freeacs/freeacs

View on GitHub

Showing 6,935 of 6,952 total issues

Remove this unused "cpeUptimeAvg" private field.
Open

  private Average cpeUptimeAvg = new Average(1);

If a private field is declared but not used in the program, it can be considered dead code and should therefore be removed. This will improve maintainability because developers will not wonder what the variable is used for.

Note that this rule does not take reflection into account, which means that issues will be raised on private fields that are only accessed using the reflection API.

Noncompliant Code Example

public class MyClass {
  private int foo = 42;

  public int compute(int a) {
    return a * 42;
  }

}

Compliant Solution

public class MyClass {
  public int compute(int a) {
    return a * 42;
  }
}

Exceptions

The Java serialization runtime associates with each serializable class a version number, called serialVersionUID, which is used during deserialization to verify that the sender and receiver of a serialized object have loaded classes for that object that are compatible with respect to serialization.

A serializable class can declare its own serialVersionUID explicitly by declaring a field named serialVersionUID that must be static, final, and of type long. By definition those serialVersionUID fields should not be reported by this rule:

public class MyClass implements java.io.Serializable {
  private static final long serialVersionUID = 42L;
}

Moreover, this rule doesn't raise any issue on annotated fields.

Remove this unused "firstEventTms" private field.
Open

  private Date firstEventTms;

If a private field is declared but not used in the program, it can be considered dead code and should therefore be removed. This will improve maintainability because developers will not wonder what the variable is used for.

Note that this rule does not take reflection into account, which means that issues will be raised on private fields that are only accessed using the reflection API.

Noncompliant Code Example

public class MyClass {
  private int foo = 42;

  public int compute(int a) {
    return a * 42;
  }

}

Compliant Solution

public class MyClass {
  public int compute(int a) {
    return a * 42;
  }
}

Exceptions

The Java serialization runtime associates with each serializable class a version number, called serialVersionUID, which is used during deserialization to verify that the sender and receiver of a serialized object have loaded classes for that object that are compatible with respect to serialization.

A serializable class can declare its own serialVersionUID explicitly by declaring a field named serialVersionUID that must be static, final, and of type long. By definition those serialVersionUID fields should not be reported by this rule:

public class MyClass implements java.io.Serializable {
  private static final long serialVersionUID = 42L;
}

Moreover, this rule doesn't raise any issue on annotated fields.

Remove this unused "unconfirmedFailed" private field.
Open

  private Integer unconfirmedFailed;

If a private field is declared but not used in the program, it can be considered dead code and should therefore be removed. This will improve maintainability because developers will not wonder what the variable is used for.

Note that this rule does not take reflection into account, which means that issues will be raised on private fields that are only accessed using the reflection API.

Noncompliant Code Example

public class MyClass {
  private int foo = 42;

  public int compute(int a) {
    return a * 42;
  }

}

Compliant Solution

public class MyClass {
  public int compute(int a) {
    return a * 42;
  }
}

Exceptions

The Java serialization runtime associates with each serializable class a version number, called serialVersionUID, which is used during deserialization to verify that the sender and receiver of a serialized object have loaded classes for that object that are compatible with respect to serialization.

A serializable class can declare its own serialVersionUID explicitly by declaring a field named serialVersionUID that must be static, final, and of type long. By definition those serialVersionUID fields should not be reported by this rule:

public class MyClass implements java.io.Serializable {
  private static final long serialVersionUID = 42L;
}

Moreover, this rule doesn't raise any issue on annotated fields.

Remove this useless assignment; "ds" already holds the assigned value along all execution paths.
Open

    ds = addUnittypeOrProfileCriteria(ds, filter);

The transitive property says that if a == b and b == c, then a == c. In such cases, there's no point in assigning a to c or vice versa because they're already equivalent.

This rule raises an issue when an assignment is useless because the assigned-to variable already holds the value on all execution paths.

