File utils.py
has 513 lines of code (exceeds 250 allowed). Consider refactoring. Open
# -*- coding: utf-8 -*-
"""
jinja2.utils
~~~~~~~~~~~~
Function urlize
has a Cognitive Complexity of 25 (exceeds 5 allowed). Consider refactoring. Open
def urlize(text, trim_url_limit=None, rel=None, target=None):
"""Converts any URLs in text into clickable links. Works on http://,
https:// and www. links. Links can have trailing punctuation (periods,
commas, close-parens) and leading punctuation (opening parens) and
it'll still do the right thing.
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function generate_lorem_ipsum
has a Cognitive Complexity of 23 (exceeds 5 allowed). Consider refactoring. Open
def generate_lorem_ipsum(n=5, html=True, min=20, max=100):
"""Generate some lorem ipsum for the template."""
from jinja2.constants import LOREM_IPSUM_WORDS
from random import choice, randrange
words = LOREM_IPSUM_WORDS.split()
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
LRUCache
has 22 functions (exceeds 20 allowed). Consider refactoring. Open
class LRUCache(object):
"""A simple LRU Cache implementation."""
# this is fast for small capacities (something below 1000) but doesn't
# scale. But as long as it's only used as storage for templates this
Consider simplifying this complex logical expression. Open
if middle.startswith('www.') or (
'@' not in middle and
not middle.startswith('http://') and
not middle.startswith('https://') and
len(middle) > 0 and
Function import_string
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def import_string(import_name, silent=False):
"""Imports an object based on a string. This is useful if you want to
use import paths as endpoints or something similar. An import path can
be specified either in dotted notation (``xml.sax.saxutils.escape``)
or with a colon as object delimiter (``xml.sax.saxutils:escape``).
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function select_autoescape
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def select_autoescape(enabled_extensions=('html', 'htm', 'xml'),
disabled_extensions=(),
default_for_string=True,
default=False):
"""Intelligently sets the initial value of autoescaping based on the
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Identical blocks of code found in 4 locations. Consider refactoring. Open
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 3048.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76