eventmachine/eventmachine

View on GitHub
ext/em.cpp

Summary

Maintainability
Test Coverage
/*****************************************************************************

$Id$

File:     em.cpp
Date:     06Apr06

Copyright (C) 2006-07 by Francis Cianfrocca. All Rights Reserved.
Gmail: blackhedd

This program is free software; you can redistribute it and/or modify
it under the terms of either: 1) the GNU General Public License
as published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version; or 2) Ruby's License.

See the file COPYING for complete licensing information.

*****************************************************************************/

// THIS ENTIRE FILE WILL EVENTUALLY BE FOR UNIX BUILDS ONLY.
//#ifdef OS_UNIX

#include "project.h"

/* The numer of max outstanding timers was once a const enum defined in em.h.
 * Now we define it here so that users can change its value if necessary.
 */
static unsigned int MaxOutstandingTimers = 100000;

/* The number of accept() done at once in a single tick when the acceptor
 * socket becomes readable.
 */
static unsigned int SimultaneousAcceptCount = 10;

/* Internal helper to create a socket with SOCK_CLOEXEC set, and fall
 * back to fcntl'ing it if the headers/runtime don't support it.
 */
SOCKET EmSocket (int domain, int type, int protocol)
{
    SOCKET sd;
#ifdef HAVE_SOCKET_CLOEXEC
    sd = socket (domain, type | SOCK_CLOEXEC, protocol);
    if (sd == INVALID_SOCKET) {
        sd = socket (domain, type, protocol);
        if (sd < 0) {
            return sd;
        }
        SetFdCloexec(sd);
    }
#else
    sd = socket (domain, type, protocol);
    if (sd == INVALID_SOCKET) {
        return sd;
    }
    SetFdCloexec(sd);
#endif
    return sd;
}


/***************************************
STATIC EventMachine_t::GetMaxTimerCount
***************************************/

int EventMachine_t::GetMaxTimerCount()
{
    return MaxOutstandingTimers;
}


/***************************************
STATIC EventMachine_t::SetMaxTimerCount
***************************************/

void EventMachine_t::SetMaxTimerCount (int count)
{
    /* Allow a user to increase the maximum number of outstanding timers.
     * If this gets "too high" (a metric that is of course platform dependent),
     * bad things will happen like performance problems and possible overuse
     * of memory.
     * The actual timer mechanism is very efficient so it's hard to know what
     * the practical max, but 100,000 shouldn't be too problematical.
     */
    if (count < 100)
        count = 100;
    MaxOutstandingTimers = count;
}

int EventMachine_t::GetSimultaneousAcceptCount()
{
    return SimultaneousAcceptCount;
}

void EventMachine_t::SetSimultaneousAcceptCount (int count)
{
    if (count < 1)
        count = 1;
    SimultaneousAcceptCount = count;
}


/******************************
EventMachine_t::EventMachine_t
******************************/

EventMachine_t::EventMachine_t (EMCallback event_callback, Poller_t poller):
    NumCloseScheduled (0),
    HeartbeatInterval(2000000),
    EventCallback (event_callback),
    LoopBreakerReader (INVALID_SOCKET),
    LoopBreakerWriter (INVALID_SOCKET),
    bTerminateSignalReceived (false),
    Poller (poller),
    epfd (-1),
    kqfd (-1)
    #ifdef HAVE_INOTIFY
    , inotify (NULL)
    #endif
{
    // Default time-slice is just smaller than one hundred mills.
    Quantum.tv_sec = 0;
    Quantum.tv_usec = 90000;

    // Override the requested poller back to default if needed.
    #if !defined(HAVE_EPOLL) && !defined(HAVE_KQUEUE)
    Poller = Poller_Default;
    #endif

    /* Initialize monotonic timekeeping on OS X before the first call to GetRealTime */
    #ifdef OS_DARWIN
    (void) mach_timebase_info(&mach_timebase);
    #endif

    #ifdef OS_WIN32
    TickCountTickover = 0;
    LastTickCount = 0;
    #endif

    // Make sure the current loop time is sane, in case we do any initializations of
    // objects before we start running.
    _UpdateTime();

    /* We initialize the network library here (only on Windows of course)
     * and initialize "loop breakers." Our destructor also does some network-level
     * cleanup. There's thus an implicit assumption that any given instance of EventMachine_t
     * will only call ::Run once. Is that a good assumption? Should we move some of these
     * inits and de-inits into ::Run?
     */
    #ifdef OS_WIN32
    WSADATA w;
    WSAStartup (MAKEWORD (1, 1), &w);
    #endif

    _InitializeLoopBreaker();
    SelectData = new SelectData_t();
}


/*******************************
EventMachine_t::~EventMachine_t
*******************************/

EventMachine_t::~EventMachine_t()
{
    // Run down descriptors
    size_t i;
    for (i = 0; i < NewDescriptors.size(); i++)
        delete NewDescriptors[i];
    for (i = 0; i < Descriptors.size(); i++)
        delete Descriptors[i];

    close (LoopBreakerReader);
    close (LoopBreakerWriter);

    // Remove any file watch descriptors
    while(!Files.empty()) {
        std::map<int, Bindable_t*>::iterator f = Files.begin();
        UnwatchFile (f->first);
    }

    if (epfd != -1)
        close (epfd);
    if (kqfd != -1)
        close (kqfd);

    delete SelectData;
}


/****************************
EventMachine_t::ScheduleHalt
****************************/

void EventMachine_t::ScheduleHalt()
{
    /* This is how we stop the machine.
     * This can be called by clients. Signal handlers will probably
     * set the global flag.
     * For now this means there can only be one EventMachine ever running at a time.
     *
     * IMPORTANT: keep this light, fast, and async-safe. Don't do anything frisky in here,
     * because it may be called from signal handlers invoked from code that we don't
     * control. At this writing (20Sep06), EM does NOT install any signal handlers of
     * its own.
     *
     * We need a FAQ. And one of the questions is: how do I stop EM when Ctrl-C happens?
     * The answer is to call evma_stop_machine, which calls here, from a SIGINT handler.
     */
    bTerminateSignalReceived = true;

    /* Signal the loopbreaker so we break out of long-running select/epoll/kqueue and
     * notice the halt boolean is set. Signalling the loopbreaker also uses a single
     * signal-safe syscall.
     */
    SignalLoopBreaker();
}

bool EventMachine_t::Stopping()
{
    return bTerminateSignalReceived;
}

/*******************************
EventMachine_t::GetTimerQuantum
*******************************/

uint64_t EventMachine_t::GetTimerQuantum()
{
    /* Convert timer-quantum to microseconds */
    return (Quantum.tv_sec * 1000 + (Quantum.tv_usec + 500) / 1000) * 1000;
}

/*******************************
EventMachine_t::SetTimerQuantum
*******************************/

void EventMachine_t::SetTimerQuantum (int interval)
{
    /* We get a timer-quantum expressed in milliseconds.
     */

    if ((interval < 5) || (interval > 5*60*1000))
        throw std::runtime_error ("invalid timer-quantum");

    Quantum.tv_sec = interval / 1000;
    Quantum.tv_usec = (interval % 1000) * 1000;
}


/*************************************
(STATIC) EventMachine_t::SetuidString
*************************************/

#ifdef OS_UNIX
void EventMachine_t::SetuidString (const char *username)
{
    /* This method takes a caller-supplied username and tries to setuid
     * to that user. There is no meaningful implementation (and no error)
     * on Windows. On Unix, a failure to setuid the caller-supplied string
     * causes a fatal abort, because presumably the program is calling here
     * in order to fulfill a security requirement. If we fail silently,
     * the user may continue to run with too much privilege.
     *
     * TODO, we need to decide on and document a way of generating C++ level errors
     * that can be wrapped in documented Ruby exceptions, so users can catch
     * and handle them. And distinguish it from errors that we WON'T let the Ruby
     * user catch (like security-violations and resource-overallocation).
     * A setuid failure here would be in the latter category.
     */

    if (!username || !*username)
        throw std::runtime_error ("setuid_string failed: no username specified");

    errno = 0;
    struct passwd *p = getpwnam (username);
    if (!p) {
        if (errno) {
            char buf[200];
            snprintf (buf, sizeof(buf)-1, "setuid_string failed: %s", strerror(errno));
            throw std::runtime_error (buf);
        } else {
            throw std::runtime_error ("setuid_string failed: unknown username");
        }
    }

    if (setuid (p->pw_uid) != 0)
        throw std::runtime_error ("setuid_string failed: no setuid");

    // Success.
}
#else
void EventMachine_t::SetuidString (const char *username UNUSED) { }
#endif

/****************************************
(STATIC) EventMachine_t::SetRlimitNofile
****************************************/

#ifdef OS_UNIX
int EventMachine_t::SetRlimitNofile (int nofiles)
{
    struct rlimit rlim;
    getrlimit (RLIMIT_NOFILE, &rlim);
    if (nofiles >= 0) {
        rlim.rlim_cur = nofiles;
        if ((unsigned int)nofiles > rlim.rlim_max)
            rlim.rlim_max = nofiles;
        setrlimit (RLIMIT_NOFILE, &rlim);
        // ignore the error return, for now at least.
        // TODO, emit an error message someday when we have proper debug levels.
    }
    getrlimit (RLIMIT_NOFILE, &rlim);
    return rlim.rlim_cur;
}
#else
int EventMachine_t::SetRlimitNofile (int nofiles UNUSED) { return 0; }
#endif

