etk-pl/jsonrpc

View on GitHub

Showing 16 of 16 total issues

Similar blocks of code found in 3 locations. Consider refactoring.
Open

    if (message !== undefined) {
        if (typeof message !== "object" || message === null) {
            throw new ExtError("", "(JsonRpcNotification) -> constructor(): Message must be object type");
        }
        Object.entries(message).forEach(([key, value]) => {
Severity: Major
Found in src/notification.js and 2 other locations - About 2 hrs to fix
src/request.js on lines 29..36
src/response.js on lines 25..32

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 87.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Similar blocks of code found in 3 locations. Consider refactoring.
Open

    if (message !== undefined) {
        if (typeof message !== "object" || message === null) {
            throw new ExtError("ERR_REQUEST_MESSAGE_INCORRECT_TYPE", "Message must be object type");
        }
        Object.entries(message).forEach(([key, value]) => {
Severity: Major
Found in src/request.js and 2 other locations - About 2 hrs to fix
src/notification.js on lines 23..30
src/response.js on lines 25..32

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 87.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Similar blocks of code found in 3 locations. Consider refactoring.
Open

    if (message !== undefined) {
        if (typeof message !== "object" || message === null) {
            throw new ExtError("ERR_RESPONSE_MESSAGE_INCORRECT_TYPE", "Message must be object type");
        }
        Object.entries(message).forEach(([key, value]) => {
Severity: Major
Found in src/response.js and 2 other locations - About 2 hrs to fix
src/notification.js on lines 23..30
src/request.js on lines 29..36

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 87.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Function 'isValidResponse' has a complexity of 11.
Open

JsonRpc.isValidResponse = function isValidResponse(message) {
Severity: Minor
Found in src/jsonrpc.js by eslint

Limit Cyclomatic Complexity (complexity)

Cyclomatic complexity measures the number of linearly independent paths through a program's source code. This rule allows setting a cyclomatic complexity threshold.

function a(x) {
    if (true) {
        return x; // 1st path
    } else if (false) {
        return x+1; // 2nd path
    } else {
        return 4; // 3rd path
    }
}

Rule Details

This rule is aimed at reducing code complexity by capping the amount of cyclomatic complexity allowed in a program. As such, it will warn when the cyclomatic complexity crosses the configured threshold (default is 20).

Examples of incorrect code for a maximum of 2:

/*eslint complexity: ["error", 2]*/

function a(x) {
    if (true) {
        return x;
    } else if (false) {
        return x+1;
    } else {
        return 4; // 3rd path
    }
}

Examples of correct code for a maximum of 2:

/*eslint complexity: ["error", 2]*/

function a(x) {
    if (true) {
        return x;
    } else {
        return 4;
    }
}

Options

Optionally, you may specify a max object property:

"complexity": ["error", 2]

is equivalent to

"complexity": ["error", { "max": 2 }]

Deprecated: the object property maximum is deprecated. Please use the property max instead.

When Not To Use It

If you can't determine an appropriate complexity limit for your code, then it's best to disable this rule.

Further Reading

Related Rules

  • [max-depth](max-depth.md)
  • [max-len](max-len.md)
  • [max-nested-callbacks](max-nested-callbacks.md)
  • [max-params](max-params.md)
  • [max-statements](max-statements.md) Source: http://eslint.org/docs/rules/

Function has a complexity of 7.
Open

JsonRpc.prototype.parse = function (message) {
Severity: Minor
Found in src/jsonrpc.js by eslint

Limit Cyclomatic Complexity (complexity)

Cyclomatic complexity measures the number of linearly independent paths through a program's source code. This rule allows setting a cyclomatic complexity threshold.

function a(x) {
    if (true) {
        return x; // 1st path
    } else if (false) {
        return x+1; // 2nd path
    } else {
        return 4; // 3rd path
    }
}

Rule Details

This rule is aimed at reducing code complexity by capping the amount of cyclomatic complexity allowed in a program. As such, it will warn when the cyclomatic complexity crosses the configured threshold (default is 20).

