lts/src/node_worker.cc
#include "node_worker.h"
#include "debug_utils-inl.h"
#include "memory_tracker-inl.h"
#include "node_errors.h"
#include "node_buffer.h"
#include "node_options-inl.h"
#include "node_perf.h"
#include "util-inl.h"
#include "async_wrap-inl.h"
#if HAVE_INSPECTOR
#include "inspector/worker_inspector.h" // ParentInspectorHandle
#endif
#include <memory>
#include <string>
#include <vector>
using node::kAllowedInEnvironment;
using node::kDisallowedInEnvironment;
using v8::Array;
using v8::ArrayBuffer;
using v8::Boolean;
using v8::Context;
using v8::Float64Array;
using v8::FunctionCallbackInfo;
using v8::FunctionTemplate;
using v8::HandleScope;
using v8::Integer;
using v8::Isolate;
using v8::Local;
using v8::Locker;
using v8::MaybeLocal;
using v8::Null;
using v8::Number;
using v8::Object;
using v8::ResourceConstraints;
using v8::SealHandleScope;
using v8::String;
using v8::TryCatch;
using v8::Value;
namespace node {
namespace worker {
Worker::Worker(Environment* env,
Local<Object> wrap,
const std::string& url,
std::shared_ptr<PerIsolateOptions> per_isolate_opts,
std::vector<std::string>&& exec_argv,
std::shared_ptr<KVStore> env_vars)
: AsyncWrap(env, wrap, AsyncWrap::PROVIDER_WORKER),
per_isolate_opts_(per_isolate_opts),
exec_argv_(exec_argv),
platform_(env->isolate_data()->platform()),
array_buffer_allocator_(ArrayBufferAllocator::Create()),
start_profiler_idle_notifier_(env->profiler_idle_notifier_started()),
thread_id_(Environment::AllocateThreadId()),
env_vars_(env_vars) {
Debug(this, "Creating new worker instance with thread id %llu", thread_id_);
// Set up everything that needs to be set up in the parent environment.
parent_port_ = MessagePort::New(env, env->context());
if (parent_port_ == nullptr) {
// This can happen e.g. because execution is terminating.
return;
}
child_port_data_ = std::make_unique<MessagePortData>(nullptr);
MessagePort::Entangle(parent_port_, child_port_data_.get());
object()->Set(env->context(),
env->message_port_string(),
parent_port_->object()).Check();
object()->Set(env->context(),
env->thread_id_string(),
Number::New(env->isolate(), static_cast<double>(thread_id_)))
.Check();
#if HAVE_INSPECTOR
inspector_parent_handle_ =
env->inspector_agent()->GetParentHandle(thread_id_, url);
#endif
argv_ = std::vector<std::string>{env->argv()[0]};
// Mark this Worker object as weak until we actually start the thread.
MakeWeak();
Debug(this, "Preparation for worker %llu finished", thread_id_);
}
bool Worker::is_stopped() const {
Mutex::ScopedLock lock(mutex_);
if (env_ != nullptr)
return env_->is_stopping();
return stopped_;
}
std::shared_ptr<ArrayBufferAllocator> Worker::array_buffer_allocator() {
return array_buffer_allocator_;
}
void Worker::UpdateResourceConstraints(ResourceConstraints* constraints) {
constraints->set_stack_limit(reinterpret_cast<uint32_t*>(stack_base_));
constexpr double kMB = 1024 * 1024;
if (resource_limits_[kMaxYoungGenerationSizeMb] > 0) {
constraints->set_max_young_generation_size_in_bytes(
resource_limits_[kMaxYoungGenerationSizeMb] * kMB);
} else {
resource_limits_[kMaxYoungGenerationSizeMb] =
constraints->max_young_generation_size_in_bytes() / kMB;
}
if (resource_limits_[kMaxOldGenerationSizeMb] > 0) {
constraints->set_max_old_generation_size_in_bytes(
resource_limits_[kMaxOldGenerationSizeMb] * kMB);
} else {
resource_limits_[kMaxOldGenerationSizeMb] =
constraints->max_old_generation_size_in_bytes() / kMB;
}
if (resource_limits_[kCodeRangeSizeMb] > 0) {
constraints->set_code_range_size_in_bytes(
resource_limits_[kCodeRangeSizeMb] * kMB);
} else {
resource_limits_[kCodeRangeSizeMb] =
constraints->code_range_size_in_bytes() / kMB;
}
}
// This class contains data that is only relevant to the child thread itself,
// and only while it is running.