/*********************************
EventMachine_t::SignalLoopBreaker
*********************************/

void EventMachine_t::SignalLoopBreaker()
{
    #ifdef OS_UNIX
    (void)write (LoopBreakerWriter, "", 1);
    #endif
    #ifdef OS_WIN32
    sendto (LoopBreakerReader, "", 0, 0, (struct sockaddr*)&(LoopBreakerTarget), sizeof(LoopBreakerTarget));
    #endif
}


/**************************************
EventMachine_t::_InitializeLoopBreaker
**************************************/

void EventMachine_t::_InitializeLoopBreaker()
{
    /* A "loop-breaker" is a socket-descriptor that we can write to in order
     * to break the main select loop. Primarily useful for things running on
     * threads other than the main EM thread, so they can trigger processing
     * of events that arise exogenously to the EM.
     * Keep the loop-breaker pipe out of the main descriptor set, otherwise
     * its events will get passed on to user code.
     */

    #ifdef OS_UNIX
    int fd[2];
#if defined (HAVE_CLOEXEC) && defined (HAVE_PIPE2)
    int pipestatus = pipe2(fd, O_CLOEXEC);
    if (pipestatus < 0) {
        if (pipe(fd))
            throw std::runtime_error (strerror(errno));
    }
#else
    if (pipe (fd))
        throw std::runtime_error (strerror(errno));
#endif
    if (!SetFdCloexec(fd[0]) || !SetFdCloexec(fd[1]))
        throw std::runtime_error (strerror(errno));

    LoopBreakerWriter = fd[1];
    LoopBreakerReader = fd[0];

    /* 16Jan11: Make sure the pipe is non-blocking, so more than 65k loopbreaks
     * in one tick do not fill up the pipe and block the process on write() */
    SetSocketNonblocking (LoopBreakerWriter);
    #endif

    #ifdef OS_WIN32
    SOCKET sd = EmSocket (AF_INET, SOCK_DGRAM, 0);
    if (sd == INVALID_SOCKET)
        throw std::runtime_error ("no loop breaker socket");
    SetSocketNonblocking (sd);

    memset (&LoopBreakerTarget, 0, sizeof(LoopBreakerTarget));
    LoopBreakerTarget.sin_family = AF_INET;
    LoopBreakerTarget.sin_addr.s_addr = inet_addr ("127.0.0.1");

    srand ((int)time(NULL));
    int i;
    for (i=0; i < 100; i++) {
        int r = (rand() % 10000) + 20000;
        LoopBreakerTarget.sin_port = htons (r);
        if (bind (sd, (struct sockaddr*)&LoopBreakerTarget, sizeof(LoopBreakerTarget)) == 0)
            break;
    }

    if (i == 100)
        throw std::runtime_error ("no loop breaker");
    LoopBreakerReader = sd;
    #endif

    #ifdef HAVE_EPOLL
    if (Poller == Poller_Epoll) {
        epfd = epoll_create1(EPOLL_CLOEXEC);
        if (epfd == -1) {
            char buf[200];
            snprintf (buf, sizeof(buf)-1, "unable to create epoll descriptor: %s", strerror(errno));
            throw std::runtime_error (buf);
        }

        assert (LoopBreakerReader >= 0);
        LoopbreakDescriptor *ld = new LoopbreakDescriptor (LoopBreakerReader, this);
        assert (ld);
        Add (ld);
    }
    #endif

    #ifdef HAVE_KQUEUE
    if (Poller == Poller_Kqueue) {
        kqfd = kqueue();
        if (kqfd == -1) {
            char buf[200];
            snprintf (buf, sizeof(buf)-1, "unable to create kqueue descriptor: %s", strerror(errno));
            throw std::runtime_error (buf);
        }
        // cloexec not needed. By definition, kqueues are not carried across forks.

        assert (LoopBreakerReader >= 0);
        LoopbreakDescriptor *ld = new LoopbreakDescriptor (LoopBreakerReader, this);
        assert (ld);
        Add (ld);
    }
    #endif
}

/***************************
EventMachine_t::_UpdateTime
***************************/

void EventMachine_t::_UpdateTime()
{
    MyCurrentLoopTime = GetRealTime();
}

/***************************
EventMachine_t::GetRealTime
***************************/

// Two great writeups of cross-platform monotonic time are at:
// http://www.python.org/dev/peps/pep-0418
// http://nadeausoftware.com/articles/2012/04/c_c_tip_how_measure_elapsed_real_time_benchmarking
// Uncomment the #pragma messages to confirm which compile-time option was used
uint64_t EventMachine_t::GetRealTime()
{
    uint64_t current_time;

    #if defined(HAVE_CONST_CLOCK_MONOTONIC_RAW)
    // #pragma message "GetRealTime: clock_gettime CLOCK_MONOTONIC_RAW"
    // Linux 2.6.28 and above
    struct timespec tv;
    clock_gettime (CLOCK_MONOTONIC_RAW, &tv);
    current_time = (((uint64_t)(tv.tv_sec)) * 1000000LL) + ((uint64_t)((tv.tv_nsec)/1000));

    #elif defined(HAVE_CONST_CLOCK_MONOTONIC)
    // #pragma message "GetRealTime: clock_gettime CLOCK_MONOTONIC"
    // Linux, FreeBSD 5.0 and above, Solaris 8 and above, OpenBSD, NetBSD, DragonflyBSD
    struct timespec tv;
    clock_gettime (CLOCK_MONOTONIC, &tv);
    current_time = (((uint64_t)(tv.tv_sec)) * 1000000LL) + ((uint64_t)((tv.tv_nsec)/1000));

    #elif defined(HAVE_GETHRTIME)
    // #pragma message "GetRealTime: gethrtime"
    // Solaris and HP-UX
    current_time = (uint64_t)gethrtime() / 1000;

    #elif defined(OS_DARWIN)
    // #pragma message "GetRealTime: mach_absolute_time"
    // Mac OS X
    // https://developer.apple.com/library/mac/qa/qa1398/_index.html
    current_time = mach_absolute_time() * mach_timebase.numer / mach_timebase.denom / 1000;

    #elif defined(OS_UNIX)
    // #pragma message "GetRealTime: gettimeofday"
    // Unix fallback
    struct timeval tv;
    gettimeofday (&tv, NULL);
    current_time = (((uint64_t)(tv.tv_sec)) * 1000000LL) + ((uint64_t)(tv.tv_usec));

    #elif defined(OS_WIN32)
    // #pragma message "GetRealTime: GetTickCount"
    // Future improvement: use GetTickCount64 in Windows Vista / Server 2008
    unsigned tick = GetTickCount();
    if (tick < LastTickCount)
        TickCountTickover += 1;
    LastTickCount = tick;
    current_time = ((uint64_t)TickCountTickover << 32) + (uint64_t)tick;
    current_time *= 1000; // convert to microseconds

    #else
    // #pragma message "GetRealTime: time"
    // Universal fallback
    current_time = (uint64_t)time(NULL) * 1000000LL;
    #endif

    return current_time;
}

/***********************************
EventMachine_t::_DispatchHeartbeats
***********************************/

void EventMachine_t::_DispatchHeartbeats()
{
    // Store the first processed heartbeat descriptor and bail out if
    // we see it again. This fixes an infinite loop in case the system time
    // is changed out from underneath MyCurrentLoopTime.
    const EventableDescriptor *head = NULL;

    while (true) {
        std::multimap<uint64_t,EventableDescriptor*>::iterator i = Heartbeats.begin();
        if (i == Heartbeats.end())
            break;
        if (i->first > MyCurrentLoopTime)
            break;

        EventableDescriptor *ed = i->second;
        if (ed == head)
            break;

        ed->Heartbeat();
        QueueHeartbeat(ed);

        if (head == NULL)
            head = ed;
    }
}

/******************************
EventMachine_t::QueueHeartbeat
******************************/

void EventMachine_t::QueueHeartbeat(EventableDescriptor *ed)
{
    uint64_t heartbeat = ed->GetNextHeartbeat();

    if (heartbeat) {
        #ifndef HAVE_MAKE_PAIR
        Heartbeats.insert (std::multimap<uint64_t,EventableDescriptor*>::value_type (heartbeat, ed));
        #else
        Heartbeats.insert (std::make_pair (heartbeat, ed));
        #endif
    }
}

/******************************
EventMachine_t::ClearHeartbeat
******************************/

void EventMachine_t::ClearHeartbeat(uint64_t key, EventableDescriptor* ed)
{
    std::multimap<uint64_t,EventableDescriptor*>::iterator it;
    std::pair<std::multimap<uint64_t,EventableDescriptor*>::iterator,std::multimap<uint64_t,EventableDescriptor*>::iterator> ret;
    ret = Heartbeats.equal_range (key);
    for (it = ret.first; it != ret.second; ++it) {
        if (it->second == ed) {
            Heartbeats.erase (it);
            break;
        }
    }
}

/*******************
EventMachine_t::Run
*******************/

void EventMachine_t::Run()
{
    while (RunOnce()) ;
}

/***********************
EventMachine_t::RunOnce
***********************/

bool EventMachine_t::RunOnce()
{
    _UpdateTime();
    _RunTimers();

    /* _Add must precede _Modify because the same descriptor might
     * be on both lists during the same pass through the machine,
     * and to modify a descriptor before adding it would fail.
     */
    _AddNewDescriptors();
    _ModifyDescriptors();

    switch (Poller) {
    case Poller_Epoll:
        _RunEpollOnce();
        break;
    case Poller_Kqueue:
        _RunKqueueOnce();
        break;
    case Poller_Default:
        _RunSelectOnce();
        break;
    }