Examples of incorrect code for a maximum of 2:

/*eslint complexity: ["error", 2]*/

function a(x) {
    if (true) {
        return x;
    } else if (false) {
        return x+1;
    } else {
        return 4; // 3rd path
    }
}

Examples of correct code for a maximum of 2:

/*eslint complexity: ["error", 2]*/

function a(x) {
    if (true) {
        return x;
    } else {
        return 4;
    }
}

Options

Optionally, you may specify a max object property:

"complexity": ["error", 2]

is equivalent to

"complexity": ["error", { "max": 2 }]

Deprecated: the object property maximum is deprecated. Please use the property max instead.

When Not To Use It

If you can't determine an appropriate complexity limit for your code, then it's best to disable this rule.

Further Reading

Related Rules

  • [max-depth](max-depth.md)
  • [max-len](max-len.md)
  • [max-nested-callbacks](max-nested-callbacks.md)
  • [max-params](max-params.md)
  • [max-statements](max-statements.md) Source: http://eslint.org/docs/rules/

Similar blocks of code found in 2 locations. Consider refactoring.
Open

Object.assign(Notification.prototype, {
    getVersion,
    getResource,
    getMethod,
    getParams,
Severity: Major
Found in src/notification.js and 1 other location - About 1 hr to fix
src/response.js on lines 35..46

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 66.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Similar blocks of code found in 2 locations. Consider refactoring.
Open

Object.assign(Response.prototype, {
    getVersion,
    getId,
    getResult,
    getError,
Severity: Major
Found in src/response.js and 1 other location - About 1 hr to fix
src/notification.js on lines 36..47

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 66.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Function isValidResponse has a Cognitive Complexity of 10 (exceeds 5 allowed). Consider refactoring.
Open

JsonRpc.isValidResponse = function isValidResponse(message) {
    if (typeof message !== "object" || message === null) {
        return false;
    }
    if (message.method !== undefined || message.resource !== undefined || message.params !== undefined) {
Severity: Minor
Found in src/jsonrpc.js - About 1 hr to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Similar blocks of code found in 3 locations. Consider refactoring.
Open

function setMethod(method) {
    if (typeof method !== "string") {
        throw new ExtError("ERR_METHOD_MUST_BE_STRING", "Method must be 'string' type");
    }
    this.message.method = method;
Severity: Major
Found in src/traits.js and 2 other locations - About 50 mins to fix
src/traits.js on lines 58..64
src/traits.js on lines 79..85

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 52.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Similar blocks of code found in 3 locations. Consider refactoring.
Open

function setId(id) {
    if (typeof id !== "number") {
        throw new ExtError("ERR_ID_MUST_BE_INTEGER", "ID must be 'integer'");
    }
    this.message.id = id;
Severity: Major
Found in src/traits.js and 2 other locations - About 50 mins to fix
src/traits.js on lines 79..85
src/traits.js on lines 100..106

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 52.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Similar blocks of code found in 3 locations. Consider refactoring.
Open

function setResource(resource) {
    if (typeof resource !== "string") {
        throw new ExtError("ERR_RESOURCE_MUST_BE_STRING", "Resource must be 'string' type");
    }
    this.message.resource = resource;
Severity: Major
Found in src/traits.js and 2 other locations - About 50 mins to fix
src/traits.js on lines 58..64
src/traits.js on lines 100..106

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 52.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Function parse has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring.
Open

JsonRpc.prototype.parse = function (message) {
    if (typeof message !== "object") {
        if (typeof message === "string") {
            try {
                message = this.options.encoder.parse(message);
Severity: Minor
Found in src/jsonrpc.js - About 45 mins to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Unexpected lexical declaration in case block.
Open

        case "Response":
Severity: Minor
Found in src/jsonrpc.js by eslint

Disallow lexical declarations in case/default clauses (no-case-declarations)

This rule disallows lexical declarations (let, const, function and class) in case/default clauses. The reason is that the lexical declaration is visible in the entire switch block but it only gets initialized when it is assigned, which will only happen if the case where it is defined is reached.

To ensure that the lexical declaration only applies to the current case clause wrap your clauses in blocks.

Rule Details

This rule aims to prevent access to uninitialized lexical bindings as well as accessing hoisted functions across case clauses.