// (Eventually, the Environment instance should probably also be moved here.)
class WorkerThreadData {
public:
explicit WorkerThreadData(Worker* w)
: w_(w) {
int ret = uv_loop_init(&loop_);
if (ret != 0) {
char err_buf[128];
uv_err_name_r(ret, err_buf, sizeof(err_buf));
w->custom_error_ = "ERR_WORKER_INIT_FAILED";
w->custom_error_str_ = err_buf;
w->stopped_ = true;
return;
}
loop_init_failed_ = false;
Isolate::CreateParams params;
SetIsolateCreateParamsForNode(¶ms);
params.array_buffer_allocator = w->array_buffer_allocator_.get();
w->UpdateResourceConstraints(¶ms.constraints);
Isolate* isolate = Isolate::Allocate();
if (isolate == nullptr) {
w->custom_error_ = "ERR_WORKER_OUT_OF_MEMORY";
w->custom_error_str_ = "Failed to create new Isolate";
w->stopped_ = true;
return;
}
w->platform_->RegisterIsolate(isolate, &loop_);
Isolate::Initialize(isolate, params);
SetIsolateUpForNode(isolate);
isolate->AddNearHeapLimitCallback(Worker::NearHeapLimit, w);
{
Locker locker(isolate);
Isolate::Scope isolate_scope(isolate);
// V8 computes its stack limit the first time a `Locker` is used based on
// --stack-size. Reset it to the correct value.
isolate->SetStackLimit(w->stack_base_);
HandleScope handle_scope(isolate);
isolate_data_.reset(CreateIsolateData(isolate,
&loop_,
w_->platform_,
w->array_buffer_allocator_.get()));
CHECK(isolate_data_);
if (w_->per_isolate_opts_)
isolate_data_->set_options(std::move(w_->per_isolate_opts_));
}
Mutex::ScopedLock lock(w_->mutex_);
w_->isolate_ = isolate;
}
~WorkerThreadData() {
Debug(w_, "Worker %llu dispose isolate", w_->thread_id_);
Isolate* isolate;
{
Mutex::ScopedLock lock(w_->mutex_);
isolate = w_->isolate_;
w_->isolate_ = nullptr;
}
if (isolate != nullptr) {
CHECK(!loop_init_failed_);
bool platform_finished = false;
isolate_data_.reset();
w_->platform_->AddIsolateFinishedCallback(isolate, [](void* data) {
*static_cast<bool*>(data) = true;
}, &platform_finished);
// The order of these calls is important; if the Isolate is first disposed
// and then unregistered, there is a race condition window in which no
// new Isolate at the same address can successfully be registered with
// the platform.
// (Refs: https://github.com/nodejs/node/issues/30846)
w_->platform_->UnregisterIsolate(isolate);
isolate->Dispose();
// Wait until the platform has cleaned up all relevant resources.
while (!platform_finished) {
uv_run(&loop_, UV_RUN_ONCE);
}
}
if (!loop_init_failed_) {
CheckedUvLoopClose(&loop_);
}
}
bool loop_is_usable() const { return !loop_init_failed_; }
private:
Worker* const w_;
uv_loop_t loop_;
bool loop_init_failed_ = true;
DeleteFnPtr<IsolateData, FreeIsolateData> isolate_data_;
friend class Worker;
};
size_t Worker::NearHeapLimit(void* data, size_t current_heap_limit,
size_t initial_heap_limit) {
Worker* worker = static_cast<Worker*>(data);
worker->custom_error_ = "ERR_WORKER_OUT_OF_MEMORY";
worker->custom_error_str_ = "JS heap out of memory";
worker->Exit(1);
// Give the current GC some extra leeway to let it finish rather than
// crash hard. We are not going to perform further allocations anyway.