    _DispatchHeartbeats();
    _CleanupSockets();

    if (bTerminateSignalReceived)
        return false;

    return true;
}


#ifdef HAVE_EPOLL
typedef struct {
    int epfd;
    struct epoll_event *events;
    int maxevents;
    int timeout;
} epoll_args_t;

static void *nogvl_epoll_wait(void *args)
{
    epoll_args_t *a = (epoll_args_t *)args;
    return (void *) (uintptr_t) epoll_wait (a->epfd, a->events, a->maxevents, a->timeout);
}
#endif

/*****************************
EventMachine_t::_RunEpollOnce
*****************************/

void EventMachine_t::_RunEpollOnce()
{
    #ifdef HAVE_EPOLL
    assert (epfd != -1);
    int s;

    timeval tv = _TimeTilNextEvent();

    #ifdef BUILD_FOR_RUBY
    int ret = 0;

    if ((ret = rb_wait_for_single_fd(epfd, RB_WAITFD_IN|RB_WAITFD_PRI, &tv)) < 1) {
        if (ret == -1) {
            assert(errno != EINVAL);
            assert(errno != EBADF);
        }
        return;
    }

    epoll_args_t epoll_args = { epfd, epoll_events, MaxEvents, 0 };
    s = (uintptr_t) rb_thread_call_without_gvl (nogvl_epoll_wait, &epoll_args, RUBY_UBF_IO, 0);
    #else
    int duration = 0;
    duration = duration + (tv.tv_sec * 1000);
    duration = duration + (tv.tv_usec / 1000);
    s = epoll_wait (epfd, epoll_events, MaxEvents, duration);
    #endif

    if (s > 0) {
        for (int i=0; i < s; i++) {
            EventableDescriptor *ed = (EventableDescriptor*) epoll_events[i].data.ptr;

            if (ed->IsWatchOnly() && ed->GetSocket() == INVALID_SOCKET)
                continue;

            assert(ed->GetSocket() != INVALID_SOCKET);

            if (epoll_events[i].events & EPOLLIN)
                ed->Read();
            if (epoll_events[i].events & EPOLLOUT)
                ed->Write();
            if (epoll_events[i].events & (EPOLLERR | EPOLLHUP))
                ed->HandleError();
        }
    }
    else if (s < 0) {
        // epoll_wait can fail on error in a handful of ways.
        // If this happens, then wait for a little while to avoid busy-looping.
        // If the error was EINTR, we probably caught SIGCHLD or something,
        // so keep the wait short.
        timeval tv = {0, ((errno == EINTR) ? 5 : 50) * 1000};
        EmSelect (0, NULL, NULL, NULL, &tv);
    }
    #else
    throw std::runtime_error ("epoll is not implemented on this platform");
    #endif
}


#ifdef HAVE_KQUEUE
typedef struct {
    int kqfd;
    const struct kevent *changelist;
    int nchanges;
    struct kevent *eventlist;
    int nevents;
    const struct timespec *timeout;
} kevent_args_t;

static void *nogvl_kevent(void *args)
{
    kevent_args_t *a = (kevent_args_t *)args;
    return (void *) (uintptr_t) kevent (a->kqfd, a->changelist, a->nchanges, a->eventlist, a->nevents, a->timeout);
}
#endif

/******************************
EventMachine_t::_RunKqueueOnce
******************************/

#ifdef HAVE_KQUEUE
void EventMachine_t::_RunKqueueOnce()
{
    assert (kqfd != -1);
    int k;

    timeval tv = _TimeTilNextEvent();

    struct timespec ts;
    ts.tv_sec = tv.tv_sec;
    ts.tv_nsec = tv.tv_usec * 1000;

    #ifdef BUILD_FOR_RUBY
    int ret = 0;

    if ((ret = rb_wait_for_single_fd(kqfd, RB_WAITFD_IN|RB_WAITFD_PRI, &tv)) < 1) {
        if (ret == -1) {
            assert(errno != EINVAL);
            assert(errno != EBADF);
        }
        return;
    }

    ts.tv_sec = ts.tv_nsec = 0;
    kevent_args_t kevent_args = { kqfd, NULL, 0, Karray, MaxEvents, &ts };
    k = (uintptr_t) rb_thread_call_without_gvl (nogvl_kevent, &kevent_args, RUBY_UBF_IO, 0);
    #else
    k = kevent (kqfd, NULL, 0, Karray, MaxEvents, &ts);
    #endif

    struct kevent *ke = Karray;
    while (k > 0) {
        switch (ke->filter)
        {
            case EVFILT_VNODE:
                _HandleKqueueFileEvent (ke);
                break;

            case EVFILT_PROC:
                _HandleKqueuePidEvent (ke);
                break;

            case EVFILT_READ:
            case EVFILT_WRITE:
                EventableDescriptor *ed = (EventableDescriptor*) (ke->udata);
                assert (ed);

                if (ed->IsWatchOnly() && ed->GetSocket() == INVALID_SOCKET)
                    break;

                if (ke->filter == EVFILT_READ)
                    ed->Read();
                else if (ke->filter == EVFILT_WRITE)
                    ed->Write();
                else
                    std::cerr << "Discarding unknown kqueue event " << ke->filter << std::endl;

                break;
        }

        --k;
        ++ke;
    }

    #ifdef BUILD_FOR_RUBY
    if (!rb_thread_alone()) {
        rb_thread_schedule();
    }
    #endif
}
#else
void EventMachine_t::_RunKqueueOnce()
{
    throw std::runtime_error ("kqueue is not implemented on this platform");
}
#endif


/*********************************
EventMachine_t::_TimeTilNextEvent
*********************************/

timeval EventMachine_t::_TimeTilNextEvent()
{
    // 29jul11: Changed calculation base from MyCurrentLoopTime to the
    // real time. As MyCurrentLoopTime is set at the beginning of an
    // iteration and this calculation is done at the end, evenmachine
    // will potentially oversleep by the amount of time the iteration
    // took to execute.
    uint64_t next_event = 0;
    uint64_t current_time = GetRealTime();

    if (!Heartbeats.empty()) {
        std::multimap<uint64_t,EventableDescriptor*>::iterator heartbeats = Heartbeats.begin();
        next_event = heartbeats->first;
    }

    if (!Timers.empty()) {
        std::multimap<uint64_t,Timer_t>::iterator timers = Timers.begin();
        if (next_event == 0 || timers->first < next_event)
            next_event = timers->first;
    }

    if (!NewDescriptors.empty() || !ModifiedDescriptors.empty()) {
        next_event = current_time;
    }

    timeval tv;

    if (NumCloseScheduled > 0 || bTerminateSignalReceived) {
        tv.tv_sec = tv.tv_usec = 0;
    } else if (next_event == 0) {
        tv = Quantum;
    } else {
        if (next_event > current_time) {
            uint64_t duration = next_event - current_time;
            tv.tv_sec = duration / 1000000;
            tv.tv_usec = duration % 1000000;
        } else {
            tv.tv_sec = tv.tv_usec = 0;
        }
    }

    return tv;
}

/*******************************
EventMachine_t::_CleanupSockets
*******************************/

void EventMachine_t::_CleanupSockets()
{
    // TODO, rip this out and only delete the descriptors we know have died,
    // rather than traversing the whole list.
    // Modified 05Jan08 per suggestions by Chris Heath. It's possible that
    // an EventableDescriptor will have a descriptor value of -1. That will
    // happen if EventableDescriptor::Close was called on it. In that case,
    // don't call epoll_ctl to remove the socket's filters from the epoll set.
    // According to the epoll docs, this happens automatically when the
    // descriptor is closed anyway. This is different from the case where
    // the socket has already been closed but the descriptor in the ED object
    // hasn't yet been set to INVALID_SOCKET.
    // In kqueue, closing a descriptor automatically removes its event filters.
    int i, j;
    int nSockets = Descriptors.size();
    for (i=0, j=0; i < nSockets; i++) {
        EventableDescriptor *ed = Descriptors[i];
        assert (ed);
        if (ed->ShouldDelete()) {
        #ifdef HAVE_EPOLL
            if (Poller == Poller_Epoll) {
                assert (epfd != -1);
                if (ed->GetSocket() != INVALID_SOCKET) {
                    int e = epoll_ctl (epfd, EPOLL_CTL_DEL, ed->GetSocket(), ed->GetEpollEvent());
                    // ENOENT or EBADF are not errors because the socket may be already closed when we get here.
                    if (e && (errno != ENOENT) && (errno != EBADF) && (errno != EPERM)) {
                        char buf [200];
                        snprintf (buf, sizeof(buf)-1, "unable to delete epoll event: %s", strerror(errno));
                        throw std::runtime_error (buf);
                    }
                }
                ModifiedDescriptors.erase(ed);
            }
        #endif
            delete ed;
        }
        else
            Descriptors [j++] = ed;
    }
    while ((size_t)j < Descriptors.size())
        Descriptors.pop_back();
}

/*********************************
EventMachine_t::_ModifyEpollEvent
*********************************/

#ifdef HAVE_EPOLL
void EventMachine_t::_ModifyEpollEvent (EventableDescriptor *ed)
{
    if (Poller == Poller_Epoll) {
        assert (epfd != -1);
        assert (ed);
        assert (ed->GetSocket() != INVALID_SOCKET);
        int e = epoll_ctl (epfd, EPOLL_CTL_MOD, ed->GetSocket(), ed->GetEpollEvent());
        if (e) {
            char buf [200];
            snprintf (buf, sizeof(buf)-1, "unable to modify epoll event: %s", strerror(errno));
            throw std::runtime_error (buf);
        }
    }
}
#else
void EventMachine_t::_ModifyEpollEvent (EventableDescriptor *ed UNUSED) { }
#endif


/**************************
SelectData_t::SelectData_t
**************************/

SelectData_t::SelectData_t()
{
    maxsocket = 0;
    rb_fd_init (&fdreads);
    rb_fd_init (&fdwrites);
    rb_fd_init (&fderrors);
}

SelectData_t::~SelectData_t()
{
    rb_fd_term (&fdreads);
    rb_fd_term (&fdwrites);
    rb_fd_term (&fderrors);
}

/*********************
SelectData_t::_Select
*********************/

int SelectData_t::_Select()
{
    return EmSelect (maxsocket + 1, &fdreads, &fdwrites, &fderrors, &tv);
}

void SelectData_t::_Clear()
{
    maxsocket = 0;
    rb_fd_zero (&fdreads);
    rb_fd_zero (&fdwrites);
    rb_fd_zero (&fderrors);
}

/******************************
EventMachine_t::_RunSelectOnce
******************************/

void EventMachine_t::_RunSelectOnce()
{
    // Crank the event machine once.
    // If there are no descriptors to process, then sleep
    // for a few hundred mills to avoid busy-looping.
    // This is based on a select loop. Alternately provide epoll
    // if we know we're running on a 2.6 kernel.
    // epoll will be effective if we provide it as an alternative,
    // however it has the same problem interoperating with Ruby
    // threads that select does.