Examples of incorrect code for this rule:

/*eslint no-case-declarations: "error"*/
/*eslint-env es6*/

switch (foo) {
    case 1:
        let x = 1;
        break;
    case 2:
        const y = 2;
        break;
    case 3:
        function f() {}
        break;
    default:
        class C {}
}

Examples of correct code for this rule:

/*eslint no-case-declarations: "error"*/
/*eslint-env es6*/

// Declarations outside switch-statements are valid
const a = 0;

switch (foo) {
    // The following case clauses are wrapped into blocks using brackets
    case 1: {
        let x = 1;
        break;
    }
    case 2: {
        const y = 2;
        break;
    }
    case 3: {
        function f() {}
        break;
    }
    case 4:
        // Declarations using var without brackets are valid due to function-scope hoisting
        var z = 4;
        break;
    default: {
        class C {}
    }
}

When Not To Use It

If you depend on fall through behavior and want access to bindings introduced in the case block.

Related Rules

Unexpected require().
Open

const objId = new (require('mongodb').ObjectID);
Severity: Minor
Found in bench/bench.js by eslint

Enforce require() on the top-level module scope (global-require)

In Node.js, module dependencies are included using the require() function, such as:

var fs = require("fs");

While require() may be called anywhere in code, some style guides prescribe that it should be called only in the top level of a module to make it easier to identify dependencies. For instance, it's arguably harder to identify dependencies when they are deeply nested inside of functions and other statements:

function foo() {

    if (condition) {
        var fs = require("fs");
    }
}

Since require() does a synchronous load, it can cause performance problems when used in other locations.

Further, ES6 modules mandate that import and export statements can only occur in the top level of the module's body.

Rule Details

This rule requires all calls to require() to be at the top level of the module, similar to ES6 import and export statements, which also can occur only at the top level.

Examples of incorrect code for this rule:

/*eslint global-require: "error"*/
/*eslint-env es6*/

// calling require() inside of a function is not allowed
function readFile(filename, callback) {
    var fs = require('fs');
    fs.readFile(filename, callback)
}

// conditional requires like this are also not allowed
if (DEBUG) { require('debug'); }

// a require() in a switch statement is also flagged
switch(x) { case '1': require('1'); break; }

// you may not require() inside an arrow function body
var getModule = (name) => require(name);

// you may not require() inside of a function body as well
function getModule(name) { return require(name); }

// you may not require() inside of a try/catch block
try {
    require(unsafeModule);
} catch(e) {
    console.log(e);
}

Examples of correct code for this rule:

/*eslint global-require: "error"*/

// all these variations of require() are ok
require('x');
var y = require('y');
var z;
z = require('z').initialize();

// requiring a module and using it in a function is ok
var fs = require('fs');
function readFile(filename, callback) {
    fs.readFile(filename, callback)
}

// you can use a ternary to determine which module to require
var logger = DEBUG ? require('dev-logger') : require('logger');

// if you want you can require() at the end of your module
function doSomethingA() {}
function doSomethingB() {}
var x = require("x"),
    z = require("z");

When Not To Use It

If you have a module that must be initialized with information that comes from the file-system or if a module is only used in very rare situations and will cause significant overhead to load it may make sense to disable the rule. If you need to require() an optional dependency inside of a try/catch, you can disable this rule for just that dependency using the // eslint-disable-line global-require comment. Source: http://eslint.org/docs/rules/

Do not use 'new' for side effects.
Open

    new JSONRPC.Request({
Severity: Minor
Found in bench/bench.js by eslint

Disallow new For Side Effects (no-new)

The goal of using new with a constructor is typically to create an object of a particular type and store that object in a variable, such as:

var person = new Person();

It's less common to use new and not store the result, such as:

new Person();

In this case, the created object is thrown away because its reference isn't stored anywhere, and in many cases, this means that the constructor should be replaced with a function that doesn't require new to be used.

Rule Details

This rule is aimed at maintaining consistency and convention by disallowing constructor calls using the new keyword that do not assign the resulting object to a variable.

Examples of incorrect code for this rule:

/*eslint no-new: "error"*/

new Thing();

Examples of correct code for this rule:

/*eslint no-new: "error"*/

var thing = new Thing();

Thing();

Source: http://eslint.org/docs/rules/

Expected an assignment or function call and instead saw an expression.
Open

    timeout.unref && timeout.unref();
Severity: Minor
Found in src/traits.js by eslint

Disallow Unused Expressions (no-unused-expressions)

An unused expression which has no effect on the state of the program indicates a logic error.