constexpr size_t kExtraHeapAllowance = 16 * 1024 * 1024;
return current_heap_limit + kExtraHeapAllowance;
}
void Worker::Run() {
std::string name = "WorkerThread ";
name += std::to_string(thread_id_);
TRACE_EVENT_METADATA1(
"__metadata", "thread_name", "name",
TRACE_STR_COPY(name.c_str()));
CHECK_NOT_NULL(platform_);
Debug(this, "Creating isolate for worker with id %llu", thread_id_);
WorkerThreadData data(this);
if (isolate_ == nullptr) return;
CHECK(data.loop_is_usable());
Debug(this, "Starting worker with id %llu", thread_id_);
{
Locker locker(isolate_);
Isolate::Scope isolate_scope(isolate_);
SealHandleScope outer_seal(isolate_);
DeleteFnPtr<Environment, FreeEnvironment> env_;
auto cleanup_env = OnScopeLeave([&]() {
// TODO(addaleax): This call is harmless but should not be necessary.
// Figure out why V8 is raising a DCHECK() here without it
// (in test/parallel/test-async-hooks-worker-asyncfn-terminate-4.js).
isolate_->CancelTerminateExecution();
if (!env_) return;
env_->set_can_call_into_js(false);
Isolate::DisallowJavascriptExecutionScope disallow_js(isolate_,
Isolate::DisallowJavascriptExecutionScope::THROW_ON_FAILURE);
{
Context::Scope context_scope(env_->context());
{
Mutex::ScopedLock lock(mutex_);
stopped_ = true;
this->env_ = nullptr;
}
env_->set_stopping(true);
env_->stop_sub_worker_contexts();
env_->RunCleanup();
RunAtExit(env_.get());
// This call needs to be made while the `Environment` is still alive
// because we assume that it is available for async tracking in the
// NodePlatform implementation.
platform_->DrainTasks(isolate_);
}
});
if (is_stopped()) return;
{
HandleScope handle_scope(isolate_);
Local<Context> context;
{
// We create the Context object before we have an Environment* in place
// that we could use for error handling. If creation fails due to
// resource constraints, we need something in place to handle it,
// though.
TryCatch try_catch(isolate_);
context = NewContext(isolate_);
if (context.IsEmpty()) {
custom_error_ = "ERR_WORKER_OUT_OF_MEMORY";
custom_error_str_ = "Failed to create new Context";
return;
}
}
if (is_stopped()) return;
CHECK(!context.IsEmpty());
Context::Scope context_scope(context);
{
// TODO(addaleax): Use CreateEnvironment(), or generally another
// public API.
env_.reset(new Environment(data.isolate_data_.get(),
context,
std::move(argv_),
std::move(exec_argv_),
Environment::kNoFlags,
thread_id_));
CHECK_NOT_NULL(env_);
env_->set_env_vars(std::move(env_vars_));
env_->set_abort_on_uncaught_exception(false);
env_->set_worker_context(this);
env_->InitializeLibuv(start_profiler_idle_notifier_);
}
{
Mutex::ScopedLock lock(mutex_);
if (stopped_) return;
this->env_ = env_.get();
}
Debug(this, "Created Environment for worker with id %llu", thread_id_);
if (is_stopped()) return;
{
env_->InitializeDiagnostics();
#if HAVE_INSPECTOR
env_->InitializeInspector(std::move(inspector_parent_handle_));
#endif
HandleScope handle_scope(isolate_);
if (!env_->RunBootstrapping().IsEmpty()) {
CreateEnvMessagePort(env_.get());
if (is_stopped()) return;
Debug(this, "Created message port for worker %llu", thread_id_);
USE(StartExecution(env_.get(), "internal/main/worker_thread"));
}
Debug(this, "Loaded environment for worker %llu", thread_id_);
}
if (is_stopped()) return;
{
SealHandleScope seal(isolate_);
bool more;
env_->performance_state()->Mark(
node::performance::NODE_PERFORMANCE_MILESTONE_LOOP_START);
do {
if (is_stopped()) break;
uv_run(&data.loop_, UV_RUN_DEFAULT);
if (is_stopped()) break;
platform_->DrainTasks(isolate_);
more = uv_loop_alive(&data.loop_);
if (more && !is_stopped()) continue;
EmitBeforeExit(env_.get());
// Emit `beforeExit` if the loop became alive either after emitting
// event, or after running some callbacks.
