failmap/admin

View on GitHub
websecmap/scanners/scanner/subdomains.py

Summary

Maintainability
D
1 day
Test Coverage

File subdomains.py has 450 lines of code (exceeds 250 allowed). Consider refactoring.
Open

import itertools
import logging
import random
import string
import tempfile
Severity: Minor
Found in websecmap/scanners/scanner/subdomains.py - About 6 hrs to fix

    Function remove_wildcards_using_statistics has a Cognitive Complexity of 28 (exceeds 5 allowed). Consider refactoring.
    Open

    def remove_wildcards_using_statistics(found_hosts, url: str):
        # todo: test
        # some hosts rotate a set of IP's when providing wildcards. This is an annoying practice.
        # We can filter those out with some statistics. We cut off everything that resolve to the top IP's.
        ip_stats = {}
    Severity: Minor
    Found in websecmap/scanners/scanner/subdomains.py - About 4 hrs to fix

    Cognitive Complexity

    Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

    A method's cognitive complexity is based on a few simple rules:

    • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
    • Code is considered more complex for each "break in the linear flow of the code"
    • Code is considered more complex when "flow breaking structures are nested"

    Further reading

    Cyclomatic complexity is too high in function remove_wildcards_using_statistics. (14)
    Open

    def remove_wildcards_using_statistics(found_hosts, url: str):
        # todo: test
        # some hosts rotate a set of IP's when providing wildcards. This is an annoying practice.
        # We can filter those out with some statistics. We cut off everything that resolve to the top IP's.
        ip_stats = {}

    Cyclomatic Complexity

    Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.

    Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:

    Construct Effect on CC Reasoning
    if +1 An if statement is a single decision.
    elif +1 The elif statement adds another decision.
    else +0 The else statement does not cause a new decision. The decision is at the if.
    for +1 There is a decision at the start of the loop.
    while +1 There is a decision at the while statement.
    except +1 Each except branch adds a new conditional path of execution.
    finally +0 The finally block is unconditionally executed.
    with +1 The with statement roughly corresponds to a try/except block (see PEP 343 for details).
    assert +1 The assert statement internally roughly equals a conditional statement.
    Comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop.
    Boolean Operator +1 Every boolean operator (and, or) adds a decision point.

    Source: http://radon.readthedocs.org/en/latest/intro.html

    Cyclomatic complexity is too high in function dnsrecon_parse_report_contents. (11)
    Open

    @app.task(queue="storage")
    def dnsrecon_parse_report_contents(contents: List, url: Dict[str, Any]):
        """
        [
            {'type': 'A', 'name': 'basisbeveiliging.nl', 'address': '1.1.1.1'},

    Cyclomatic Complexity

    Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.

    Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:

    Construct Effect on CC Reasoning
    if +1 An if statement is a single decision.
    elif +1 The elif statement adds another decision.
    else +0 The else statement does not cause a new decision. The decision is at the if.
    for +1 There is a decision at the start of the loop.
    while +1 There is a decision at the while statement.
    except +1 Each except branch adds a new conditional path of execution.
    finally +0 The finally block is unconditionally executed.
    with +1 The with statement roughly corresponds to a try/except block (see PEP 343 for details).
    assert +1 The assert statement internally roughly equals a conditional statement.
    Comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop.
    Boolean Operator +1 Every boolean operator (and, or) adds a decision point.

    Source: http://radon.readthedocs.org/en/latest/intro.html

    Function dnsrecon_parse_report_contents has a Cognitive Complexity of 17 (exceeds 5 allowed). Consider refactoring.
    Open

    def dnsrecon_parse_report_contents(contents: List, url: Dict[str, Any]):
        """
        [
            {'type': 'A', 'name': 'basisbeveiliging.nl', 'address': '1.1.1.1'},
            {'type': 'AAAA', 'name': 'basisbeveiliging.nl', 'address': '2a00:d00:ff:....'},
    Severity: Minor
    Found in websecmap/scanners/scanner/subdomains.py - About 2 hrs to fix

    Cognitive Complexity

    Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

    A method's cognitive complexity is based on a few simple rules:

    • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
    • Code is considered more complex for each "break in the linear flow of the code"
    • Code is considered more complex when "flow breaking structures are nested"

    Further reading

    Cyclomatic complexity is too high in function handle_resolves. (6)
    Open

    @app.task(queue="storage")
    def handle_resolves(resolves: bool, url_id: int) -> None:
    
        url = Url.objects.all().filter(pk=url_id).first()
        if not url:

    Cyclomatic Complexity

    Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.

    Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:

    Construct Effect on CC Reasoning
    if +1 An if statement is a single decision.
    elif +1 The elif statement adds another decision.
    else +0 The else statement does not cause a new decision. The decision is at the if.
    for +1 There is a decision at the start of the loop.
    while +1 There is a decision at the while statement.
    except +1 Each except branch adds a new conditional path of execution.
    finally +0 The finally block is unconditionally executed.
    with +1 The with statement roughly corresponds to a try/except block (see PEP 343 for details).
    assert +1 The assert statement internally roughly equals a conditional statement.
    Comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop.
    Boolean Operator +1 Every boolean operator (and, or) adds a decision point.

    Source: http://radon.readthedocs.org/en/latest/intro.html

    Cyclomatic complexity is too high in function certificate_transparency_scan. (6)
    Open

    @app.task(ignore_result=True, queue="discover_subdomains", rate_limit="2/m")
    @retry(wait=wait_fixed(30), before=before_log(log, logging.DEBUG))
    def certificate_transparency_scan(url: str):
        """
        Checks the certificate transparency database for subdomains. Using a regex the subdomains

    Cyclomatic Complexity

    Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.

    Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:

    Construct Effect on CC Reasoning
    if +1 An if statement is a single decision.
    elif +1 The elif statement adds another decision.
    else +0 The else statement does not cause a new decision. The decision is at the if.
    for +1 There is a decision at the start of the loop.
    while +1 There is a decision at the while statement.
    except +1 Each except branch adds a new conditional path of execution.
    finally +0 The finally block is unconditionally executed.
    with +1 The with statement roughly corresponds to a try/except block (see PEP 343 for details).
    assert +1 The assert statement internally roughly equals a conditional statement.
    Comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop.
    Boolean Operator +1 Every boolean operator (and, or) adds a decision point.

    Source: http://radon.readthedocs.org/en/latest/intro.html

    Function has_wildcards has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring.
    Open

    def has_wildcards(urls: List[Dict[str, Any]]):
        """Run this when adding a new url.
    
        So you can be sure that there are no wildcards if you don't want them.
    
    
    Severity: Minor
    Found in websecmap/scanners/scanner/subdomains.py - About 25 mins to fix

    Cognitive Complexity

    Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

    A method's cognitive complexity is based on a few simple rules:

    • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
    • Code is considered more complex for each "break in the linear flow of the code"
    • Code is considered more complex when "flow breaking structures are nested"

    Further reading

    Whitespace before ':'
    Open

                    subdomain = subdomain[2 : len(subdomain)]

    Avoid extraneous whitespace.

    Avoid extraneous whitespace in these situations:
    - Immediately inside parentheses, brackets or braces.
    - Immediately before a comma, semicolon, or colon.
    
    Okay: spam(ham[1], {eggs: 2})
    E201: spam( ham[1], {eggs: 2})
    E201: spam(ham[ 1], {eggs: 2})
    E201: spam(ham[1], { eggs: 2})
    E202: spam(ham[1], {eggs: 2} )
    E202: spam(ham[1 ], {eggs: 2})
    E202: spam(ham[1], {eggs: 2 })
    
    E203: if x == 4: print x, y; x, y = y , x
    E203: if x == 4: print x, y ; x, y = y, x
    E203: if x == 4 : print x, y; x, y = y, x

    Whitespace before ':'
    Open

                subdomains.append(match[0 : len(match) - len(url) - 1])  # wraps around

    Avoid extraneous whitespace.

    Avoid extraneous whitespace in these situations:
    - Immediately inside parentheses, brackets or braces.
    - Immediately before a comma, semicolon, or colon.
    
    Okay: spam(ham[1], {eggs: 2})
    E201: spam( ham[1], {eggs: 2})
    E201: spam(ham[ 1], {eggs: 2})
    E201: spam(ham[1], { eggs: 2})
    E202: spam(ham[1], {eggs: 2} )
    E202: spam(ham[1 ], {eggs: 2})
    E202: spam(ham[1], {eggs: 2 })
    
    E203: if x == 4: print x, y; x, y = y , x
    E203: if x == 4: print x, y ; x, y = y, x
    E203: if x == 4 : print x, y; x, y = y, x

    Whitespace before ':'
    Open

                subdomain = record["name"][0 : -len(url["url"]) - 1]

    Avoid extraneous whitespace.

    Avoid extraneous whitespace in these situations:
    - Immediately inside parentheses, brackets or braces.
    - Immediately before a comma, semicolon, or colon.
    
    Okay: spam(ham[1], {eggs: 2})
    E201: spam( ham[1], {eggs: 2})
    E201: spam(ham[ 1], {eggs: 2})
    E201: spam(ham[1], { eggs: 2})
    E202: spam(ham[1], {eggs: 2} )
    E202: spam(ham[1 ], {eggs: 2})
    E202: spam(ham[1], {eggs: 2 })
    
    E203: if x == 4: print x, y; x, y = y , x
    E203: if x == 4: print x, y ; x, y = y, x
    E203: if x == 4 : print x, y; x, y = y, x

    There are no issues that match your filters.

    Category
    Status