lts/src/env.cc
#include "env.h"
#include "async_wrap.h"
#include "debug_utils-inl.h"
#include "memory_tracker-inl.h"
#include "node_buffer.h"
#include "node_context_data.h"
#include "node_errors.h"
#include "node_file.h"
#include "node_internals.h"
#include "node_options-inl.h"
#include "node_process.h"
#include "node_v8_platform-inl.h"
#include "node_worker.h"
#include "req_wrap-inl.h"
#include "tracing/agent.h"
#include "tracing/traced_value.h"
#include "util-inl.h"
#include "v8-profiler.h"
#include <algorithm>
#include <atomic>
#include <cstdio>
#include <memory>
namespace node {
using errors::TryCatchScope;
using v8::ArrayBuffer;
using v8::Boolean;
using v8::Context;
using v8::EmbedderGraph;
using v8::FinalizationGroup;
using v8::Function;
using v8::FunctionTemplate;
using v8::HandleScope;
using v8::Integer;
using v8::Isolate;
using v8::Local;
using v8::MaybeLocal;
using v8::NewStringType;
using v8::Number;
using v8::Object;
using v8::Private;
using v8::SnapshotCreator;
using v8::StackTrace;
using v8::String;
using v8::Symbol;
using v8::TracingController;
using v8::Undefined;
using v8::Value;
using worker::Worker;
int const Environment::kNodeContextTag = 0x6e6f64;
void* const Environment::kNodeContextTagPtr = const_cast<void*>(
static_cast<const void*>(&Environment::kNodeContextTag));
std::vector<size_t> IsolateData::Serialize(SnapshotCreator* creator) {
Isolate* isolate = creator->GetIsolate();
std::vector<size_t> indexes;
HandleScope handle_scope(isolate);
// XXX(joyeecheung): technically speaking, the indexes here should be
// consecutive and we could just return a range instead of an array,
// but that's not part of the V8 API contract so we use an array
// just to be safe.
#define VP(PropertyName, StringValue) V(Private, PropertyName)
#define VY(PropertyName, StringValue) V(Symbol, PropertyName)
#define VS(PropertyName, StringValue) V(String, PropertyName)
#define V(TypeName, PropertyName) \
indexes.push_back(creator->AddData(PropertyName##_.Get(isolate)));
PER_ISOLATE_PRIVATE_SYMBOL_PROPERTIES(VP)
PER_ISOLATE_SYMBOL_PROPERTIES(VY)
PER_ISOLATE_STRING_PROPERTIES(VS)
#undef V
#undef VY
#undef VS
#undef VP
for (size_t i = 0; i < AsyncWrap::PROVIDERS_LENGTH; i++)
indexes.push_back(creator->AddData(async_wrap_provider(i)));
return indexes;
}
void IsolateData::DeserializeProperties(const std::vector<size_t>* indexes) {
size_t i = 0;
HandleScope handle_scope(isolate_);
#define VP(PropertyName, StringValue) V(Private, PropertyName)
#define VY(PropertyName, StringValue) V(Symbol, PropertyName)
#define VS(PropertyName, StringValue) V(String, PropertyName)
#define V(TypeName, PropertyName) \
do { \
MaybeLocal<TypeName> field = \
isolate_->GetDataFromSnapshotOnce<TypeName>((*indexes)[i++]); \
if (field.IsEmpty()) { \
fprintf(stderr, "Failed to deserialize " #PropertyName "\n"); \
} \
PropertyName##_.Set(isolate_, field.ToLocalChecked()); \
} while (0);
PER_ISOLATE_PRIVATE_SYMBOL_PROPERTIES(VP)
PER_ISOLATE_SYMBOL_PROPERTIES(VY)
PER_ISOLATE_STRING_PROPERTIES(VS)
#undef V
#undef VY
#undef VS
#undef VP
for (size_t j = 0; j < AsyncWrap::PROVIDERS_LENGTH; j++) {
MaybeLocal<String> field =
isolate_->GetDataFromSnapshotOnce<String>((*indexes)[i++]);
if (field.IsEmpty()) {
fprintf(stderr, "Failed to deserialize AsyncWrap provider %zu\n", j);
}
async_wrap_providers_[j].Set(isolate_, field.ToLocalChecked());
}
}
void IsolateData::CreateProperties() {
// Create string and private symbol properties as internalized one byte
// strings after the platform is properly initialized.
//
// Internalized because it makes property lookups a little faster and
// because the string is created in the old space straight away. It's going
// to end up in the old space sooner or later anyway but now it doesn't go
// through v8::Eternal's new space handling first.
//
// One byte because our strings are ASCII and we can safely skip V8's UTF-8
// decoding step.