more = uv_loop_alive(&data.loop_);
} while (more == true && !is_stopped());
env_->performance_state()->Mark(
node::performance::NODE_PERFORMANCE_MILESTONE_LOOP_EXIT);
}
}
{
int exit_code;
bool stopped = is_stopped();
if (!stopped)
exit_code = EmitExit(env_.get());
Mutex::ScopedLock lock(mutex_);
if (exit_code_ == 0 && !stopped)
exit_code_ = exit_code;
Debug(this, "Exiting thread for worker %llu with exit code %d",
thread_id_, exit_code_);
}
}
Debug(this, "Worker %llu thread stops", thread_id_);
}
void Worker::CreateEnvMessagePort(Environment* env) {
HandleScope handle_scope(isolate_);
Mutex::ScopedLock lock(mutex_);
// Set up the message channel for receiving messages in the child.
MessagePort* child_port = MessagePort::New(env,
env->context(),
std::move(child_port_data_));
// MessagePort::New() may return nullptr if execution is terminated
// within it.
if (child_port != nullptr)
env->set_message_port(child_port->object(isolate_));
}
void Worker::JoinThread() {
if (thread_joined_)
return;
CHECK_EQ(uv_thread_join(&tid_), 0);
thread_joined_ = true;
env()->remove_sub_worker_context(this);
{
HandleScope handle_scope(env()->isolate());
Context::Scope context_scope(env()->context());
// Reset the parent port as we're closing it now anyway.
object()->Set(env()->context(),
env()->message_port_string(),
Undefined(env()->isolate())).Check();
Local<Value> args[] = {
Integer::New(env()->isolate(), exit_code_),
custom_error_ != nullptr
? OneByteString(env()->isolate(), custom_error_).As<Value>()
: Null(env()->isolate()).As<Value>(),
!custom_error_str_.empty()
? OneByteString(env()->isolate(), custom_error_str_.c_str())
.As<Value>()
: Null(env()->isolate()).As<Value>(),
};
MakeCallback(env()->onexit_string(), arraysize(args), args);
}
// We cleared all libuv handles bound to this Worker above,
// the C++ object is no longer needed for anything now.
MakeWeak();
}
Worker::~Worker() {
Mutex::ScopedLock lock(mutex_);
CHECK(stopped_);
CHECK_NULL(env_);
CHECK(thread_joined_);
Debug(this, "Worker %llu destroyed", thread_id_);
}
void Worker::New(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Isolate* isolate = args.GetIsolate();
CHECK(args.IsConstructCall());
if (env->isolate_data()->platform() == nullptr) {
THROW_ERR_MISSING_PLATFORM_FOR_WORKER(env);
return;
}
std::string url;
std::shared_ptr<PerIsolateOptions> per_isolate_opts = nullptr;
std::shared_ptr<KVStore> env_vars = nullptr;
std::vector<std::string> exec_argv_out;
CHECK_EQ(args.Length(), 4);
// Argument might be a string or URL
if (!args[0]->IsNullOrUndefined()) {
Utf8Value value(
isolate, args[0]->ToString(env->context()).FromMaybe(Local<String>()));
url.append(value.out(), value.length());
}
if (args[1]->IsNull()) {
// Means worker.env = { ...process.env }.
env_vars = env->env_vars()->Clone(isolate);
} else if (args[1]->IsObject()) {
// User provided env.
env_vars = KVStore::CreateMapKVStore();
env_vars->AssignFromObject(isolate->GetCurrentContext(),
args[1].As<Object>());
} else {
// Env is shared.
env_vars = env->env_vars();
}
if (args[1]->IsObject() || args[2]->IsArray()) {
per_isolate_opts.reset(new PerIsolateOptions());
HandleEnvOptions(per_isolate_opts->per_env, [&env_vars](const char* name) {
return env_vars->Get(name).FromMaybe("");
});
#ifndef NODE_WITHOUT_NODE_OPTIONS
MaybeLocal<String> maybe_node_opts =
env_vars->Get(isolate, OneByteString(isolate, "NODE_OPTIONS"));
Local<String> node_opts;
if (maybe_node_opts.ToLocal(&node_opts)) {
std::string node_options(*String::Utf8Value(isolate, node_opts));
std::vector<std::string> errors{};
std::vector<std::string> env_argv =
ParseNodeOptionsEnvVar(node_options, &errors);
// [0] is expected to be the program name, add dummy string.
env_argv.insert(env_argv.begin(), "");
std::vector<std::string> invalid_args{};
options_parser::Parse(&env_argv,
nullptr,
&invalid_args,
per_isolate_opts.get(),
kAllowedInEnvironment,
&errors);
if (errors.size() > 0 && args[1]->IsObject()) {
// Only fail for explicitly provided env, this protects from failures
// when NODE_OPTIONS from parent's env is used (which is the default).