Noncompliant Code Example

a = b;
c = a;
b = c; // Noncompliant: c and b are already the same

Compliant Solution

a = b;
c = a;

Either re-interrupt this method or rethrow the "InterruptedException" that can be caught here.
Open

        } catch (InterruptedException e) {

InterruptedExceptions should never be ignored in the code, and simply logging the exception counts in this case as "ignoring". The throwing of the InterruptedException clears the interrupted state of the Thread, so if the exception is not handled properly the fact that the thread was interrupted will be lost. Instead, InterruptedExceptions should either be rethrown - immediately or after cleaning up the method's state - or the thread should be re-interrupted by calling Thread.interrupt() even if this is supposed to be a single-threaded application. Any other course of action risks delaying thread shutdown and loses the information that the thread was interrupted - probably without finishing its task.

Similarly, the ThreadDeath exception should also be propagated. According to its JavaDoc:

If ThreadDeath is caught by a method, it is important that it be rethrown so that the thread actually dies.

Noncompliant Code Example

public void run () {
  try {
    while (true) {
      // do stuff
    }
  }catch (InterruptedException e) { // Noncompliant; logging is not enough
    LOGGER.log(Level.WARN, "Interrupted!", e);
  }
}

Compliant Solution

public void run () {
  try {
    while (true) {
      // do stuff
    }
  }catch (InterruptedException e) {
    LOGGER.log(Level.WARN, "Interrupted!", e);
    // Restore interrupted state...
    Thread.currentThread().interrupt();
  }
}

See

Use try-with-resources or close this "Statement" in a "finally" clause.
Open

      s = c.createStatement();

Connections, streams, files, and other classes that implement the Closeable interface or its super-interface, AutoCloseable, needs to be closed after use. Further, that close call must be made in a finally block otherwise an exception could keep the call from being made. Preferably, when class implements AutoCloseable, resource should be created using "try-with-resources" pattern and will be closed automatically.

Failure to properly close resources will result in a resource leak which could bring first the application and then perhaps the box the application is on to their knees.

Noncompliant Code Example

private void readTheFile() throws IOException {
  Path path = Paths.get(this.fileName);
  BufferedReader reader = Files.newBufferedReader(path, this.charset);
  // ...
  reader.close();  // Noncompliant
  // ...
  Files.lines("input.txt").forEach(System.out::println); // Noncompliant: The stream needs to be closed
}

private void doSomething() {
  OutputStream stream = null;
  try {
    for (String property : propertyList) {
      stream = new FileOutputStream("myfile.txt");  // Noncompliant
      // ...
    }
  } catch (Exception e) {
    // ...
  } finally {
    stream.close();  // Multiple streams were opened. Only the last is closed.
  }
}

Compliant Solution

private void readTheFile(String fileName) throws IOException {
    Path path = Paths.get(fileName);
    try (BufferedReader reader = Files.newBufferedReader(path, StandardCharsets.UTF_8)) {
      reader.readLine();
      // ...
    }
    // ..
    try (Stream<String> input = Files.lines("input.txt"))  {
      input.forEach(System.out::println);
    }
}

private void doSomething() {
  OutputStream stream = null;
  try {
    stream = new FileOutputStream("myfile.txt");
    for (String property : propertyList) {
      // ...
    }
  } catch (Exception e) {
    // ...
  } finally {
    stream.close();
  }
}

Exceptions

Instances of the following classes are ignored by this rule because close has no effect:

  • java.io.ByteArrayOutputStream
  • java.io.ByteArrayInputStream
  • java.io.CharArrayReader
  • java.io.CharArrayWriter
  • java.io.StringReader
  • java.io.StringWriter

Java 7 introduced the try-with-resources statement, which implicitly closes Closeables. All resources opened in a try-with-resources statement are ignored by this rule.

try (BufferedReader br = new BufferedReader(new FileReader(fileName))) {
  //...
}
catch ( ... ) {
  //...
}

See

Remove this unused "provisioningRescheduledCount" private field.
Open

  private Counter provisioningRescheduledCount = new Counter();

If a private field is declared but not used in the program, it can be considered dead code and should therefore be removed. This will improve maintainability because developers will not wonder what the variable is used for.

Note that this rule does not take reflection into account, which means that issues will be raised on private fields that are only accessed using the reflection API.

Noncompliant Code Example

public class MyClass {
  private int foo = 42;

  public int compute(int a) {
    return a * 42;
  }

}

Compliant Solution

public class MyClass {
  public int compute(int a) {
    return a * 42;
  }
}

Exceptions

The Java serialization runtime associates with each serializable class a version number, called serialVersionUID, which is used during deserialization to verify that the sender and receiver of a serialized object have loaded classes for that object that are compatible with respect to serialization.