HandleScope handle_scope(isolate_);
#define V(PropertyName, StringValue) \
PropertyName##_.Set( \
isolate_, \
Private::New(isolate_, \
String::NewFromOneByte( \
isolate_, \
reinterpret_cast<const uint8_t*>(StringValue), \
NewStringType::kInternalized, \
sizeof(StringValue) - 1) \
.ToLocalChecked()));
PER_ISOLATE_PRIVATE_SYMBOL_PROPERTIES(V)
#undef V
#define V(PropertyName, StringValue) \
PropertyName##_.Set( \
isolate_, \
Symbol::New(isolate_, \
String::NewFromOneByte( \
isolate_, \
reinterpret_cast<const uint8_t*>(StringValue), \
NewStringType::kInternalized, \
sizeof(StringValue) - 1) \
.ToLocalChecked()));
PER_ISOLATE_SYMBOL_PROPERTIES(V)
#undef V
#define V(PropertyName, StringValue) \
PropertyName##_.Set( \
isolate_, \
String::NewFromOneByte(isolate_, \
reinterpret_cast<const uint8_t*>(StringValue), \
NewStringType::kInternalized, \
sizeof(StringValue) - 1) \
.ToLocalChecked());
PER_ISOLATE_STRING_PROPERTIES(V)
#undef V
// Create all the provider strings that will be passed to JS. Place them in
// an array so the array index matches the PROVIDER id offset. This way the
// strings can be retrieved quickly.
#define V(Provider) \
async_wrap_providers_[AsyncWrap::PROVIDER_ ## Provider].Set( \
isolate_, \
String::NewFromOneByte( \
isolate_, \
reinterpret_cast<const uint8_t*>(#Provider), \
NewStringType::kInternalized, \
sizeof(#Provider) - 1).ToLocalChecked());
NODE_ASYNC_PROVIDER_TYPES(V)
#undef V
}
IsolateData::IsolateData(Isolate* isolate,
uv_loop_t* event_loop,
MultiIsolatePlatform* platform,
ArrayBufferAllocator* node_allocator,
const std::vector<size_t>* indexes)
: isolate_(isolate),
event_loop_(event_loop),
allocator_(isolate->GetArrayBufferAllocator()),
node_allocator_(node_allocator == nullptr ? nullptr
: node_allocator->GetImpl()),
uses_node_allocator_(allocator_ == node_allocator_),
platform_(platform) {
CHECK_NOT_NULL(allocator_);
options_.reset(
new PerIsolateOptions(*(per_process::cli_options->per_isolate)));
if (indexes == nullptr) {
CreateProperties();
} else {
DeserializeProperties(indexes);
}
}
void IsolateData::MemoryInfo(MemoryTracker* tracker) const {
#define V(PropertyName, StringValue) \
tracker->TrackField(#PropertyName, PropertyName());
PER_ISOLATE_SYMBOL_PROPERTIES(V)
#undef V
#define V(PropertyName, StringValue) \
tracker->TrackField(#PropertyName, PropertyName());
PER_ISOLATE_STRING_PROPERTIES(V)
#undef V
tracker->TrackField("async_wrap_providers", async_wrap_providers_);
if (node_allocator_ != nullptr) {
tracker->TrackFieldWithSize(
"node_allocator", sizeof(*node_allocator_), "NodeArrayBufferAllocator");
} else {
tracker->TrackFieldWithSize(
"allocator", sizeof(*allocator_), "v8::ArrayBuffer::Allocator");
}
tracker->TrackFieldWithSize(
"platform", sizeof(*platform_), "MultiIsolatePlatform");
// TODO(joyeecheung): implement MemoryRetainer in the option classes.
}
void InitThreadLocalOnce() {
CHECK_EQ(0, uv_key_create(&Environment::thread_local_env));
}
void TrackingTraceStateObserver::UpdateTraceCategoryState() {
if (!env_->owns_process_state() || !env_->can_call_into_js()) {
// Ideally, we’d have a consistent story that treats all threads/Environment
// instances equally here. However, tracing is essentially global, and this
// callback is called from whichever thread calls `StartTracing()` or
// `StopTracing()`. The only way to do this in a threadsafe fashion
// seems to be only tracking this from the main thread, and only allowing
// these state modifications from the main thread.
return;
}
bool async_hooks_enabled = (*(TRACE_EVENT_API_GET_CATEGORY_GROUP_ENABLED(
TRACING_CATEGORY_NODE1(async_hooks)))) != 0;
Isolate* isolate = env_->isolate();
HandleScope handle_scope(isolate);
Local<Function> cb = env_->trace_category_state_function();
if (cb.IsEmpty())
return;
TryCatchScope try_catch(env_);
try_catch.SetVerbose(true);
Local<Value> args[] = {Boolean::New(isolate, async_hooks_enabled)};
USE(cb->Call(env_->context(), Undefined(isolate), arraysize(args), args));
}
static std::atomic<uint64_t> next_thread_id{0};
uint64_t Environment::AllocateThreadId() {
return next_thread_id++;
}
void Environment::CreateProperties() {
HandleScope handle_scope(isolate_);
Local<Context> ctx = context();
Local<FunctionTemplate> templ = FunctionTemplate::New(isolate());
templ->InstanceTemplate()->SetInternalFieldCount(1);
Local<Object> obj = templ->GetFunction(ctx)
.ToLocalChecked()
->NewInstance(ctx)
.ToLocalChecked();
obj->SetAlignedPointerInInternalField(0, this);
set_as_callback_data(obj);
set_as_callback_data_template(templ);
// Store primordials setup by the per-context script in the environment.