Local<Value> error;
if (!ToV8Value(env->context(), errors).ToLocal(&error)) return;
Local<String> key =
FIXED_ONE_BYTE_STRING(env->isolate(), "invalidNodeOptions");
// Ignore the return value of Set() because exceptions bubble up to JS
// when we return anyway.
USE(args.This()->Set(env->context(), key, error));
return;
}
}
#endif
}
if (args[2]->IsArray()) {
Local<Array> array = args[2].As<Array>();
// The first argument is reserved for program name, but we don't need it
// in workers.
std::vector<std::string> exec_argv = {""};
uint32_t length = array->Length();
for (uint32_t i = 0; i < length; i++) {
Local<Value> arg;
if (!array->Get(env->context(), i).ToLocal(&arg)) {
return;
}
Local<String> arg_v8;
if (!arg->ToString(env->context()).ToLocal(&arg_v8)) {
return;
}
Utf8Value arg_utf8_value(args.GetIsolate(), arg_v8);
std::string arg_string(arg_utf8_value.out(), arg_utf8_value.length());
exec_argv.push_back(arg_string);
}
std::vector<std::string> invalid_args{};
std::vector<std::string> errors{};
// Using invalid_args as the v8_args argument as it stores unknown
// options for the per isolate parser.
options_parser::Parse(
&exec_argv,
&exec_argv_out,
&invalid_args,
per_isolate_opts.get(),
kDisallowedInEnvironment,
&errors);
// The first argument is program name.
invalid_args.erase(invalid_args.begin());
if (errors.size() > 0 || invalid_args.size() > 0) {
Local<Value> error;
if (!ToV8Value(env->context(),
errors.size() > 0 ? errors : invalid_args)
.ToLocal(&error)) {
return;
}
Local<String> key =
FIXED_ONE_BYTE_STRING(env->isolate(), "invalidExecArgv");
// Ignore the return value of Set() because exceptions bubble up to JS
// when we return anyway.
USE(args.This()->Set(env->context(), key, error));
return;
}
} else {
exec_argv_out = env->exec_argv();
}
Worker* worker = new Worker(env,
args.This(),
url,
per_isolate_opts,
std::move(exec_argv_out),
env_vars);
CHECK(args[3]->IsFloat64Array());
Local<Float64Array> limit_info = args[3].As<Float64Array>();
CHECK_EQ(limit_info->Length(), kTotalResourceLimitCount);
limit_info->CopyContents(worker->resource_limits_,
sizeof(worker->resource_limits_));
}
void Worker::StartThread(const FunctionCallbackInfo<Value>& args) {
Worker* w;
ASSIGN_OR_RETURN_UNWRAP(&w, args.This());
Mutex::ScopedLock lock(w->mutex_);
w->stopped_ = false;
uv_thread_options_t thread_options;
thread_options.flags = UV_THREAD_HAS_STACK_SIZE;
thread_options.stack_size = kStackSize;
int ret = uv_thread_create_ex(&w->tid_, &thread_options, [](void* arg) {
// XXX: This could become a std::unique_ptr, but that makes at least
// gcc 6.3 detect undefined behaviour when there shouldn't be any.
// gcc 7+ handles this well.