A serializable class can declare its own serialVersionUID explicitly by declaring a field named serialVersionUID that must be static, final, and of type long. By definition those serialVersionUID fields should not be reported by this rule:

public class MyClass implements java.io.Serializable {
  private static final long serialVersionUID = 42L;
}

Moreover, this rule doesn't raise any issue on annotated fields.

Remove this unused "periodType" private field.
Open

  private final PeriodType periodType;

If a private field is declared but not used in the program, it can be considered dead code and should therefore be removed. This will improve maintainability because developers will not wonder what the variable is used for.

Note that this rule does not take reflection into account, which means that issues will be raised on private fields that are only accessed using the reflection API.

Noncompliant Code Example

public class MyClass {
  private int foo = 42;

  public int compute(int a) {
    return a * 42;
  }

}

Compliant Solution

public class MyClass {
  public int compute(int a) {
    return a * 42;
  }
}

Exceptions

The Java serialization runtime associates with each serializable class a version number, called serialVersionUID, which is used during deserialization to verify that the sender and receiver of a serialized object have loaded classes for that object that are compatible with respect to serialization.

A serializable class can declare its own serialVersionUID explicitly by declaring a field named serialVersionUID that must be static, final, and of type long. By definition those serialVersionUID fields should not be reported by this rule:

public class MyClass implements java.io.Serializable {
  private static final long serialVersionUID = 42L;
}

Moreover, this rule doesn't raise any issue on annotated fields.

Remove this "clone" implementation; use a copy constructor or copy factory instead.
Open

  public abstract R clone();

Many consider clone and Cloneable broken in Java, largely because the rules for overriding clone are tricky and difficult to get right, according to Joshua Bloch:

Object's clone method is very tricky. It's based on field copies, and it's "extra-linguistic." It creates an object without calling a constructor. There are no guarantees that it preserves the invariants established by the constructors. There have been lots of bugs over the years, both in and outside Sun, stemming from the fact that if you just call super.clone repeatedly up the chain until you have cloned an object, you have a shallow copy of the object. The clone generally shares state with the object being cloned. If that state is mutable, you don't have two independent objects. If you modify one, the other changes as well. And all of a sudden, you get random behavior.

A copy constructor or copy factory should be used instead.

This rule raises an issue when clone is overridden, whether or not Cloneable is implemented.

Noncompliant Code Example

public class MyClass {
  // ...

  public Object clone() { // Noncompliant
    //...
  }
}

Compliant Solution

public class MyClass {
  // ...

  MyClass (MyClass source) {
    //...
  }
}

See

See Also

  • {rule:java:S2157} - "Cloneables" should implement "clone"
  • {rule:java:S1182} - Classes that override "clone" should be "Cloneable" and call "super.clone()"

Remove this unused "key" private field.
Open

  private Key key;

If a private field is declared but not used in the program, it can be considered dead code and should therefore be removed. This will improve maintainability because developers will not wonder what the variable is used for.

Note that this rule does not take reflection into account, which means that issues will be raised on private fields that are only accessed using the reflection API.

Noncompliant Code Example

public class MyClass {
  private int foo = 42;

  public int compute(int a) {
    return a * 42;
  }

}

Compliant Solution

public class MyClass {
  public int compute(int a) {
    return a * 42;
  }
}

Exceptions

The Java serialization runtime associates with each serializable class a version number, called serialVersionUID, which is used during deserialization to verify that the sender and receiver of a serialized object have loaded classes for that object that are compatible with respect to serialization.

A serializable class can declare its own serialVersionUID explicitly by declaring a field named serialVersionUID that must be static, final, and of type long. By definition those serialVersionUID fields should not be reported by this rule:

public class MyClass implements java.io.Serializable {
  private static final long serialVersionUID = 42L;
}

Moreover, this rule doesn't raise any issue on annotated fields.

Remove this unused "bootResetCount" private field.
Open

  private Counter bootResetCount = new Counter();

If a private field is declared but not used in the program, it can be considered dead code and should therefore be removed. This will improve maintainability because developers will not wonder what the variable is used for.