Local<Object> per_context_bindings =
GetPerContextExports(ctx).ToLocalChecked();
Local<Value> primordials =
per_context_bindings->Get(ctx, primordials_string()).ToLocalChecked();
CHECK(primordials->IsObject());
set_primordials(primordials.As<Object>());
Local<Object> process_object =
node::CreateProcessObject(this).FromMaybe(Local<Object>());
set_process_object(process_object);
}
std::string GetExecPath(const std::vector<std::string>& argv) {
char exec_path_buf[2 * PATH_MAX];
size_t exec_path_len = sizeof(exec_path_buf);
std::string exec_path;
if (uv_exepath(exec_path_buf, &exec_path_len) == 0) {
exec_path = std::string(exec_path_buf, exec_path_len);
} else {
exec_path = argv[0];
}
// On OpenBSD process.execPath will be relative unless we
// get the full path before process.execPath is used.
#if defined(__OpenBSD__)
uv_fs_t req;
req.ptr = nullptr;
if (0 ==
uv_fs_realpath(nullptr, &req, exec_path.c_str(), nullptr)) {
CHECK_NOT_NULL(req.ptr);
exec_path = std::string(static_cast<char*>(req.ptr));
}
uv_fs_req_cleanup(&req);
#endif
return exec_path;
}
Environment::Environment(IsolateData* isolate_data,
Local<Context> context,
const std::vector<std::string>& args,
const std::vector<std::string>& exec_args,
Flags flags,
uint64_t thread_id)
: isolate_(context->GetIsolate()),
isolate_data_(isolate_data),
immediate_info_(context->GetIsolate()),
tick_info_(context->GetIsolate()),
timer_base_(uv_now(isolate_data->event_loop())),
exec_argv_(exec_args),
argv_(args),
exec_path_(GetExecPath(args)),
should_abort_on_uncaught_toggle_(isolate_, 1),
stream_base_state_(isolate_, StreamBase::kNumStreamBaseStateFields),
flags_(flags),
thread_id_(thread_id == kNoThreadId ? AllocateThreadId() : thread_id),
fs_stats_field_array_(isolate_, kFsStatsBufferLength),
fs_stats_field_bigint_array_(isolate_, kFsStatsBufferLength),
context_(context->GetIsolate(), context) {
// We'll be creating new objects so make sure we've entered the context.
HandleScope handle_scope(isolate());
Context::Scope context_scope(context);
set_env_vars(per_process::system_environment);
enabled_debug_list_.Parse(this);
// We create new copies of the per-Environment option sets, so that it is
// easier to modify them after Environment creation. The defaults are
// part of the per-Isolate option set, for which in turn the defaults are
// part of the per-process option set.
options_.reset(new EnvironmentOptions(*isolate_data->options()->per_env));
inspector_host_port_.reset(
new ExclusiveAccess<HostPort>(options_->debug_options().host_port));
#if HAVE_INSPECTOR
// We can only create the inspector agent after having cloned the options.
inspector_agent_ = std::make_unique<inspector::Agent>(this);
#endif
AssignToContext(context, ContextInfo(""));
if (tracing::AgentWriterHandle* writer = GetTracingAgentWriter()) {
trace_state_observer_ = std::make_unique<TrackingTraceStateObserver>(this);
if (TracingController* tracing_controller = writer->GetTracingController())
tracing_controller->AddTraceStateObserver(trace_state_observer_.get());
}
destroy_async_id_list_.reserve(512);
performance_state_ =
std::make_unique<performance::PerformanceState>(isolate());
performance_state_->Mark(
performance::NODE_PERFORMANCE_MILESTONE_ENVIRONMENT);
performance_state_->Mark(performance::NODE_PERFORMANCE_MILESTONE_NODE_START,
per_process::node_start_time);
performance_state_->Mark(
performance::NODE_PERFORMANCE_MILESTONE_V8_START,
performance::performance_v8_start);
if (*TRACE_EVENT_API_GET_CATEGORY_GROUP_ENABLED(
TRACING_CATEGORY_NODE1(environment)) != 0) {
auto traced_value = tracing::TracedValue::Create();
traced_value->BeginArray("args");
for (const std::string& arg : args) traced_value->AppendString(arg);
traced_value->EndArray();
traced_value->BeginArray("exec_args");
for (const std::string& arg : exec_args) traced_value->AppendString(arg);
traced_value->EndArray();
TRACE_EVENT_NESTABLE_ASYNC_BEGIN1(TRACING_CATEGORY_NODE1(environment),
"Environment",
this,
"args",
std::move(traced_value));
}
// By default, always abort when --abort-on-uncaught-exception was passed.
should_abort_on_uncaught_toggle_[0] = 1;
if (options_->no_force_async_hooks_checks) {
async_hooks_.no_force_checks();
}
// TODO(joyeecheung): deserialize when the snapshot covers the environment
// properties.