    // Get ready for select()
    SelectData->_Clear();

    // Always read the loop-breaker reader.
    // Changed 23Aug06, provisionally implemented for Windows with a UDP socket
    // running on localhost with a randomly-chosen port. (*Puke*)
    // Windows has a version of the Unix pipe() library function, but it doesn't
    // give you back descriptors that are selectable.
    rb_fd_set (LoopBreakerReader, &(SelectData->fdreads));
    if (SelectData->maxsocket < LoopBreakerReader)
        SelectData->maxsocket = LoopBreakerReader;

    // prepare the sockets for reading and writing
    size_t i;
    for (i = 0; i < Descriptors.size(); i++) {
        EventableDescriptor *ed = Descriptors[i];
        assert (ed);
        SOCKET sd = ed->GetSocket();
        if (ed->IsWatchOnly() && sd == INVALID_SOCKET)
            continue;
        assert (sd != INVALID_SOCKET);

        if (ed->SelectForRead())
            rb_fd_set (sd, &(SelectData->fdreads));
        if (ed->SelectForWrite())
            rb_fd_set (sd, &(SelectData->fdwrites));

        #ifdef OS_WIN32
        /* 21Sep09: on windows, a non-blocking connect() that fails does not come up as writable.
           Instead, it is added to the error set. See http://www.mail-archive.com/openssl-users@openssl.org/msg58500.html
        */
        if (ed->IsConnectPending())
            rb_fd_set (sd, &(SelectData->fderrors));
        #endif

        if (SelectData->maxsocket < sd)
            SelectData->maxsocket = sd;
    }


    { // read and write the sockets
        SelectData->tv = _TimeTilNextEvent();
        int s = SelectData->_Select();
        if (s > 0) {
            /* Changed 01Jun07. We used to handle the Loop-breaker right here.
             * Now we do it AFTER all the regular descriptors. There's an
             * incredibly important and subtle reason for this. Code on
             * loop breakers is sometimes used to cause the reactor core to
             * cycle (for example, to allow outbound network buffers to drain).
             * If a loop-breaker handler reschedules itself (say, after determining
             * that the write buffers are still too full), then it will execute
             * IMMEDIATELY if _ReadLoopBreaker is done here instead of after
             * the other descriptors are processed. That defeats the whole purpose.
             */
            for (i=0; i < Descriptors.size(); i++) {
                EventableDescriptor *ed = Descriptors[i];
                assert (ed);
                SOCKET sd = ed->GetSocket();
                if (ed->IsWatchOnly() && sd == INVALID_SOCKET)
                    continue;
                assert (sd != INVALID_SOCKET);

                if (rb_fd_isset (sd, &(SelectData->fdwrites))) {
                    // Double-check SelectForWrite() still returns true. If not, one of the callbacks must have
                    // modified some value since we checked SelectForWrite() earlier in this method.
                    if (ed->SelectForWrite())
                        ed->Write();
                }
                if (rb_fd_isset (sd, &(SelectData->fdreads)))
                    ed->Read();
                if (rb_fd_isset (sd, &(SelectData->fderrors)))
                    ed->HandleError();
            }

            if (rb_fd_isset (LoopBreakerReader, &(SelectData->fdreads)))
                _ReadLoopBreaker();
        }
        else if (s < 0) {
            switch (errno) {
                case EBADF:
                    _CleanBadDescriptors();
                    break;
                case EINVAL:
                    throw std::runtime_error ("Somehow EM passed an invalid nfds or invalid timeout to select(2), please report this!");
                    break;
                default:
                    // select can fail on error in a handful of ways.
                    // If this happens, then wait for a little while to avoid busy-looping.
                    // If the error was EINTR, we probably caught SIGCHLD or something,
                    // so keep the wait short.
                    timeval tv = {0, ((errno == EINTR) ? 5 : 50) * 1000};
                    EmSelect (0, NULL, NULL, NULL, &tv);
            }
        }
    }
}

void EventMachine_t::_CleanBadDescriptors()
{
    size_t i;

    for (i = 0; i < Descriptors.size(); i++) {
        EventableDescriptor *ed = Descriptors[i];
        if (ed->ShouldDelete())
            continue;

        if (rb_wait_for_single_fd(ed->GetSocket(), RB_WAITFD_PRI, NULL) < 0) {
            if (errno == EBADF)
                ed->ScheduleClose(false);
        }
    }
}

/********************************
EventMachine_t::_ReadLoopBreaker
********************************/

void EventMachine_t::_ReadLoopBreaker()
{
    /* The loop breaker has selected readable.
     * Read it ONCE (it may block if we try to read it twice)
     * and send a loop-break event back to user code.
     */
    char buffer [1024];
    (void)read (LoopBreakerReader, buffer, sizeof(buffer));
    if (EventCallback)
        (*EventCallback)(0, EM_LOOPBREAK_SIGNAL, "", 0);
}


/**************************
EventMachine_t::_RunTimers
**************************/

void EventMachine_t::_RunTimers()
{
    // These are caller-defined timer handlers.
    // We rely on the fact that multimaps sort by their keys to avoid
    // inspecting the whole list every time we come here.
    // Just keep inspecting and processing the list head until we hit
    // one that hasn't expired yet.

    while (true) {
        std::multimap<uint64_t,Timer_t>::iterator i = Timers.begin();
        if (i == Timers.end())
            break;
        if (i->first > MyCurrentLoopTime)
            break;
        if (EventCallback)
            (*EventCallback) (0, EM_TIMER_FIRED, NULL, i->second.GetBinding());
        Timers.erase (i);
    }
}

/*********************************************
EventMachine_t::_GetNumberOfOutstandingTimers
*********************************************/

size_t EventMachine_t::GetTimerCount()
{
    return Timers.size();
}


/***********************************
EventMachine_t::InstallOneshotTimer
***********************************/

const uintptr_t EventMachine_t::InstallOneshotTimer (uint64_t milliseconds)
{
    if (Timers.size() > MaxOutstandingTimers)
        return false;

    uint64_t fire_at = GetRealTime();
    fire_at += ((uint64_t)milliseconds) * 1000LL;

    Timer_t t;
    #ifndef HAVE_MAKE_PAIR
    std::multimap<uint64_t,Timer_t>::iterator i = Timers.insert (std::multimap<uint64_t,Timer_t>::value_type (fire_at, t));
    #else
    std::multimap<uint64_t,Timer_t>::iterator i = Timers.insert (std::make_pair (fire_at, t));
    #endif
    return i->second.GetBinding();
}


/*******************************
EventMachine_t::ConnectToServer
*******************************/

const uintptr_t EventMachine_t::ConnectToServer (const char *bind_addr, int bind_port, const char *server, int port)
{
    /* We want to spend no more than a few seconds waiting for a connection
     * to a remote host. So we use a nonblocking connect.
     * Linux disobeys the usual rules for nonblocking connects.
     * Per Stevens (UNP p.410), you expect a nonblocking connect to select
     * both readable and writable on error, and not to return EINPROGRESS
     * if the connect can be fulfilled immediately. Linux violates both
     * of these expectations.
     * Any kind of nonblocking connect on Linux returns EINPROGRESS.
     * The socket will then return writable when the disposition of the
     * connect is known, but it will not also be readable in case of
     * error! Weirdly, it will be readable in case there is data to read!!!
     * (Which can happen with protocols like SSH and SMTP.)
     * I suppose if you were so inclined you could consider this logical,
     * but it's not the way Unix has historically done it.
     * So we ignore the readable flag and read getsockopt to see if there
     * was an error connecting. A select timeout works as expected.
     * In regard to getsockopt: Linux does the Berkeley-style thing,
     * not the Solaris-style, and returns zero with the error code in
     * the error parameter.
     * Return the binding-text of the newly-created pending connection,
     * or NULL if there was a problem.
     */

    if (!server || !*server || !port)
        throw std::runtime_error ("invalid server or port");

    struct sockaddr_storage bind_as;
    size_t bind_as_len = sizeof bind_as;
    int gai = name2address (server, port, SOCK_STREAM, (struct sockaddr *)&bind_as, &bind_as_len);
    if (gai != 0) {
        char buf [200];
        snprintf (buf, sizeof(buf)-1, "unable to resolve address: %s", gai_strerror(gai));
        throw std::runtime_error (buf);
    }