Worker* w = static_cast<Worker*>(arg);
const uintptr_t stack_top = reinterpret_cast<uintptr_t>(&arg);
// Leave a few kilobytes just to make sure we're within limits and have
// some space to do work in C++ land.
w->stack_base_ = stack_top - (kStackSize - kStackBufferSize);
w->Run();
Mutex::ScopedLock lock(w->mutex_);
w->env()->SetImmediateThreadsafe(
[w = std::unique_ptr<Worker>(w)](Environment* env) {
if (w->has_ref_)
env->add_refs(-1);
w->JoinThread();
// implicitly delete w
});
}, static_cast<void*>(w));
if (ret == 0) {
// The object now owns the created thread and should not be garbage
// collected until that finishes.
w->ClearWeak();
w->thread_joined_ = false;
if (w->has_ref_)
w->env()->add_refs(1);
w->env()->add_sub_worker_context(w);
} else {
w->stopped_ = true;
char err_buf[128];
uv_err_name_r(ret, err_buf, sizeof(err_buf));
{
Isolate* isolate = w->env()->isolate();
HandleScope handle_scope(isolate);
THROW_ERR_WORKER_INIT_FAILED(isolate, err_buf);
}
}
}
void Worker::StopThread(const FunctionCallbackInfo<Value>& args) {
Worker* w;
ASSIGN_OR_RETURN_UNWRAP(&w, args.This());
Debug(w, "Worker %llu is getting stopped by parent", w->thread_id_);
w->Exit(1);
}
void Worker::Ref(const FunctionCallbackInfo<Value>& args) {
Worker* w;
ASSIGN_OR_RETURN_UNWRAP(&w, args.This());
if (!w->has_ref_ && !w->thread_joined_) {
w->has_ref_ = true;
w->env()->add_refs(1);
}
}
void Worker::Unref(const FunctionCallbackInfo<Value>& args) {
Worker* w;
ASSIGN_OR_RETURN_UNWRAP(&w, args.This());
if (w->has_ref_ && !w->thread_joined_) {
w->has_ref_ = false;
w->env()->add_refs(-1);
}
}
void Worker::GetResourceLimits(const FunctionCallbackInfo<Value>& args) {
Worker* w;
ASSIGN_OR_RETURN_UNWRAP(&w, args.This());
args.GetReturnValue().Set(w->GetResourceLimits(args.GetIsolate()));
}
Local<Float64Array> Worker::GetResourceLimits(Isolate* isolate) const {
Local<ArrayBuffer> ab = ArrayBuffer::New(isolate, sizeof(resource_limits_));
memcpy(ab->GetContents().Data(), resource_limits_, sizeof(resource_limits_));
return Float64Array::New(ab, 0, kTotalResourceLimitCount);
}
void Worker::Exit(int code) {
Mutex::ScopedLock lock(mutex_);
Debug(this, "Worker %llu called Exit(%d)", thread_id_, code);
if (env_ != nullptr) {
exit_code_ = code;
Stop(env_);
} else {
stopped_ = true;
}
}
void Worker::MemoryInfo(MemoryTracker* tracker) const {
tracker->TrackField("parent_port", parent_port_);
}
class WorkerHeapSnapshotTaker : public AsyncWrap {
public:
WorkerHeapSnapshotTaker(Environment* env, Local<Object> obj)
: AsyncWrap(env, obj, AsyncWrap::PROVIDER_WORKERHEAPSNAPSHOT) {}
SET_NO_MEMORY_INFO()
SET_MEMORY_INFO_NAME(WorkerHeapSnapshotTaker)
SET_SELF_SIZE(WorkerHeapSnapshotTaker)
};
void Worker::TakeHeapSnapshot(const FunctionCallbackInfo<Value>& args) {
Worker* w;
ASSIGN_OR_RETURN_UNWRAP(&w, args.This());
Debug(w, "Worker %llu taking heap snapshot", w->thread_id_);
Environment* env = w->env();
AsyncHooks::DefaultTriggerAsyncIdScope trigger_id_scope(w);
Local<Object> wrap;
if (!env->worker_heap_snapshot_taker_template()
->NewInstance(env->context()).ToLocal(&wrap)) {
return;
}
BaseObjectPtr<WorkerHeapSnapshotTaker> taker =
MakeDetachedBaseObject<WorkerHeapSnapshotTaker>(env, wrap);
// Interrupt the worker thread and take a snapshot, then schedule a call
// on the parent thread that turns that snapshot into a readable stream.