CreateProperties();
}
Environment::~Environment() {
if (interrupt_data_ != nullptr) *interrupt_data_ = nullptr;
isolate()->GetHeapProfiler()->RemoveBuildEmbedderGraphCallback(
BuildEmbedderGraph, this);
// Make sure there are no re-used libuv wrapper objects.
// CleanupHandles() should have removed all of them.
CHECK(file_handle_read_wrap_freelist_.empty());
HandleScope handle_scope(isolate());
#if HAVE_INSPECTOR
// Destroy inspector agent before erasing the context. The inspector
// destructor depends on the context still being accessible.
inspector_agent_.reset();
#endif
context()->SetAlignedPointerInEmbedderData(
ContextEmbedderIndex::kEnvironment, nullptr);
if (trace_state_observer_) {
tracing::AgentWriterHandle* writer = GetTracingAgentWriter();
CHECK_NOT_NULL(writer);
if (TracingController* tracing_controller = writer->GetTracingController())
tracing_controller->RemoveTraceStateObserver(trace_state_observer_.get());
}
delete[] heap_statistics_buffer_;
delete[] heap_space_statistics_buffer_;
delete[] http_parser_buffer_;
delete[] heap_code_statistics_buffer_;
TRACE_EVENT_NESTABLE_ASYNC_END0(
TRACING_CATEGORY_NODE1(environment), "Environment", this);
// Do not unload addons on the main thread. Some addons need to retain memory
// beyond the Environment's lifetime, and unloading them early would break
// them; with Worker threads, we have the opportunity to be stricter.
// Also, since the main thread usually stops just before the process exits,
// this is far less relevant here.
if (!is_main_thread()) {
// Dereference all addons that were loaded into this environment.
for (binding::DLib& addon : loaded_addons_) {
addon.Close();
}
}
CHECK_EQ(base_object_count(), 0);
}
void Environment::InitializeLibuv(bool start_profiler_idle_notifier) {
HandleScope handle_scope(isolate());
Context::Scope context_scope(context());
CHECK_EQ(0, uv_timer_init(event_loop(), timer_handle()));
uv_unref(reinterpret_cast<uv_handle_t*>(timer_handle()));
uv_check_init(event_loop(), immediate_check_handle());
uv_unref(reinterpret_cast<uv_handle_t*>(immediate_check_handle()));
uv_idle_init(event_loop(), immediate_idle_handle());
uv_check_start(immediate_check_handle(), CheckImmediate);
// Inform V8's CPU profiler when we're idle. The profiler is sampling-based
// but not all samples are created equal; mark the wall clock time spent in
// epoll_wait() and friends so profiling tools can filter it out. The samples
// still end up in v8.log but with state=IDLE rather than state=EXTERNAL.
// TODO(bnoordhuis) Depends on a libuv implementation detail that we should
// probably fortify in the API contract, namely that the last started prepare
// or check watcher runs first. It's not 100% foolproof; if an add-on starts
// a prepare or check watcher after us, any samples attributed to its callback
// will be recorded with state=IDLE.
uv_prepare_init(event_loop(), &idle_prepare_handle_);
uv_check_init(event_loop(), &idle_check_handle_);
uv_async_init(
event_loop(),
&task_queues_async_,
[](uv_async_t* async) {
Environment* env = ContainerOf(
&Environment::task_queues_async_, async);
env->CleanupFinalizationGroups();
env->RunAndClearNativeImmediates();
});
uv_unref(reinterpret_cast<uv_handle_t*>(&idle_prepare_handle_));
uv_unref(reinterpret_cast<uv_handle_t*>(&idle_check_handle_));
uv_unref(reinterpret_cast<uv_handle_t*>(&task_queues_async_));
// Register clean-up cb to be called to clean up the handles
// when the environment is freed, note that they are not cleaned in
// the one environment per process setup, but will be called in
// FreeEnvironment.
