights == 0) {
        *dLdp = 0.;
        *dLdl = 0.;
        *dLdw = 0.;
      } else {
        auto numOfNonZeroWeightsScalar =
            NDArrayFactory::create(dLdw->dataType(), numOfNonZeroWeights, block.launchContext());

        if (weights->isScalar())
          dLdw->assign(E.reduceNumber(reduce::Sum) / double(numOfNonZeroWeights));
        else if (weights != weightsBroad) {
          std::vector<LongType> axesToReduceAlong =
              ShapeUtils::evalBroadcastBackwardAxis(weights->shapeInfo(), weightsBroad->shapeInfo());
          E.reduceAlongDimension(reduce::Sum, *dLdw, &axesToReduceAlong, true);
          *dLdw /= numOfNonZeroWeightsScalar;
        } else
          dLdw->assign(E / numOfNonZeroWeightsScalar);

        NDArray temp = *weightsBroad / numOfNonZeroWeightsScalar;
        *dLdp *= temp;
        *dLdl *= temp;
      }
      break;
    }
  }

  if (weightsBroad != weights) delete weightsBroad;

  return sd::Status::OK;
}

DECLARE_TYPES(huber_loss_grad) {
  getOpDescriptor()->setAllowedInputTypes(sd::DataType::ANY)->setAllowedOutputTypes({ALL_FLOATS});
}

DECLARE_SHAPE_FN(huber_loss_grad) {
  auto predictionsShapeInfo = inputShape->at(0);
  auto weightsShapeInfo = inputShape->at(1);
  auto labelsShapeInfo = inputShape->at(2);

  // labels and predictions must have the same shapes
  REQUIRE_TRUE(shape::shapeEquals(labelsShapeInfo, predictionsShapeInfo), 0,
               "HUBER_LOSS_GRAD OP: labels and predictions arrays must have the same shapes, but got %s and %s "
               "correspondingly !",
               ShapeUtils::shapeAsString(labelsShapeInfo).c_str(),
               ShapeUtils::shapeAsString(predictionsShapeInfo).c_str());
  // weights array can be single scalar or has the same rank as labels, and must be broadcastable to labels
  REQUIRE_TRUE(shape::isScalar(weightsShapeInfo) || shape::rank(weightsShapeInfo) == shape::rank(labelsShapeInfo), 0,
               "HUBER_LOSS_GRAD OP: weights array should be scalar or have the same rank as labels array, but got %i "
               "and %i correspondingly!",
               shape::rank(weightsShapeInfo), shape::rank(labelsShapeInfo));
  // check whether broadcast operation is possible for weights array
  REQUIRE_TRUE(
      shape::isScalar(weightsShapeInfo) || ShapeUtils::areShapesBroadcastable(weightsShapeInfo, labelsShapeInfo), 0,
      "HUBER_LOSS_GRAD OP: shapes of weights and labels arrays should be broadcastable, but got weights = %s and "
      "labels = %s instead!",
      ShapeUtils::shapeAsString(weightsShapeInfo).c_str(), ShapeUtils::shapeAsString(labelsShapeInfo).c_str());

  DataType outType = DataTypeUtils::pickFloatingType(ArrayOptions::dataType(predictionsShapeInfo));

  auto dLdpShapeInfo = ShapeBuilders::copyShapeInfoAndType(predictionsShapeInfo, outType, false, block.getWorkspace());
  auto dLdwShapeInfo = ShapeBuilders::copyShapeInfoAndType(weightsShapeInfo, outType, false, block.getWorkspace());
  auto dLdlShapeInfo = ShapeBuilders::copyShapeInfoAndType(labelsShapeInfo, outType, false, block.getWorkspace());

  return SHAPELIST(dLdpShapeInfo, dLdwShapeInfo, dLdlShapeInfo);
}

}  // namespace ops
}  // namespace sd

#endif