    SOCKET sd = EmSocket (bind_as.ss_family, SOCK_STREAM, 0);
    if (sd == INVALID_SOCKET) {
        char buf [200];
        snprintf (buf, sizeof(buf)-1, "unable to create new socket: %s", strerror(errno));
        throw std::runtime_error (buf);
    }

    // From here on, ALL error returns must close the socket.
    // Set the new socket nonblocking.
    if (!SetSocketNonblocking (sd)) {
        close (sd);
        throw std::runtime_error ("unable to set socket as non-blocking");
    }
    // Disable slow-start (Nagle algorithm).
    int one = 1;
    setsockopt (sd, IPPROTO_TCP, TCP_NODELAY, (char*) &one, sizeof(one));
    // Set reuseaddr to improve performance on restarts
    setsockopt (sd, SOL_SOCKET, SO_REUSEADDR, (char*) &one, sizeof(one));

    if (bind_addr) {
        struct sockaddr_storage bind_to;
        size_t bind_to_len = sizeof bind_to;
        gai = name2address (bind_addr, bind_port, SOCK_STREAM, (struct sockaddr *)&bind_to, &bind_to_len);
        if (gai != 0) {
            close (sd);
            char buf [200];
            snprintf (buf, sizeof(buf)-1, "invalid bind address: %s", gai_strerror(gai));
            throw std::runtime_error (buf);
        }
        if (bind (sd, (struct sockaddr *)&bind_to, bind_to_len) < 0) {
            close (sd);
            throw std::runtime_error ("couldn't bind to address");
        }
    }

    uintptr_t out = 0;

    #ifdef OS_UNIX
    int e_reason = 0;
    if (connect (sd, (struct sockaddr *)&bind_as, bind_as_len) == 0) {
        // This is a connect success, which Linux appears
        // never to give when the socket is nonblocking,
        // even if the connection is intramachine or to
        // localhost.

        /* Changed this branch 08Aug06. Evidently some kernels
         * (FreeBSD for example) will actually return success from
         * a nonblocking connect. This is a pretty simple case,
         * just set up the new connection and clear the pending flag.
         * Thanks to Chris Ochs for helping track this down.
         * This branch never gets taken on Linux or (oddly) OSX.
         * The original behavior was to throw an unimplemented,
         * which the user saw as a fatal exception. Very unfriendly.
         *
         * Tweaked 10Aug06. Even though the connect disposition is
         * known, we still set the connect-pending flag. That way
         * some needed initialization will happen in the ConnectionDescriptor.
         * (To wit, the ConnectionCompleted event gets sent to the client.)
         */
        ConnectionDescriptor *cd = new ConnectionDescriptor (sd, this);
        if (!cd)
            throw std::runtime_error ("no connection allocated");
        cd->SetConnectPending (true);
        Add (cd);
        out = cd->GetBinding();
    }
    else if (errno == EINPROGRESS) {
        // Errno will generally always be EINPROGRESS, but on Linux
        // we have to look at getsockopt to be sure what really happened.
        int error = 0;
        socklen_t len;
        len = sizeof(error);
        int o = getsockopt (sd, SOL_SOCKET, SO_ERROR, &error, &len);
        if ((o == 0) && (error == 0)) {
            // Here, there's no disposition.
            // Put the connection on the stack and wait for it to complete
            // or time out.
            ConnectionDescriptor *cd = new ConnectionDescriptor (sd, this);
            if (!cd)
                throw std::runtime_error ("no connection allocated");
            cd->SetConnectPending (true);
            Add (cd);
            out = cd->GetBinding();
        } else {
            // Fall through to the !out case below.
            e_reason = error;
        }
    }
    else {
        // The error from connect was something other then EINPROGRESS (EHOSTDOWN, etc).
        // Fall through to the !out case below
        e_reason = errno;
    }

    if (!out) {
        /* This could be connection refused or some such thing.
         * We will come here on Linux if a localhost connection fails.
         * Changed 16Jul06: Originally this branch was a no-op, and
         * we'd drop down to the end of the method, close the socket,
         * and return NULL, which would cause the caller to GET A
         * FATAL EXCEPTION. Now we keep the socket around but schedule an
         * immediate close on it, so the caller will get a close-event
         * scheduled on it. This was only an issue for localhost connections
         * to non-listening ports. We may eventually need to revise this
         * revised behavior, in case it causes problems like making it hard
         * for people to know that a failure occurred.
         */
        ConnectionDescriptor *cd = new ConnectionDescriptor (sd, this);
        if (!cd)
            throw std::runtime_error ("no connection allocated");
        cd->SetUnbindReasonCode (e_reason);
        cd->ScheduleClose (false);
        Add (cd);
        out = cd->GetBinding();
    }
    #endif

    #ifdef OS_WIN32
    if (connect (sd, (struct sockaddr *)&bind_as, bind_as_len) == 0) {
        // This is a connect success, which Windows appears
        // never to give when the socket is nonblocking,
        // even if the connection is intramachine or to
        // localhost.
        throw std::runtime_error ("unimplemented");
    }
    else if (WSAGetLastError() == WSAEWOULDBLOCK) {
        // Here, there's no disposition.
        // Windows appears not to surface refused connections or
        // such stuff at this point.
        // Put the connection on the stack and wait for it to complete
        // or time out.
        ConnectionDescriptor *cd = new ConnectionDescriptor (sd, this);
        if (!cd)
            throw std::runtime_error ("no connection allocated");
        cd->SetConnectPending (true);
        Add (cd);
        out = cd->GetBinding();
    }
    else {
        // The error from connect was something other then WSAEWOULDBLOCK.
    }

    #endif

    if (!out)
        close (sd);
    return out;
}

/***********************************
EventMachine_t::ConnectToUnixServer
***********************************/

#ifdef OS_UNIX
const uintptr_t EventMachine_t::ConnectToUnixServer (const char *server)
{
    /* Connect to a Unix-domain server, which by definition is running
     * on the same host.
     * There is no meaningful implementation on Windows.
     * There's no need to do a nonblocking connect, since the connection
     * is always local and can always be fulfilled immediately.
     */

    uintptr_t out = 0;

    if (!server || !*server)
        return 0;

    sockaddr_un pun;
    memset (&pun, 0, sizeof(pun));
    pun.sun_family = AF_LOCAL;

    // You ordinarily expect the server name field to be at least 1024 bytes long,
    // but on Linux it can be MUCH shorter.
    if (strlen(server) >= sizeof(pun.sun_path))
        throw std::runtime_error ("unix-domain server name is too long");


    strcpy (pun.sun_path, server);

    SOCKET fd = EmSocket (AF_LOCAL, SOCK_STREAM, 0);
    if (fd == INVALID_SOCKET)
        return 0;

    // From here on, ALL error returns must close the socket.
    // NOTE: At this point, the socket is still a blocking socket.
    if (connect (fd, (struct sockaddr*)&pun, sizeof(pun)) != 0) {
        close (fd);
        return 0;
    }

    // Set the newly-connected socket nonblocking.
    if (!SetSocketNonblocking (fd)) {
        close (fd);
        return 0;
    }

    // Set up a connection descriptor and add it to the event-machine.
    // Observe, even though we know the connection status is connect-success,
    // we still set the "pending" flag, so some needed initializations take
    // place.
    ConnectionDescriptor *cd = new ConnectionDescriptor (fd, this);
    if (!cd)
        throw std::runtime_error ("no connection allocated");
    cd->SetConnectPending (true);
    Add (cd);
    out = cd->GetBinding();

    if (!out)
        close (fd);

    return out;
}
#else
const uintptr_t EventMachine_t::ConnectToUnixServer (const char *server UNUSED)
{
    throw std::runtime_error ("unix-domain connection unavailable on this platform");
}
#endif

/************************
EventMachine_t::AttachFD
************************/

const uintptr_t EventMachine_t::AttachFD (SOCKET fd, bool watch_mode)
{
    #ifdef OS_UNIX
    if (fcntl(fd, F_GETFL, 0) < 0) {
        if (errno) {
            throw std::runtime_error (strerror(errno));
        } else {
            throw std::runtime_error ("invalid file descriptor");
        }
    }
    #endif

    #ifdef OS_WIN32
    // TODO: add better check for invalid file descriptors (see ioctlsocket or getsockopt)
    if (fd == INVALID_SOCKET)
        throw std::runtime_error ("invalid file descriptor");
    #endif

    {// Check for duplicate descriptors
        size_t i;
        for (i = 0; i < Descriptors.size(); i++) {
            EventableDescriptor *ed = Descriptors[i];
            assert (ed);
            if (ed->GetSocket() == fd)
                throw std::runtime_error ("adding existing descriptor");
        }

        for (i = 0; i < NewDescriptors.size(); i++) {
            EventableDescriptor *ed = NewDescriptors[i];
            assert (ed);
            if (ed->GetSocket() == fd)
                throw std::runtime_error ("adding existing new descriptor");
        }
    }

    if (!watch_mode)
        SetSocketNonblocking(fd);

    ConnectionDescriptor *cd = new ConnectionDescriptor (fd, this);
    if (!cd)
        throw std::runtime_error ("no connection allocated");

    cd->SetAttached(true);
    cd->SetWatchOnly(watch_mode);
    cd->SetConnectPending (false);

    Add (cd);

    const uintptr_t out = cd->GetBinding();
    return out;
}

/************************
EventMachine_t::DetachFD
************************/

int EventMachine_t::DetachFD (EventableDescriptor *ed)
{
    if (!ed)
        throw std::runtime_error ("detaching bad descriptor");

    SOCKET fd = ed->GetSocket();