RegisterHandleCleanups();
if (start_profiler_idle_notifier) {
StartProfilerIdleNotifier();
}
static uv_once_t init_once = UV_ONCE_INIT;
uv_once(&init_once, InitThreadLocalOnce);
uv_key_set(&thread_local_env, this);
}
void Environment::ExitEnv() {
set_can_call_into_js(false);
set_stopping(true);
isolate_->TerminateExecution();
SetImmediateThreadsafe([](Environment* env) { uv_stop(env->event_loop()); });
}
void Environment::RegisterHandleCleanups() {
HandleCleanupCb close_and_finish = [](Environment* env, uv_handle_t* handle,
void* arg) {
handle->data = env;
env->CloseHandle(handle, [](uv_handle_t* handle) {
#ifdef DEBUG
memset(handle, 0xab, uv_handle_size(handle->type));
#endif
});
};
auto register_handle = [&](uv_handle_t* handle) {
RegisterHandleCleanup(handle, close_and_finish, nullptr);
};
register_handle(reinterpret_cast<uv_handle_t*>(timer_handle()));
register_handle(reinterpret_cast<uv_handle_t*>(immediate_check_handle()));
register_handle(reinterpret_cast<uv_handle_t*>(immediate_idle_handle()));
register_handle(reinterpret_cast<uv_handle_t*>(&idle_prepare_handle_));
register_handle(reinterpret_cast<uv_handle_t*>(&idle_check_handle_));
register_handle(reinterpret_cast<uv_handle_t*>(&task_queues_async_));
}
void Environment::CleanupHandles() {
Isolate::DisallowJavascriptExecutionScope disallow_js(isolate(),
Isolate::DisallowJavascriptExecutionScope::THROW_ON_FAILURE);
RunAndClearNativeImmediates(true /* skip SetUnrefImmediate()s */);
for (ReqWrapBase* request : req_wrap_queue_)
request->Cancel();
for (HandleWrap* handle : handle_wrap_queue_)
handle->Close();
for (HandleCleanup& hc : handle_cleanup_queue_)
hc.cb_(this, hc.handle_, hc.arg_);
handle_cleanup_queue_.clear();
while (handle_cleanup_waiting_ != 0 ||
request_waiting_ != 0 ||
!handle_wrap_queue_.IsEmpty()) {
uv_run(event_loop(), UV_RUN_ONCE);
}
file_handle_read_wrap_freelist_.clear();
}
void Environment::StartProfilerIdleNotifier() {
if (profiler_idle_notifier_started_)
return;
profiler_idle_notifier_started_ = true;
uv_prepare_start(&idle_prepare_handle_, [](uv_prepare_t* handle) {
Environment* env = ContainerOf(&Environment::idle_prepare_handle_, handle);
env->isolate()->SetIdle(true);
});
uv_check_start(&idle_check_handle_, [](uv_check_t* handle) {
Environment* env = ContainerOf(&Environment::idle_check_handle_, handle);
env->isolate()->SetIdle(false);
});
}
void Environment::StopProfilerIdleNotifier() {
profiler_idle_notifier_started_ = false;
uv_prepare_stop(&idle_prepare_handle_);
uv_check_stop(&idle_check_handle_);
}
void Environment::PrintSyncTrace() const {
if (!trace_sync_io_) return;
HandleScope handle_scope(isolate());
fprintf(
stderr, "(node:%d) WARNING: Detected use of sync API\n", uv_os_getpid());
PrintStackTrace(isolate(),
StackTrace::CurrentStackTrace(
isolate(), stack_trace_limit(), StackTrace::kDetailed));
}
void Environment::RunCleanup() {
started_cleanup_ = true;
TraceEventScope trace_scope(TRACING_CATEGORY_NODE1(environment),
"RunCleanup", this);
CleanupHandles();
while (!cleanup_hooks_.empty()) {
// Copy into a vector, since we can't sort an unordered_set in-place.
std::vector<CleanupHookCallback> callbacks(
cleanup_hooks_.begin(), cleanup_hooks_.end());
// We can't erase the copied elements from `cleanup_hooks_` yet, because we
// need to be able to check whether they were un-scheduled by another hook.
std::sort(callbacks.begin(), callbacks.end(),
[](const CleanupHookCallback& a, const CleanupHookCallback& b) {
// Sort in descending order so that the most recently inserted callbacks
// are run first.
return a.insertion_order_counter_ > b.insertion_order_counter_;
});
for (const CleanupHookCallback& cb : callbacks) {
if (cleanup_hooks_.count(cb) == 0) {
// This hook was removed from the `cleanup_hooks_` set during another
// hook that was run earlier. Nothing to do here.
continue;
}
cb.fn_(cb.arg_);
cleanup_hooks_.erase(cb);
}
CleanupHandles();
}
}
void Environment::RunAtExitCallbacks() {
TraceEventScope trace_scope(TRACING_CATEGORY_NODE1(environment),
"AtExit", this);
for (ExitCallback at_exit : at_exit_functions_) {
at_exit.cb_(at_exit.arg_);
}
at_exit_functions_.clear();
}
void Environment::AtExit(void (*cb)(void* arg), void* arg) {
at_exit_functions_.push_front(ExitCallback{cb, arg});
}
void Environment::RunAndClearInterrupts() {
while (native_immediates_interrupts_.size() > 0) {
NativeImmediateQueue queue;
{
Mutex::ScopedLock lock(native_immediates_threadsafe_mutex_);
queue.ConcatMove(std::move(native_immediates_interrupts_));
}
DebugSealHandleScope seal_handle_scope(isolate());
while (auto head = queue.Shift())
head->Call(this);
}
}
void Environment::RunAndClearNativeImmediates(bool only_refed) {
TraceEventScope trace_scope(TRACING_CATEGORY_NODE1(environment),
"RunAndClearNativeImmediates", this);
size_t ref_count = 0;
// Handle interrupts first. These functions are not allowed to throw
// exceptions, so we do not need to handle that.