For example, n + 1; is not a syntax error, but it might be a typing mistake where a programmer meant an assignment statement n += 1; instead.

Rule Details

This rule aims to eliminate unused expressions which have no effect on the state of the program.

This rule does not apply to function calls or constructor calls with the new operator, because they could have side effects on the state of the program.

var i = 0;
function increment() { i += 1; }
increment(); // return value is unused, but i changed as a side effect

var nThings = 0;
function Thing() { nThings += 1; }
new Thing(); // constructed object is unused, but nThings changed as a side effect

This rule does not apply to directives (which are in the form of literal string expressions such as "use strict"; at the beginning of a script, module, or function).

Sequence expressions (those using a comma, such as a = 1, b = 2) are always considered unused unless their return value is assigned or used in a condition evaluation, or a function call is made with the sequence expression value.

Options

This rule, in its default state, does not require any arguments. If you would like to enable one or more of the following you may pass an object with the options set as follows:

  • allowShortCircuit set to true will allow you to use short circuit evaluations in your expressions (Default: false).
  • allowTernary set to true will enable you to use ternary operators in your expressions similarly to short circuit evaluations (Default: false).
  • allowTaggedTemplates set to true will enable you to use tagged template literals in your expressions (Default: false).

These options allow unused expressions only if all of the code paths either directly change the state (for example, assignment statement) or could have side effects (for example, function call).

Examples of incorrect code for the default { "allowShortCircuit": false, "allowTernary": false } options:

/*eslint no-unused-expressions: "error"*/

0

if(0) 0

{0}

f(0), {}

a && b()

a, b()

c = a, b;

a() && function namedFunctionInExpressionContext () {f();}

(function anIncompleteIIFE () {});

injectGlobal`body{ color: red; }`

Note that one or more string expression statements (with or without semi-colons) will only be considered as unused if they are not in the beginning of a script, module, or function (alone and uninterrupted by other statements). Otherwise, they will be treated as part of a "directive prologue", a section potentially usable by JavaScript engines. This includes "strict mode" directives.

"use strict";
"use asm"
"use stricter";
"use babel"
"any other strings like this in the prologue";

Examples of correct code for the default { "allowShortCircuit": false, "allowTernary": false } options:

/*eslint no-unused-expressions: "error"*/

{} // In this context, this is a block statement, not an object literal

{myLabel: someVar} // In this context, this is a block statement with a label and expression, not an object literal

function namedFunctionDeclaration () {}

(function aGenuineIIFE () {}());

f()

a = 0

new C

delete a.b

void a

allowShortCircuit

Examples of incorrect code for the { "allowShortCircuit": true } option:

/*eslint no-unused-expressions: ["error", { "allowShortCircuit": true }]*/

a || b

Examples of correct code for the { "allowShortCircuit": true } option:

/*eslint no-unused-expressions: ["error", { "allowShortCircuit": true }]*/

a && b()
a() || (b = c)

allowTernary

Examples of incorrect code for the { "allowTernary": true } option:

/*eslint no-unused-expressions: ["error", { "allowTernary": true }]*/

a ? b : 0
a ? b : c()

Examples of correct code for the { "allowTernary": true } option:

/*eslint no-unused-expressions: ["error", { "allowTernary": true }]*/

a ? b() : c()
a ? (b = c) : d()

allowShortCircuit and allowTernary

Examples of correct code for the { "allowShortCircuit": true, "allowTernary": true } options:

/*eslint no-unused-expressions: ["error", { "allowShortCircuit": true, "allowTernary": true }]*/

a ? b() || (c = d) : e()

allowTaggedTemplates

Examples of incorrect code for the { "allowTaggedTemplates": true } option:

/*eslint no-unused-expressions: ["error", { "allowTaggedTemplates": true }]*/

`some untagged template string`;

Examples of correct code for the { "allowTaggedTemplates": true } option:

/*eslint no-unused-expressions: ["error", { "allowTaggedTemplates": true }]*/

tag`some tagged template string`;

Source: http://eslint.org/docs/rules/

Severity
Category
Status
Source
Language