    #ifdef HAVE_EPOLL
    if (Poller == Poller_Epoll) {
        if (ed->GetSocket() != INVALID_SOCKET) {
            assert (epfd != -1);
            int e = epoll_ctl (epfd, EPOLL_CTL_DEL, ed->GetSocket(), ed->GetEpollEvent());
            // ENOENT or EBADF are not errors because the socket may be already closed when we get here.
            if (e && (errno != ENOENT) && (errno != EBADF)) {
                char buf [200];
                snprintf (buf, sizeof(buf)-1, "unable to delete epoll event: %s", strerror(errno));
                throw std::runtime_error (buf);
            }
        }
    }
    #endif

    #ifdef HAVE_KQUEUE
    if (Poller == Poller_Kqueue) {
        // remove any read/write events for this fd
        struct kevent k;
#ifdef __NetBSD__
        EV_SET (&k, ed->GetSocket(), EVFILT_READ | EVFILT_WRITE, EV_DELETE, 0, 0, (intptr_t)ed);
#else
        EV_SET (&k, ed->GetSocket(), EVFILT_READ | EVFILT_WRITE, EV_DELETE, 0, 0, ed);
#endif
        int t = kevent (kqfd, &k, 1, NULL, 0, NULL);
        if (t < 0 && (errno != ENOENT) && (errno != EBADF)) {
            char buf [200];
            snprintf (buf, sizeof(buf)-1, "unable to delete kqueue event: %s", strerror(errno));
            throw std::runtime_error (buf);
        }
    }
    #endif

    // Prevent the descriptor from being modified, in case DetachFD was called from a timer or next_tick
    ModifiedDescriptors.erase (ed);

    // Prevent the descriptor from being added, in case DetachFD was called in the same tick as AttachFD
    for (size_t i = 0; i < NewDescriptors.size(); i++) {
        if (ed == NewDescriptors[i]) {
            NewDescriptors.erase(NewDescriptors.begin() + i);
            break;
        }
    }

    // Set MySocket = INVALID_SOCKET so ShouldDelete() is true (and the descriptor gets deleted and removed),
    // and also to prevent anyone from calling close() on the detached fd
    ed->SetSocketInvalid();

    return fd;
}

/************
name2address
************/

int EventMachine_t::name2address (const char *server, int port, int socktype, struct sockaddr *addr, size_t *addr_len)
{
    if (!server || !*server)
        server = "0.0.0.0";

    struct addrinfo *ai;
    struct addrinfo hints;
    memset (&hints, 0, sizeof(hints));
    hints.ai_socktype = socktype;
    hints.ai_family = AF_UNSPEC;
    hints.ai_flags = AI_NUMERICSERV | AI_ADDRCONFIG;

    char portstr[12];
    snprintf(portstr, sizeof(portstr), "%u", port);

    int gai = getaddrinfo (server, portstr, &hints, &ai);
    if (gai == 0) {
        assert (ai->ai_addrlen <= *addr_len);
        memcpy (addr, ai->ai_addr, ai->ai_addrlen);
        *addr_len = ai->ai_addrlen;
        freeaddrinfo(ai);
    }

    return gai;
}


/*******************************
EventMachine_t::CreateTcpServer
*******************************/

const uintptr_t EventMachine_t::CreateTcpServer (const char *server, int port)
{
    /* Create a TCP-acceptor (server) socket and add it to the event machine.
     * Return the binding of the new acceptor to the caller.
     * This binding will be referenced when the new acceptor sends events
     * to indicate accepted connections.
     */


    struct sockaddr_storage bind_here;
    size_t bind_here_len = sizeof bind_here;
    if (0 != name2address (server, port, SOCK_STREAM, (struct sockaddr *)&bind_here, &bind_here_len))
        return 0;

    SOCKET sd_accept = EmSocket (bind_here.ss_family, SOCK_STREAM, 0);
    if (sd_accept == INVALID_SOCKET) {
        goto fail;
    }

    { // set reuseaddr to improve performance on restarts.
        int oval = 1;
        if (setsockopt (sd_accept, SOL_SOCKET, SO_REUSEADDR, (char*)&oval, sizeof(oval)) < 0) {
            //__warning ("setsockopt failed while creating listener","");
            goto fail;
        }
    }

    { // set CLOEXEC. Only makes sense on Unix
        #ifdef OS_UNIX
        int cloexec = fcntl (sd_accept, F_GETFD, 0);
        assert (cloexec >= 0);
        cloexec |= FD_CLOEXEC;
        fcntl (sd_accept, F_SETFD, cloexec);
        #endif
    }


    if (bind (sd_accept, (struct sockaddr *)&bind_here, bind_here_len)) {
        //__warning ("binding failed");
        goto fail;
    }

    if (listen (sd_accept, 100)) {
        //__warning ("listen failed");
        goto fail;
    }

    return AttachSD(sd_accept);

    fail:
    if (sd_accept != INVALID_SOCKET)
        close (sd_accept);
    return 0;
}


/**********************************
EventMachine_t::OpenDatagramSocket
**********************************/

const uintptr_t EventMachine_t::OpenDatagramSocket (const char *address, int port)
{
    uintptr_t output_binding = 0;

    struct sockaddr_storage bind_here;
    size_t bind_here_len = sizeof bind_here;
    if (0 != name2address (address, port, SOCK_DGRAM, (struct sockaddr *)&bind_here, &bind_here_len))
        return 0;

    // from here on, early returns must close the socket!
    SOCKET sd = EmSocket (bind_here.ss_family, SOCK_DGRAM, 0);
    if (sd == INVALID_SOCKET)
        goto fail;

    { // set the SO_REUSEADDR on the socket before we bind, otherwise it won't work for a second one
        int oval = 1;
        if (setsockopt (sd, SOL_SOCKET, SO_REUSEADDR, (char*)&oval, sizeof(oval)) < 0)
            goto fail;
    }

    // Set the new socket nonblocking.
    if (!SetSocketNonblocking (sd))
        goto fail;

    if (bind (sd, (struct sockaddr *)&bind_here, bind_here_len) != 0)
        goto fail;

    { // Looking good.
        DatagramDescriptor *ds = new DatagramDescriptor (sd, this);
        if (!ds)
            throw std::runtime_error ("unable to allocate datagram-socket");
        Add (ds);
        output_binding = ds->GetBinding();
    }

    return output_binding;

    fail:
    if (sd != INVALID_SOCKET)
        close (sd);
    return 0;
}



/*******************
EventMachine_t::Add
*******************/

void EventMachine_t::Add (EventableDescriptor *ed)
{
    if (!ed)
        throw std::runtime_error ("added bad descriptor");
    ed->SetEventCallback (EventCallback);
    NewDescriptors.push_back (ed);
}


/*******************************
EventMachine_t::ArmKqueueWriter
*******************************/

#ifdef HAVE_KQUEUE
void EventMachine_t::ArmKqueueWriter (EventableDescriptor *ed)
{
    if (Poller == Poller_Kqueue) {
        if (!ed)
            throw std::runtime_error ("added bad descriptor");
        struct kevent k;
#ifdef __NetBSD__
        EV_SET (&k, ed->GetSocket(), EVFILT_WRITE, EV_ADD | EV_ONESHOT, 0, 0, (intptr_t)ed);
#else
        EV_SET (&k, ed->GetSocket(), EVFILT_WRITE, EV_ADD | EV_ONESHOT, 0, 0, ed);
#endif
        int t = kevent (kqfd, &k, 1, NULL, 0, NULL);
        if (t < 0) {
            char buf [200];
            snprintf (buf, sizeof(buf)-1, "arm kqueue writer failed on %d: %s", ed->GetSocket(), strerror(errno));
            throw std::runtime_error (buf);
        }
    }
}
#else
void EventMachine_t::ArmKqueueWriter (EventableDescriptor *ed UNUSED) { }
#endif

/*******************************
EventMachine_t::ArmKqueueReader
*******************************/

#ifdef HAVE_KQUEUE
void EventMachine_t::ArmKqueueReader (EventableDescriptor *ed)
{
    if (Poller == Poller_Kqueue) {
        if (!ed)
            throw std::runtime_error ("added bad descriptor");
        struct kevent k;
#ifdef __NetBSD__
        EV_SET (&k, ed->GetSocket(), EVFILT_READ, EV_ADD, 0, 0, (intptr_t)ed);
#else
        EV_SET (&k, ed->GetSocket(), EVFILT_READ, EV_ADD, 0, 0, ed);
#endif
        int t = kevent (kqfd, &k, 1, NULL, 0, NULL);
        if (t < 0) {
            char buf [200];
            snprintf (buf, sizeof(buf)-1, "arm kqueue reader failed on %d: %s", ed->GetSocket(), strerror(errno));
            throw std::runtime_error (buf);
        }
    }
}
#else
void EventMachine_t::ArmKqueueReader (EventableDescriptor *ed UNUSED) { }
#endif

/**********************************
EventMachine_t::_AddNewDescriptors
**********************************/

void EventMachine_t::_AddNewDescriptors()
{
    /* Avoid adding descriptors to the main descriptor list
     * while we're actually traversing the list.
     * Any descriptors that are added as a result of processing timers
     * or acceptors should go on a temporary queue and then added
     * while we're not traversing the main list.
     * Also, it (rarely) happens that a newly-created descriptor
     * is immediately scheduled to close. It might be a good
     * idea not to bother scheduling these for I/O but if
     * we do that, we might bypass some important processing.
     */

    for (size_t i = 0; i < NewDescriptors.size(); i++) {
        EventableDescriptor *ed = NewDescriptors[i];
        if (ed == NULL)
            throw std::runtime_error ("adding bad descriptor");