RunAndClearInterrupts();
auto drain_list = [&](NativeImmediateQueue* queue) {
TryCatchScope try_catch(this);
DebugSealHandleScope seal_handle_scope(isolate());
while (auto head = queue->Shift()) {
if (head->is_refed())
ref_count++;
if (head->is_refed() || !only_refed)
head->Call(this);
head.reset(); // Destroy now so that this is also observed by try_catch.
if (UNLIKELY(try_catch.HasCaught())) {
if (!try_catch.HasTerminated() && can_call_into_js())
errors::TriggerUncaughtException(isolate(), try_catch);
return true;
}
}
return false;
};
while (drain_list(&native_immediates_)) {}
immediate_info()->ref_count_dec(ref_count);
if (immediate_info()->ref_count() == 0)
ToggleImmediateRef(false);
// It is safe to check .size() first, because there is a causal relationship
// between pushes to the threadsafe immediate list and this function being
// called. For the common case, it's worth checking the size first before
// establishing a mutex lock.
// This is intentionally placed after the `ref_count` handling, because when
// refed threadsafe immediates are created, they are not counted towards the
// count in immediate_info() either.
NativeImmediateQueue threadsafe_immediates;
if (native_immediates_threadsafe_.size() > 0) {
Mutex::ScopedLock lock(native_immediates_threadsafe_mutex_);
threadsafe_immediates.ConcatMove(std::move(native_immediates_threadsafe_));
}
while (drain_list(&threadsafe_immediates)) {}
}
void Environment::RequestInterruptFromV8() {
if (interrupt_data_ != nullptr) return; // Already scheduled.
// The Isolate may outlive the Environment, so some logic to handle the
// situation in which the Environment is destroyed before the handler runs
// is required.
interrupt_data_ = new Environment*(this);
isolate()->RequestInterrupt([](Isolate* isolate, void* data) {
std::unique_ptr<Environment*> env_ptr { static_cast<Environment**>(data) };
Environment* env = *env_ptr;
if (env == nullptr) {
// The Environment has already been destroyed. That should be okay; any
// callback added before the Environment shuts down would have been
// handled during cleanup.
return;
}
env->interrupt_data_ = nullptr;
env->RunAndClearInterrupts();
}, interrupt_data_);
}
void Environment::ScheduleTimer(int64_t duration_ms) {
if (started_cleanup_) return;
uv_timer_start(timer_handle(), RunTimers, duration_ms, 0);
}
void Environment::ToggleTimerRef(bool ref) {
if (started_cleanup_) return;
if (ref) {
uv_ref(reinterpret_cast<uv_handle_t*>(timer_handle()));
} else {
uv_unref(reinterpret_cast<uv_handle_t*>(timer_handle()));
}
}
void Environment::RunTimers(uv_timer_t* handle) {
Environment* env = Environment::from_timer_handle(handle);
TraceEventScope trace_scope(TRACING_CATEGORY_NODE1(environment),
"RunTimers", env);
if (!env->can_call_into_js())
return;
HandleScope handle_scope(env->isolate());
Context::Scope context_scope(env->context());
Local<Object> process = env->process_object();
InternalCallbackScope scope(env, process, {0, 0});
Local<Function> cb = env->timers_callback_function();
MaybeLocal<Value> ret;
Local<Value> arg = env->GetNow();
// This code will loop until all currently due timers will process. It is
// impossible for us to end up in an infinite loop due to how the JS-side
// is structured.
do {
TryCatchScope try_catch(env);
try_catch.SetVerbose(true);
ret = cb->Call(env->context(), process, 1, &arg);
} while (ret.IsEmpty() && env->can_call_into_js());
// NOTE(apapirovski): If it ever becomes possible that `call_into_js` above
// is reset back to `true` after being previously set to `false` then this
// code becomes invalid and needs to be rewritten. Otherwise catastrophic
// timers corruption will occur and all timers behaviour will become
// entirely unpredictable.
if (ret.IsEmpty())
return;
// To allow for less JS-C++ boundary crossing, the value returned from JS
// serves a few purposes:
// 1. If it's 0, no more timers exist and the handle should be unrefed
// 2. If it's > 0, the value represents the next timer's expiry and there
// is at least one timer remaining that is refed.
// 3. If it's < 0, the absolute value represents the next timer's expiry
// and there are no timers that are refed.
int64_t expiry_ms =
ret.ToLocalChecked()->IntegerValue(env->context()).FromJust();
uv_handle_t* h = reinterpret_cast<uv_handle_t*>(handle);
if (expiry_ms != 0) {
int64_t duration_ms =
llabs(expiry_ms) - (uv_now(env->event_loop()) - env->timer_base());
env->ScheduleTimer(duration_ms > 0 ? duration_ms : 1);
if (expiry_ms > 0)
uv_ref(h);
else
uv_unref(h);
} else {
uv_unref(h);
}
}
void Environment::CheckImmediate(uv_check_t* handle) {
Environment* env = Environment::from_immediate_check_handle(handle);
TraceEventScope trace_scope(TRACING_CATEGORY_NODE1(environment),
"CheckImmediate", env);
HandleScope scope(env->isolate());
Context::Scope context_scope(env->context());
env->RunAndClearNativeImmediates();
if (env->immediate_info()->count() == 0 || !env->can_call_into_js())
return;
do {
MakeCallback(env->isolate(),
env->process_object(),
env->immediate_callback_function(),
0,
nullptr,
{0, 0}).ToLocalChecked();
} while (env->immediate_info()->has_outstanding() && env->can_call_into_js());
if (env->immediate_info()->ref_count() == 0)
env->ToggleImmediateRef(false);
}
void Environment::ToggleImmediateRef(bool ref) {
if (started_cleanup_) return;
if (ref) {
// Idle handle is needed only to stop the event loop from blocking in poll.