Note that this rule does not take reflection into account, which means that issues will be raised on private fields that are only accessed using the reflection API.

Noncompliant Code Example

public class MyClass {
  private int foo = 42;

  public int compute(int a) {
    return a * 42;
  }

}

Compliant Solution

public class MyClass {
  public int compute(int a) {
    return a * 42;
  }
}

Exceptions

The Java serialization runtime associates with each serializable class a version number, called serialVersionUID, which is used during deserialization to verify that the sender and receiver of a serialized object have loaded classes for that object that are compatible with respect to serialization.

A serializable class can declare its own serialVersionUID explicitly by declaring a field named serialVersionUID that must be static, final, and of type long. By definition those serialVersionUID fields should not be reported by this rule:

public class MyClass implements java.io.Serializable {
  private static final long serialVersionUID = 42L;
}

Moreover, this rule doesn't raise any issue on annotated fields.

Remove this unused "bootProvConfCount" private field.
Open

  private Counter bootProvConfCount = new Counter();

If a private field is declared but not used in the program, it can be considered dead code and should therefore be removed. This will improve maintainability because developers will not wonder what the variable is used for.

Note that this rule does not take reflection into account, which means that issues will be raised on private fields that are only accessed using the reflection API.

Noncompliant Code Example

public class MyClass {
  private int foo = 42;

  public int compute(int a) {
    return a * 42;
  }

}

Compliant Solution

public class MyClass {
  public int compute(int a) {
    return a * 42;
  }
}

Exceptions

The Java serialization runtime associates with each serializable class a version number, called serialVersionUID, which is used during deserialization to verify that the sender and receiver of a serialized object have loaded classes for that object that are compatible with respect to serialization.

A serializable class can declare its own serialVersionUID explicitly by declaring a field named serialVersionUID that must be static, final, and of type long. By definition those serialVersionUID fields should not be reported by this rule:

public class MyClass implements java.io.Serializable {
  private static final long serialVersionUID = 42L;
}

Moreover, this rule doesn't raise any issue on annotated fields.

Remove this "clone" implementation; use a copy constructor or copy factory instead.
Open

  public Average clone() {

Many consider clone and Cloneable broken in Java, largely because the rules for overriding clone are tricky and difficult to get right, according to Joshua Bloch:

Object's clone method is very tricky. It's based on field copies, and it's "extra-linguistic." It creates an object without calling a constructor. There are no guarantees that it preserves the invariants established by the constructors. There have been lots of bugs over the years, both in and outside Sun, stemming from the fact that if you just call super.clone repeatedly up the chain until you have cloned an object, you have a shallow copy of the object. The clone generally shares state with the object being cloned. If that state is mutable, you don't have two independent objects. If you modify one, the other changes as well. And all of a sudden, you get random behavior.

A copy constructor or copy factory should be used instead.

This rule raises an issue when clone is overridden, whether or not Cloneable is implemented.

Noncompliant Code Example

public class MyClass {
  // ...

  public Object clone() { // Noncompliant
    //...
  }
}

Compliant Solution

public class MyClass {
  // ...

  MyClass (MyClass source) {
    //...
  }
}

See

See Also

  • {rule:java:S2157} - "Cloneables" should implement "clone"
  • {rule:java:S1182} - Classes that override "clone" should be "Cloneable" and call "super.clone()"

This block of commented-out lines of code should be removed.
Open

    //        this.getJitterAbove200msCount().add(record.getJitterAbove200msCount());

Programmers should not comment out code as it bloats programs and reduces readability.

Unused code should be deleted and can be retrieved from source control history if required.

Rename this constant name to match the regular expression '^[A-Z][A-Z0-9]*(_[A-Z0-9]+)*$'.
Open

  private static final String provMsgId = "^ProvMsg: PP:";

Shared coding conventions allow teams to collaborate efficiently. This rule checks that all constant names match a provided regular expression.

Noncompliant Code Example

With the default regular expression ^[A-Z][A-Z0-9]*(_[A-Z0-9]+)*$:

public class MyClass {
  public static final int first = 1;
}

public enum MyEnum {
  first;
}

Compliant Solution

public class MyClass {
  public static final int FIRST = 1;
}

public enum MyEnum {
  FIRST;
}

Rename this variable to not match a restricted identifier.
Open

        RecordProvisioning record = report.getRecord(key);

Even if it is technically possible, Restricted Identifiers should not be used as identifiers. This is only possible for compatibility reasons, using it in Java code is confusing and should be avoided.

