manager/constraint/constraint.go
Function NodeMatches
has a Cognitive Complexity of 84 (exceeds 20 allowed). Consider refactoring. Open
Open
func NodeMatches(constraints []Constraint, n *api.Node) bool {
for _, constraint := range constraints {
switch {
case strings.EqualFold(constraint.key, "node.id"):
if !constraint.Match(n.ID) {
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function NodeMatches
has 86 lines of code (exceeds 50 allowed). Consider refactoring. Open
Open
func NodeMatches(constraints []Constraint, n *api.Node) bool {
for _, constraint := range constraints {
switch {
case strings.EqualFold(constraint.key, "node.id"):
if !constraint.Match(n.ID) {
Function NodeMatches
has 16 return statements (exceeds 4 allowed). Open
Open
func NodeMatches(constraints []Constraint, n *api.Node) bool {
for _, constraint := range constraints {
switch {
case strings.EqualFold(constraint.key, "node.id"):
if !constraint.Match(n.ID) {
Function Parse
has 5 return statements (exceeds 4 allowed). Open
Open
func Parse(env []string) ([]Constraint, error) {
exprs := []Constraint{}
for _, e := range env {
found := false
// each expr is in the form of "key op value"