uv_idle_start(immediate_idle_handle(), [](uv_idle_t*){ });
} else {
uv_idle_stop(immediate_idle_handle());
}
}
Local<Value> Environment::GetNow() {
uv_update_time(event_loop());
uint64_t now = uv_now(event_loop());
CHECK_GE(now, timer_base());
now -= timer_base();
if (now <= 0xffffffff)
return Integer::NewFromUnsigned(isolate(), static_cast<uint32_t>(now));
else
return Number::New(isolate(), static_cast<double>(now));
}
void CollectExceptionInfo(Environment* env,
Local<Object> obj,
int errorno,
const char* err_string,
const char* syscall,
const char* message,
const char* path,
const char* dest) {
obj->Set(env->context(),
env->errno_string(),
Integer::New(env->isolate(), errorno)).Check();
obj->Set(env->context(), env->code_string(),
OneByteString(env->isolate(), err_string)).Check();
if (message != nullptr) {
obj->Set(env->context(), env->message_string(),
OneByteString(env->isolate(), message)).Check();
}
Local<Value> path_buffer;
if (path != nullptr) {
path_buffer =
Buffer::Copy(env->isolate(), path, strlen(path)).ToLocalChecked();
obj->Set(env->context(), env->path_string(), path_buffer).Check();
}
Local<Value> dest_buffer;
if (dest != nullptr) {
dest_buffer =
Buffer::Copy(env->isolate(), dest, strlen(dest)).ToLocalChecked();
obj->Set(env->context(), env->dest_string(), dest_buffer).Check();
}
if (syscall != nullptr) {
obj->Set(env->context(), env->syscall_string(),
OneByteString(env->isolate(), syscall)).Check();
}
}
void Environment::CollectUVExceptionInfo(Local<Value> object,
int errorno,
const char* syscall,
const char* message,
const char* path,
const char* dest) {
if (!object->IsObject() || errorno == 0)
return;
Local<Object> obj = object.As<Object>();
const char* err_string = uv_err_name(errorno);
if (message == nullptr || message[0] == '\0') {
message = uv_strerror(errorno);
}
node::CollectExceptionInfo(this, obj, errorno, err_string,
syscall, message, path, dest);
}
void ImmediateInfo::MemoryInfo(MemoryTracker* tracker) const {
tracker->TrackField("fields", fields_);
}
void TickInfo::MemoryInfo(MemoryTracker* tracker) const {
tracker->TrackField("fields", fields_);
}
void AsyncHooks::MemoryInfo(MemoryTracker* tracker) const {
tracker->TrackField("async_ids_stack", async_ids_stack_);
tracker->TrackField("fields", fields_);
tracker->TrackField("async_id_fields", async_id_fields_);
}
void AsyncHooks::grow_async_ids_stack() {
async_ids_stack_.reserve(async_ids_stack_.Length() * 3);
env()->async_hooks_binding()->Set(
env()->context(),
env()->async_ids_stack_string(),
async_ids_stack_.GetJSArray()).Check();
}
uv_key_t Environment::thread_local_env = {};
void Environment::Exit(int exit_code) {
if (options()->trace_exit) {
HandleScope handle_scope(isolate());
if (is_main_thread()) {
fprintf(stderr, "(node:%d) ", uv_os_getpid());
} else {
fprintf(stderr, "(node:%d, thread:%" PRIu64 ") ",
uv_os_getpid(), thread_id());
}
fprintf(
stderr, "WARNING: Exited the environment with code %d\n", exit_code);
PrintStackTrace(isolate(),
StackTrace::CurrentStackTrace(
isolate(), stack_trace_limit(), StackTrace::kDetailed));
}
if (is_main_thread()) {
set_can_call_into_js(false);
stop_sub_worker_contexts();
DisposePlatform();
exit(exit_code);
} else {
worker_context_->Exit(exit_code);
}
}
void Environment::stop_sub_worker_contexts() {
while (!sub_worker_contexts_.empty()) {
Worker* w = *sub_worker_contexts_.begin();
remove_sub_worker_context(w);
w->Exit(1);
w->JoinThread();
}
}
Environment* Environment::worker_parent_env() const {
if (worker_context_ == nullptr) return nullptr;
return worker_context_->env();
}
void Environment::BuildEmbedderGraph(Isolate* isolate,
EmbedderGraph* graph,
void* data) {
MemoryTracker tracker(isolate, graph);
Environment* env = static_cast<Environment*>(data);
tracker.Track(env);
env->ForEachBaseObject([&](BaseObject* obj) {
if (obj->IsDoneInitializing())
tracker.Track(obj);
});
}
inline size_t Environment::SelfSize() const {
size_t size = sizeof(*this);
// Remove non pointer fields that will be tracked in MemoryInfo()
// TODO(joyeecheung): refactor the MemoryTracker interface so
// this can be done for common types within the Track* calls automatically
// if a certain scope is entered.
