Showing 1,008 of 1,820 total issues
Function skipLogbroker
has a Cognitive Complexity of 54 (exceeds 20 allowed). Consider refactoring. Open
func skipLogbroker(dAtA []byte) (n int, err error) {
l := len(dAtA)
iNdEx := 0
depth := 0
for iNdEx < l {
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function skipSnapshot
has a Cognitive Complexity of 54 (exceeds 20 allowed). Consider refactoring. Open
func skipSnapshot(dAtA []byte) (n int, err error) {
l := len(dAtA)
iNdEx := 0
depth := 0
for iNdEx < l {
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function skipDispatcher
has a Cognitive Complexity of 54 (exceeds 20 allowed). Consider refactoring. Open
func skipDispatcher(dAtA []byte) (n int, err error) {
l := len(dAtA)
iNdEx := 0
depth := 0
for iNdEx < l {
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function skipRaft
has a Cognitive Complexity of 54 (exceeds 20 allowed). Consider refactoring. Open
func skipRaft(dAtA []byte) (n int, err error) {
l := len(dAtA)
iNdEx := 0
depth := 0
for iNdEx < l {
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function skipWatch
has a Cognitive Complexity of 54 (exceeds 20 allowed). Consider refactoring. Open
func skipWatch(dAtA []byte) (n int, err error) {
l := len(dAtA)
iNdEx := 0
depth := 0
for iNdEx < l {
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function skipSpecs
has a Cognitive Complexity of 54 (exceeds 20 allowed). Consider refactoring. Open
func skipSpecs(dAtA []byte) (n int, err error) {
l := len(dAtA)
iNdEx := 0
depth := 0
for iNdEx < l {
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function skipPlugin
has a Cognitive Complexity of 54 (exceeds 20 allowed). Consider refactoring. Open
func skipPlugin(dAtA []byte) (n int, err error) {
l := len(dAtA)
iNdEx := 0
depth := 0
for iNdEx < l {
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method Node.loadAndStart
has a Cognitive Complexity of 54 (exceeds 20 allowed). Consider refactoring. Open
func (n *Node) loadAndStart(ctx context.Context, forceNewCluster bool) error {
snapshot, waldata, err := n.readFromDisk(ctx)
if err != nil {
return err
}
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method SubscriptionMessage.Unmarshal
has 171 lines of code (exceeds 50 allowed). Consider refactoring. Open
func (m *SubscriptionMessage) Unmarshal(dAtA []byte) error {
l := len(dAtA)
iNdEx := 0
for iNdEx < l {
preIndex := iNdEx
Method Agent.run
has 168 lines of code (exceeds 50 allowed). Consider refactoring. Open
func (a *Agent) run(ctx context.Context) {
ctx, cancel := context.WithCancel(ctx)
defer cancel()
defer close(a.closed) // full shutdown.
Method testSuite.TestNodeAllocator
has 168 lines of code (exceeds 50 allowed). Consider refactoring. Open
func (suite *testSuite) TestNodeAllocator() {
s := store.NewMemoryStore(nil)
suite.NotNil(s)
defer s.Close()
Method Secret.Unmarshal
has 165 lines of code (exceeds 50 allowed). Consider refactoring. Open
func (m *Secret) Unmarshal(dAtA []byte) error {
l := len(dAtA)
iNdEx := 0
for iNdEx < l {
preIndex := iNdEx
Function parseUpdate
has a Cognitive Complexity of 52 (exceeds 20 allowed). Consider refactoring. Open
func parseUpdate(flags *pflag.FlagSet, spec *api.ServiceSpec) error {
if flags.Changed("update-parallelism") {
parallelism, err := flags.GetUint64("update-parallelism")
if err != nil {
return err
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method ClusterSpec.Unmarshal
has 65 return statements (exceeds 4 allowed). Open
func (m *ClusterSpec) Unmarshal(dAtA []byte) error {
l := len(dAtA)
iNdEx := 0
for iNdEx < l {
preIndex := iNdEx
Method WatchSelectors.MarshalToSizedBuffer
has a Cognitive Complexity of 52 (exceeds 20 allowed). Consider refactoring. Open
func (m *WatchSelectors) MarshalToSizedBuffer(dAtA []byte) (int, error) {
i := len(dAtA)
_ = i
var l int
_ = l
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method AssignmentsMessage.Unmarshal
has 164 lines of code (exceeds 50 allowed). Consider refactoring. Open
func (m *AssignmentsMessage) Unmarshal(dAtA []byte) error {
l := len(dAtA)
iNdEx := 0
for iNdEx < l {
preIndex := iNdEx
Method RaftMember.Unmarshal
has 163 lines of code (exceeds 50 allowed). Consider refactoring. Open
func (m *RaftMember) Unmarshal(dAtA []byte) error {
l := len(dAtA)
iNdEx := 0
for iNdEx < l {
preIndex := iNdEx
Function dumpSnapshot
has a Cognitive Complexity of 51 (exceeds 20 allowed). Consider refactoring. Open
func dumpSnapshot(swarmdir, unlockKey string, redact bool) error {
_, snapshot, err := loadData(swarmdir, unlockKey)
if err != nil {
return err
}
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method Server.ListServiceStatuses
has a Cognitive Complexity of 51 (exceeds 20 allowed). Consider refactoring. Open
func (s *Server) ListServiceStatuses(ctx context.Context, req *api.ListServiceStatusesRequest) (*api.ListServiceStatusesResponse, error) {
resp := &api.ListServiceStatusesResponse{}
if req == nil {
return resp, nil
}
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method readTx.findIterators
has 159 lines of code (exceeds 50 allowed). Consider refactoring. Open
func (tx readTx) findIterators(table string, by By, checkType func(By) error) ([]memdb.ResultIterator, error) {
switch by.(type) {
case byAll, orCombinator: // generic types
default: // all other types
if err := checkType(by); err != nil {