        #if HAVE_EPOLL
        if (Poller == Poller_Epoll) {
            assert (epfd != -1);
            int e = epoll_ctl (epfd, EPOLL_CTL_ADD, ed->GetSocket(), ed->GetEpollEvent());
            if (e) {
                char buf [200];
                snprintf (buf, sizeof(buf)-1, "unable to add new descriptor: %s", strerror(errno));
                throw std::runtime_error (buf);
            }
        }
        #endif

        #if HAVE_KQUEUE
        /*
        if (Poller == Poller_Kqueue) {
            // INCOMPLETE. Some descriptors don't want to be readable.
            assert (kqfd != -1);
            struct kevent k;
#ifdef __NetBSD__
            EV_SET (&k, ed->GetSocket(), EVFILT_READ, EV_ADD, 0, 0, (intptr_t)ed);
#else
            EV_SET (&k, ed->GetSocket(), EVFILT_READ, EV_ADD, 0, 0, ed);
#endif
            int t = kevent (kqfd, &k, 1, NULL, 0, NULL);
            assert (t == 0);
        }
        */
        #endif

        QueueHeartbeat(ed);
        Descriptors.push_back (ed);
    }
    NewDescriptors.clear();
}


/**********************************
EventMachine_t::_ModifyDescriptors
**********************************/

void EventMachine_t::_ModifyDescriptors()
{
    /* For implementations which don't level check every descriptor on
     * every pass through the machine, as select does.
     * If we're not selecting, then descriptors need a way to signal to the
     * machine that their readable or writable status has changed.
     * That's what the ::Modify call is for. We do it this way to avoid
     * modifying descriptors during the loop traversal, where it can easily
     * happen that an object (like a UDP socket) gets data written on it by
     * the application during #post_init. That would take place BEFORE the
     * descriptor even gets added to the epoll descriptor, so the modify
     * operation will crash messily.
     * Another really messy possibility is for a descriptor to put itself
     * on the Modified list, and then get deleted before we get here.
     * Remember, deletes happen after the I/O traversal and before the
     * next pass through here. So we have to make sure when we delete a
     * descriptor to remove it from the Modified list.
     */

    #ifdef HAVE_EPOLL
    if (Poller == Poller_Epoll) {
        std::set<EventableDescriptor*>::iterator i = ModifiedDescriptors.begin();
        while (i != ModifiedDescriptors.end()) {
            assert (*i);
            _ModifyEpollEvent (*i);
            ++i;
        }
    }
    #endif

    #ifdef HAVE_KQUEUE
    if (Poller == Poller_Kqueue) {
        std::set<EventableDescriptor*>::iterator i = ModifiedDescriptors.begin();
        while (i != ModifiedDescriptors.end()) {
            assert (*i);
            if ((*i)->GetKqueueArmWrite())
                ArmKqueueWriter (*i);
            ++i;
        }
    }
    #endif

    ModifiedDescriptors.clear();
}


/**********************
EventMachine_t::Modify
**********************/

void EventMachine_t::Modify (EventableDescriptor *ed)
{
    if (!ed)
        throw std::runtime_error ("modified bad descriptor");
    ModifiedDescriptors.insert (ed);
}


/***********************
EventMachine_t::Deregister
***********************/

void EventMachine_t::Deregister (EventableDescriptor *ed)
{
    if (!ed)
        throw std::runtime_error ("modified bad descriptor");
    #ifdef HAVE_EPOLL
    // cut/paste from _CleanupSockets().  The error handling could be
    // refactored out of there, but it is cut/paste all over the
    // file already.
    if (Poller == Poller_Epoll) {
        assert (epfd != -1);
        assert (ed->GetSocket() != INVALID_SOCKET);
        int e = epoll_ctl (epfd, EPOLL_CTL_DEL, ed->GetSocket(), ed->GetEpollEvent());
        // ENOENT or EBADF are not errors because the socket may be already closed when we get here.
        if (e && (errno != ENOENT) && (errno != EBADF) && (errno != EPERM)) {
            char buf [200];
            snprintf (buf, sizeof(buf)-1, "unable to delete epoll event: %s", strerror(errno));
            throw std::runtime_error (buf);
        }
        ModifiedDescriptors.erase(ed);
    }
    #endif

    #ifdef HAVE_KQUEUE
    if (Poller == Poller_Kqueue) {
        assert (ed->GetSocket() != INVALID_SOCKET);

        ModifiedDescriptors.erase(ed);
    }
    #endif
}


/**************************************
EventMachine_t::CreateUnixDomainServer
**************************************/

#ifdef OS_UNIX
const uintptr_t EventMachine_t::CreateUnixDomainServer (const char *filename)
{
    /* Create a UNIX-domain acceptor (server) socket and add it to the event machine.
     * Return the binding of the new acceptor to the caller.
     * This binding will be referenced when the new acceptor sends events
     * to indicate accepted connections.
     * THERE IS NO MEANINGFUL IMPLEMENTATION ON WINDOWS.
     */

    struct sockaddr_un s_sun;

    SOCKET sd_accept = EmSocket (AF_LOCAL, SOCK_STREAM, 0);
    if (sd_accept == INVALID_SOCKET) {
        goto fail;
    }

    if (!filename || !*filename)
        goto fail;
    unlink (filename);

    bzero (&s_sun, sizeof(s_sun));
    s_sun.sun_family = AF_LOCAL;
    strncpy (s_sun.sun_path, filename, sizeof(s_sun.sun_path)-1);

    // don't bother with reuseaddr for a local socket.

    { // set CLOEXEC. Only makes sense on Unix
        #ifdef OS_UNIX
        int cloexec = fcntl (sd_accept, F_GETFD, 0);
        assert (cloexec >= 0);
        cloexec |= FD_CLOEXEC;
        fcntl (sd_accept, F_SETFD, cloexec);
        #endif
    }

    if (bind (sd_accept, (struct sockaddr*)&s_sun, sizeof(s_sun))) {
        //__warning ("binding failed");
        goto fail;
    }

    if (listen (sd_accept, 100)) {
        //__warning ("listen failed");
        goto fail;
    }

    return AttachSD(sd_accept);

    fail:
    if (sd_accept != INVALID_SOCKET)
        close (sd_accept);
    return 0;
}
#else
const uintptr_t EventMachine_t::CreateUnixDomainServer (const char *filename UNUSED)
{
    throw std::runtime_error ("unix-domain server unavailable on this platform");
}
#endif


/**************************************
EventMachine_t::AttachSD
**************************************/

const uintptr_t EventMachine_t::AttachSD (SOCKET sd_accept)
{
    uintptr_t output_binding = 0;

    {
        // Set the acceptor non-blocking.
        // THIS IS CRUCIALLY IMPORTANT because we read it in a select loop.
        if (!SetSocketNonblocking (sd_accept)) {
        //int val = fcntl (sd_accept, F_GETFL, 0);
        //if (fcntl (sd_accept, F_SETFL, val | O_NONBLOCK) == -1) {
            goto fail;
        }
    }

    { // Looking good.
        AcceptorDescriptor *ad = new AcceptorDescriptor (sd_accept, this);
        if (!ad)
            throw std::runtime_error ("unable to allocate acceptor");
        Add (ad);
        output_binding = ad->GetBinding();
    }

    return output_binding;

    fail:
    if (sd_accept != INVALID_SOCKET)
        close (sd_accept);
    return 0;
}


/**************************
EventMachine_t::Socketpair
**************************/

#ifdef OS_UNIX
const uintptr_t EventMachine_t::Socketpair (char * const * cmd_strings)
{
    // Make sure the incoming array of command strings is sane.
    if (!cmd_strings)
        return 0;
    int j;
    for (j=0; j < 2048 && cmd_strings[j]; j++)
        ;
    if ((j==0) || (j==2048))
        return 0;

    uintptr_t output_binding = 0;

    int sv[2];
    if (socketpair (AF_LOCAL, SOCK_STREAM, 0, sv) < 0)
        return 0;
    // from here, all early returns must close the pair of sockets.

    // Set the parent side of the socketpair nonblocking.
    // We don't care about the child side, and most child processes will expect their
    // stdout to be blocking. Thanks to Duane Johnson and Bill Kelly for pointing this out.
    // Obviously DON'T set CLOEXEC.
    if (!SetSocketNonblocking (sv[0])) {
        close (sv[0]);
        close (sv[1]);
        return 0;
    }

    pid_t f = fork();
    if (f > 0) {
        close (sv[1]);
        PipeDescriptor *pd = new PipeDescriptor (sv[0], f, this);
        if (!pd)
            throw std::runtime_error ("unable to allocate pipe");
        Add (pd);
        output_binding = pd->GetBinding();
    }
    else if (f == 0) {
        close (sv[0]);
        dup2 (sv[1], STDIN_FILENO);
        close (sv[1]);
        dup2 (STDIN_FILENO, STDOUT_FILENO);
        execvp (cmd_strings[0], cmd_strings+1);
        exit (-1); // end the child process if the exec doesn't work.
    }
    else
        throw std::runtime_error ("no fork");

    return output_binding;
}
#else
const uintptr_t EventMachine_t::Socketpair (char * const * cmd_strings UNUSED)
{
    throw std::runtime_error ("socketpair is currently unavailable on this platform");
}
#endif



/****************************
EventMachine_t::OpenKeyboard
****************************/

const uintptr_t EventMachine_t::OpenKeyboard()
{
    KeyboardDescriptor *kd = new KeyboardDescriptor (this);
    if (!kd)
        throw std::runtime_error ("no keyboard-object allocated");
    Add (kd);
    return kd->GetBinding();
}