size -= sizeof(async_hooks_);
size -= sizeof(tick_info_);
size -= sizeof(immediate_info_);
return size;
}
void Environment::MemoryInfo(MemoryTracker* tracker) const {
// Iteratable STLs have their own sizes subtracted from the parent
// by default.
tracker->TrackField("isolate_data", isolate_data_);
tracker->TrackField("native_modules_with_cache", native_modules_with_cache);
tracker->TrackField("native_modules_without_cache",
native_modules_without_cache);
tracker->TrackField("destroy_async_id_list", destroy_async_id_list_);
tracker->TrackField("exec_argv", exec_argv_);
tracker->TrackField("should_abort_on_uncaught_toggle",
should_abort_on_uncaught_toggle_);
tracker->TrackField("stream_base_state", stream_base_state_);
tracker->TrackField("fs_stats_field_array", fs_stats_field_array_);
tracker->TrackField("fs_stats_field_bigint_array",
fs_stats_field_bigint_array_);
tracker->TrackFieldWithSize(
"cleanup_hooks", cleanup_hooks_.size() * sizeof(CleanupHookCallback));
tracker->TrackField("async_hooks", async_hooks_);
tracker->TrackField("immediate_info", immediate_info_);
tracker->TrackField("tick_info", tick_info_);
#define V(PropertyName, TypeName) \
tracker->TrackField(#PropertyName, PropertyName());
ENVIRONMENT_STRONG_PERSISTENT_VALUES(V)
#undef V
// FIXME(joyeecheung): track other fields in Environment.
// Currently MemoryTracker is unable to track these
// correctly:
// - Internal types that do not implement MemoryRetainer yet
// - STL containers with MemoryRetainer* inside
// - STL containers with numeric types inside that should not have their
// nodes elided e.g. numeric keys in maps.
// We also need to make sure that when we add a non-pointer field as its own
// node, we shift its sizeof() size out of the Environment node.
}
char* Environment::Reallocate(char* data, size_t old_size, size_t size) {
if (old_size == size) return data;
// If we know that the allocator is our ArrayBufferAllocator, we can let
// if reallocate directly.
if (isolate_data()->uses_node_allocator()) {
return static_cast<char*>(
isolate_data()->node_allocator()->Reallocate(data, old_size, size));
}
// Generic allocators do not provide a reallocation method; we need to
// allocate a new chunk of memory and copy the data over.
char* new_data = AllocateUnchecked(size);
if (new_data == nullptr) return nullptr;
memcpy(new_data, data, std::min(size, old_size));
if (size > old_size)
memset(new_data + old_size, 0, size - old_size);
Free(data, old_size);
return new_data;
}
void Environment::AddArrayBufferAllocatorToKeepAliveUntilIsolateDispose(
std::shared_ptr<v8::ArrayBuffer::Allocator> allocator) {
if (keep_alive_allocators_ == nullptr) {
MultiIsolatePlatform* platform = isolate_data()->platform();
CHECK_NOT_NULL(platform);
keep_alive_allocators_ = new ArrayBufferAllocatorList();
platform->AddIsolateFinishedCallback(isolate(), [](void* data) {
delete static_cast<ArrayBufferAllocatorList*>(data);
}, static_cast<void*>(keep_alive_allocators_));
}
keep_alive_allocators_->insert(allocator);
}
void Environment::RunWeakRefCleanup() {
isolate()->ClearKeptObjects();
}
void Environment::CleanupFinalizationGroups() {
HandleScope handle_scope(isolate());
Context::Scope context_scope(context());
TryCatchScope try_catch(this);
while (!cleanup_finalization_groups_.empty() && can_call_into_js()) {
Local<FinalizationGroup> fg =
cleanup_finalization_groups_.front().Get(isolate());
cleanup_finalization_groups_.pop_front();
if (!FinalizationGroup::Cleanup(fg).FromMaybe(false)) {
if (try_catch.HasCaught() && !try_catch.HasTerminated())
errors::TriggerUncaughtException(isolate(), try_catch);
// Re-schedule the execution of the remainder of the queue.
uv_async_send(&task_queues_async_);
return;
}
}
}
// Not really any better place than env.cc at this moment.
void BaseObject::DeleteMe(void* data) {
BaseObject* self = static_cast<BaseObject*>(data);
if (self->has_pointer_data() &&
self->pointer_data()->strong_ptr_count > 0) {
return self->Detach();
}
delete self;
}
bool BaseObject::IsDoneInitializing() const { return true; }
Local<Object> BaseObject::WrappedObject() const {
return object();
}
bool BaseObject::IsRootNode() const {
return !persistent_handle_.IsWeak();
}
} // namespace node