Note that this applies to any version of Java, including the one where these identifiers are not yet restricted, to avoid future confusion.

This rule reports an issue when restricted identifiers:

  • var
  • yield
  • record

are used as identifiers.

Noncompliant Code Example

var var = "var"; // Noncompliant: compiles but this code is confusing
var = "what is this?";

int yield(int i) { // Noncompliant
  return switch (i) {
    case 1: yield(0); // This is a yield from switch expression, not a recursive call.
    default: yield(i-1);
  };
}

String record = "record"; // Noncompliant

Compliant Solution

var myVariable = "var";

int minusOne(int i) {
  return switch (i) {
    case 1: yield(0);
    default: yield(i-1);
  };
}

String myRecord = "record";

See

Add a default case to this switch.
Open

        switch (status) {

The requirement for a final default clause is defensive programming. The clause should either take appropriate action, or contain a suitable comment as to why no action is taken.

Noncompliant Code Example

switch (param) {  //missing default clause
  case 0:
    doSomething();
    break;
  case 1:
    doSomethingElse();
    break;
}

switch (param) {
  default: // default clause should be the last one
    error();
    break;
  case 0:
    doSomething();
    break;
  case 1:
    doSomethingElse();
    break;
}

Compliant Solution

switch (param) {
  case 0:
    doSomething();
    break;
  case 1:
    doSomethingElse();
    break;
  default:
    error();
    break;
}

Exceptions

If the switch parameter is an Enum and if all the constants of this enum are used in the case statements, then no default clause is expected.

Example:

public enum Day {
    SUNDAY, MONDAY
}
...
switch(day) {
  case SUNDAY:
    doSomething();
    break;
  case MONDAY:
    doSomethingElse();
    break;
}

See

Remove this unused "temperatureMaxAvg" private field.
Open

  private Average temperatureMaxAvg = new Average(1);

If a private field is declared but not used in the program, it can be considered dead code and should therefore be removed. This will improve maintainability because developers will not wonder what the variable is used for.

Note that this rule does not take reflection into account, which means that issues will be raised on private fields that are only accessed using the reflection API.

Noncompliant Code Example

public class MyClass {
  private int foo = 42;

  public int compute(int a) {
    return a * 42;
  }

}

Compliant Solution

public class MyClass {
  public int compute(int a) {
    return a * 42;
  }
}

Exceptions

The Java serialization runtime associates with each serializable class a version number, called serialVersionUID, which is used during deserialization to verify that the sender and receiver of a serialized object have loaded classes for that object that are compatible with respect to serialization.

A serializable class can declare its own serialVersionUID explicitly by declaring a field named serialVersionUID that must be static, final, and of type long. By definition those serialVersionUID fields should not be reported by this rule:

public class MyClass implements java.io.Serializable {
  private static final long serialVersionUID = 42L;
}

Moreover, this rule doesn't raise any issue on annotated fields.

Make "SECOND_FORMAT" an instance variable.
Open

  public static final SimpleDateFormat SECOND_FORMAT = new SimpleDateFormat("yyyyMMddHHmmss");

Not all classes in the standard Java library were written to be thread-safe. Using them in a multi-threaded manner is highly likely to cause data problems or exceptions at runtime.

This rule raises an issue when an instance of Calendar, DateFormat, javax.xml.xpath.XPath, or javax.xml.validation.SchemaFactory is marked static.

Noncompliant Code Example

public class MyClass {
  private static SimpleDateFormat format = new SimpleDateFormat("HH-mm-ss");  // Noncompliant
  private static Calendar calendar = Calendar.getInstance();  // Noncompliant

Compliant Solution

public class MyClass {
  private SimpleDateFormat format = new SimpleDateFormat("HH-mm-ss");
  private Calendar calendar = Calendar.getInstance();

Refactor this method to reduce its Cognitive Complexity from 27 to the 15 allowed.
Open

  private void addOrChangeGroupImpl(Group group, ACS acs) throws SQLException {

Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.

See

Severity
Category
Status
Source
Language