bool scheduled = w->RequestInterrupt([taker, env](Environment* worker_env) {
heap::HeapSnapshotPointer snapshot {
worker_env->isolate()->GetHeapProfiler()->TakeHeapSnapshot() };
CHECK(snapshot);
env->SetImmediateThreadsafe(
[taker, snapshot = std::move(snapshot)](Environment* env) mutable {
HandleScope handle_scope(env->isolate());
Context::Scope context_scope(env->context());
AsyncHooks::DefaultTriggerAsyncIdScope trigger_id_scope(taker.get());
BaseObjectPtr<AsyncWrap> stream = heap::CreateHeapSnapshotStream(
env, std::move(snapshot));
Local<Value> args[] = { stream->object() };
taker->MakeCallback(env->ondone_string(), arraysize(args), args);
}, /* refed */ false);
});
args.GetReturnValue().Set(scheduled ? taker->object() : Local<Object>());
}
namespace {
// Return the MessagePort that is global for this Environment and communicates
// with the internal [kPort] port of the JS Worker class in the parent thread.
void GetEnvMessagePort(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Local<Object> port = env->message_port();
if (!port.IsEmpty()) {
CHECK_EQ(port->CreationContext()->GetIsolate(), args.GetIsolate());
args.GetReturnValue().Set(port);
}
}
void InitWorker(Local<Object> target,
Local<Value> unused,
Local<Context> context,
void* priv) {
Environment* env = Environment::GetCurrent(context);
{
Local<FunctionTemplate> w = env->NewFunctionTemplate(Worker::New);
w->InstanceTemplate()->SetInternalFieldCount(
Worker::kInternalFieldCount);
w->Inherit(AsyncWrap::GetConstructorTemplate(env));
env->SetProtoMethod(w, "startThread", Worker::StartThread);
env->SetProtoMethod(w, "stopThread", Worker::StopThread);
env->SetProtoMethod(w, "ref", Worker::Ref);
env->SetProtoMethod(w, "unref", Worker::Unref);
env->SetProtoMethod(w, "getResourceLimits", Worker::GetResourceLimits);
env->SetProtoMethod(w, "takeHeapSnapshot", Worker::TakeHeapSnapshot);
Local<String> workerString =
FIXED_ONE_BYTE_STRING(env->isolate(), "Worker");
w->SetClassName(workerString);
target->Set(env->context(),
workerString,
w->GetFunction(env->context()).ToLocalChecked()).Check();
}
{
Local<FunctionTemplate> wst = FunctionTemplate::New(env->isolate());
wst->InstanceTemplate()->SetInternalFieldCount(
WorkerHeapSnapshotTaker::kInternalFieldCount);
wst->Inherit(AsyncWrap::GetConstructorTemplate(env));
Local<String> wst_string =
FIXED_ONE_BYTE_STRING(env->isolate(), "WorkerHeapSnapshotTaker");
wst->SetClassName(wst_string);
env->set_worker_heap_snapshot_taker_template(wst->InstanceTemplate());
}
env->SetMethod(target, "getEnvMessagePort", GetEnvMessagePort);
target
->Set(env->context(),
env->thread_id_string(),
Number::New(env->isolate(), static_cast<double>(env->thread_id())))
.Check();
target
->Set(env->context(),
FIXED_ONE_BYTE_STRING(env->isolate(), "isMainThread"),
Boolean::New(env->isolate(), env->is_main_thread()))
.Check();
target
->Set(env->context(),
FIXED_ONE_BYTE_STRING(env->isolate(), "ownsProcessState"),
Boolean::New(env->isolate(), env->owns_process_state()))
.Check();
if (!env->is_main_thread()) {
target
->Set(env->context(),
FIXED_ONE_BYTE_STRING(env->isolate(), "resourceLimits"),
env->worker_context()->GetResourceLimits(env->isolate()))
.Check();
}
NODE_DEFINE_CONSTANT(target, kMaxYoungGenerationSizeMb);
NODE_DEFINE_CONSTANT(target, kMaxOldGenerationSizeMb);
NODE_DEFINE_CONSTANT(target, kCodeRangeSizeMb);
NODE_DEFINE_CONSTANT(target, kTotalResourceLimitCount);
}
} // anonymous namespace
} // namespace worker
} // namespace node
NODE_MODULE_CONTEXT_AWARE_INTERNAL(worker, node::worker::InitWorker)