/**********************************
EventMachine_t::GetConnectionCount
**********************************/

int EventMachine_t::GetConnectionCount ()
{
    int i = 0;
    // Subtract one for epoll or kqueue because of the LoopbreakDescriptor
    if (Poller == Poller_Epoll || Poller == Poller_Kqueue)
        i = 1;

    return Descriptors.size() + NewDescriptors.size() - i;
}


/************************
EventMachine_t::WatchPid
************************/

#ifdef HAVE_KQUEUE
const uintptr_t EventMachine_t::WatchPid (int pid)
{
    if (Poller != Poller_Kqueue)
        throw std::runtime_error("must enable kqueue (EM.kqueue=true) for pid watching support");

    struct kevent event;
    int kqres;

    EV_SET(&event, pid, EVFILT_PROC, EV_ADD, NOTE_EXIT | NOTE_FORK, 0, 0);

    // Attempt to register the event
    kqres = kevent(kqfd, &event, 1, NULL, 0, NULL);
    if (kqres == -1) {
        char errbuf[200];
        sprintf(errbuf, "failed to register file watch descriptor with kqueue: %s", strerror(errno));
        throw std::runtime_error(errbuf);
    }
    Bindable_t* b = new Bindable_t();
    Pids.insert(std::make_pair (pid, b));

    return b->GetBinding();
}
#else
const uintptr_t EventMachine_t::WatchPid (int pid UNUSED)
{
    throw std::runtime_error("no pid watching support on this system");
}
#endif

/**************************
EventMachine_t::UnwatchPid
**************************/

void EventMachine_t::UnwatchPid (int pid)
{
    Bindable_t *b = Pids[pid];
    assert(b);
    Pids.erase(pid);

    #ifdef HAVE_KQUEUE
    struct kevent k;

    EV_SET(&k, pid, EVFILT_PROC, EV_DELETE, 0, 0, 0);
    /*int t =*/ kevent (kqfd, &k, 1, NULL, 0, NULL);
    // t==-1 if the process already exited; ignore this for now
    #endif

    if (EventCallback)
        (*EventCallback)(b->GetBinding(), EM_CONNECTION_UNBOUND, NULL, 0);

    delete b;
}

void EventMachine_t::UnwatchPid (const uintptr_t sig)
{
    for(std::map<int, Bindable_t*>::iterator i=Pids.begin(); i != Pids.end(); i++)
    {
        if (i->second->GetBinding() == sig) {
            UnwatchPid (i->first);
            return;
        }
    }

    throw std::runtime_error("attempted to remove invalid pid signature");
}


/*************************
EventMachine_t::WatchFile
*************************/

const uintptr_t EventMachine_t::WatchFile (const char *fpath)
{
    struct stat sb;
    int sres;
    int wd = -1;

    sres = stat(fpath, &sb);

    if (sres == -1) {
        char errbuf[300];
        sprintf(errbuf, "error registering file %s for watching: %s", fpath, strerror(errno));
        throw std::runtime_error(errbuf);
    }

    #ifdef HAVE_INOTIFY
    if (!inotify) {
        inotify = new InotifyDescriptor(this);
        assert (inotify);
        Add(inotify);
    }

    wd = inotify_add_watch(inotify->GetSocket(), fpath,
                   IN_MODIFY | IN_DELETE_SELF | IN_MOVE_SELF | IN_CREATE | IN_DELETE | IN_MOVE) ;
    if (wd == -1) {
        char errbuf[300];
        sprintf(errbuf, "failed to open file %s for registering with inotify: %s", fpath, strerror(errno));
        throw std::runtime_error(errbuf);
    }
    #endif

    #ifdef HAVE_KQUEUE
    if (Poller != Poller_Kqueue)
        throw std::runtime_error("must enable kqueue (EM.kqueue=true) for file watching support");

    // With kqueue we have to open the file first and use the resulting fd to register for events
    wd = open(fpath, O_RDONLY);
    if (wd == -1) {
        char errbuf[300];
        sprintf(errbuf, "failed to open file %s for registering with kqueue: %s", fpath, strerror(errno));
        throw std::runtime_error(errbuf);
    }
    _RegisterKqueueFileEvent(wd);
    #endif

    if (wd != -1) {
        Bindable_t* b = new Bindable_t();
        Files.insert(std::make_pair (wd, b));

        return b->GetBinding();
    }

    throw std::runtime_error("no file watching support on this system"); // is this the right thing to do?
}


/***************************
EventMachine_t::UnwatchFile
***************************/

void EventMachine_t::UnwatchFile (int wd)
{
    Bindable_t *b = Files[wd];
    assert(b);
    Files.erase(wd);

    #ifdef HAVE_INOTIFY
    inotify_rm_watch(inotify->GetSocket(), wd);
    #elif HAVE_KQUEUE
    // With kqueue, closing the monitored fd automatically clears all registered events for it
    close(wd);
    #endif

    if (EventCallback)
        (*EventCallback)(b->GetBinding(), EM_CONNECTION_UNBOUND, NULL, 0);

    delete b;
}

void EventMachine_t::UnwatchFile (const uintptr_t sig)
{
    for(std::map<int, Bindable_t*>::iterator i=Files.begin(); i != Files.end(); i++)
    {
        if (i->second->GetBinding() == sig) {
            UnwatchFile (i->first);
            return;
        }
    }
    throw std::runtime_error("attempted to remove invalid watch signature");
}


/***********************************
EventMachine_t::_ReadInotify_Events
************************************/

void EventMachine_t::_ReadInotifyEvents()
{
    #ifdef HAVE_INOTIFY
    char buffer[1024];

    assert(EventCallback);

    for (;;) {
        int returned = read(inotify->GetSocket(), buffer, sizeof(buffer));
        assert(!(returned == 0 || (returned == -1 && errno == EINVAL)));
        if (returned <= 0) {
            break;
        }
        int current = 0;
        while (current < returned) {
            struct inotify_event* event = (struct inotify_event*)(buffer+current);
            std::map<int, Bindable_t*>::const_iterator bindable = Files.find(event->wd);
            if (bindable != Files.end()) {
                if (event->mask & (IN_MODIFY | IN_CREATE | IN_DELETE | IN_MOVE)){
                    (*EventCallback)(bindable->second->GetBinding(), EM_CONNECTION_READ, "modified", 8);
                }
                if (event->mask & IN_MOVE_SELF){
                    (*EventCallback)(bindable->second->GetBinding(), EM_CONNECTION_READ, "moved", 5);
                }
                if (event->mask & IN_DELETE_SELF) {
                    (*EventCallback)(bindable->second->GetBinding(), EM_CONNECTION_READ, "deleted", 7);
                    UnwatchFile ((int)event->wd);
                }
            }
            current += sizeof(struct inotify_event) + event->len;
        }
    }
    #endif
}


/*************************************
EventMachine_t::_HandleKqueuePidEvent
*************************************/

#ifdef HAVE_KQUEUE
void EventMachine_t::_HandleKqueuePidEvent(struct kevent *event)
{
    assert(EventCallback);

    if (event->fflags & NOTE_FORK)
        (*EventCallback)(Pids [(int) event->ident]->GetBinding(), EM_CONNECTION_READ, "fork", 4);
    if (event->fflags & NOTE_EXIT) {
        (*EventCallback)(Pids [(int) event->ident]->GetBinding(), EM_CONNECTION_READ, "exit", 4);
        // stop watching the pid if it died
        UnwatchPid ((int)event->ident);
    }
}
#endif


/**************************************
EventMachine_t::_HandleKqueueFileEvent
***************************************/

#ifdef HAVE_KQUEUE
void EventMachine_t::_HandleKqueueFileEvent(struct kevent *event)
{
    assert(EventCallback);

    if (event->fflags & NOTE_WRITE)
        (*EventCallback)(Files [(int) event->ident]->GetBinding(), EM_CONNECTION_READ, "modified", 8);
    if (event->fflags & NOTE_RENAME)
        (*EventCallback)(Files [(int) event->ident]->GetBinding(), EM_CONNECTION_READ, "moved", 5);
    if (event->fflags & NOTE_DELETE) {
        (*EventCallback)(Files [(int) event->ident]->GetBinding(), EM_CONNECTION_READ, "deleted", 7);
        UnwatchFile ((int)event->ident);
    }
}
#endif


/****************************************
EventMachine_t::_RegisterKqueueFileEvent
*****************************************/

#ifdef HAVE_KQUEUE
void EventMachine_t::_RegisterKqueueFileEvent(int fd)
{
    struct kevent newevent;
    int kqres;

    // Setup the event with our fd and proper flags
    EV_SET(&newevent, fd, EVFILT_VNODE, EV_ADD | EV_CLEAR, NOTE_DELETE | NOTE_RENAME | NOTE_WRITE, 0, 0);

    // Attempt to register the event
    kqres = kevent(kqfd, &newevent, 1, NULL, 0, NULL);
    if (kqres == -1) {
        char errbuf[200];
        sprintf(errbuf, "failed to register file watch descriptor with kqueue: %s", strerror(errno));
        close(fd);
        throw std::runtime_error(errbuf);
    }
}
#endif


/************************************
EventMachine_t::GetHeartbeatInterval
*************************************/

float EventMachine_t::GetHeartbeatInterval()
{
    return ((float)HeartbeatInterval / 1000000);
}


/************************************
EventMachine_t::SetHeartbeatInterval
*************************************/

int EventMachine_t::SetHeartbeatInterval(float interval)
{
    int iv = (int)(interval * 1000000);
    if (iv > 0) {
        HeartbeatInterval = iv;
        return 1;
    }
    return 0;
}
//#endif // OS_UNIX