freqtrade/freqtrade

View on GitHub
freqtrade/freqai/RL/BaseReinforcementLearningModel.py

Summary

Maintainability
C
7 hrs
Test Coverage
import copy
import importlib
import logging
from abc import abstractmethod
from datetime import datetime, timezone
from pathlib import Path
from typing import Any, Callable, Dict, Optional, Tuple, Type, Union

import gymnasium as gym
import numpy as np
import numpy.typing as npt
import pandas as pd
import torch as th
import torch.multiprocessing
from pandas import DataFrame
from sb3_contrib.common.maskable.callbacks import MaskableEvalCallback
from sb3_contrib.common.maskable.utils import is_masking_supported
from stable_baselines3.common.monitor import Monitor
from stable_baselines3.common.utils import set_random_seed
from stable_baselines3.common.vec_env import SubprocVecEnv, VecMonitor

from freqtrade.exceptions import OperationalException
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.freqai_interface import IFreqaiModel
from freqtrade.freqai.RL.Base5ActionRLEnv import Actions, Base5ActionRLEnv
from freqtrade.freqai.RL.BaseEnvironment import BaseActions, BaseEnvironment, Positions
from freqtrade.freqai.tensorboard.TensorboardCallback import TensorboardCallback
from freqtrade.persistence import Trade


logger = logging.getLogger(__name__)

torch.multiprocessing.set_sharing_strategy('file_system')

SB3_MODELS = ['PPO', 'A2C', 'DQN']
SB3_CONTRIB_MODELS = ['TRPO', 'ARS', 'RecurrentPPO', 'MaskablePPO', 'QRDQN']


class BaseReinforcementLearningModel(IFreqaiModel):
    """
    User created Reinforcement Learning Model prediction class
    """

    def __init__(self, **kwargs) -> None:
        super().__init__(config=kwargs['config'])
        self.max_threads = min(self.freqai_info['rl_config'].get(
            'cpu_count', 1), max(int(self.max_system_threads / 2), 1))
        th.set_num_threads(self.max_threads)
        self.reward_params = self.freqai_info['rl_config']['model_reward_parameters']
        self.train_env: Union[VecMonitor, SubprocVecEnv, gym.Env] = gym.Env()
        self.eval_env: Union[VecMonitor, SubprocVecEnv, gym.Env] = gym.Env()
        self.eval_callback: Optional[MaskableEvalCallback] = None
        self.model_type = self.freqai_info['rl_config']['model_type']
        self.rl_config = self.freqai_info['rl_config']
        self.df_raw: DataFrame = DataFrame()
        self.continual_learning = self.freqai_info.get('continual_learning', False)
        if self.model_type in SB3_MODELS:
            import_str = 'stable_baselines3'
        elif self.model_type in SB3_CONTRIB_MODELS:
            import_str = 'sb3_contrib'
        else:
            raise OperationalException(f'{self.model_type} not available in stable_baselines3 or '
                                       f'sb3_contrib. please choose one of {SB3_MODELS} or '
                                       f'{SB3_CONTRIB_MODELS}')

        mod = importlib.import_module(import_str, self.model_type)
        self.MODELCLASS = getattr(mod, self.model_type)
        self.policy_type = self.freqai_info['rl_config']['policy_type']
        self.unset_outlier_removal()
        self.net_arch = self.rl_config.get('net_arch', [128, 128])
        self.dd.model_type = import_str
        self.tensorboard_callback: TensorboardCallback = \
            TensorboardCallback(verbose=1, actions=BaseActions)

    def unset_outlier_removal(self):
        """
        If user has activated any function that may remove training points, this
        function will set them to false and warn them
        """
        if self.ft_params.get('use_SVM_to_remove_outliers', False):
            self.ft_params.update({'use_SVM_to_remove_outliers': False})
            logger.warning('User tried to use SVM with RL. Deactivating SVM.')
        if self.ft_params.get('use_DBSCAN_to_remove_outliers', False):
            self.ft_params.update({'use_DBSCAN_to_remove_outliers': False})
            logger.warning('User tried to use DBSCAN with RL. Deactivating DBSCAN.')
        if self.ft_params.get('DI_threshold', False):
            self.ft_params.update({'DI_threshold': False})
            logger.warning('User tried to use DI_threshold with RL. Deactivating DI_threshold.')
        if self.freqai_info['data_split_parameters'].get('shuffle', False):
            self.freqai_info['data_split_parameters'].update({'shuffle': False})
            logger.warning('User tried to shuffle training data. Setting shuffle to False')

    def train(
        self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
    ) -> Any:
        """
        Filter the training data and train a model to it. Train makes heavy use of the datakitchen
        for storing, saving, loading, and analyzing the data.
        :param unfiltered_df: Full dataframe for the current training period
        :param metadata: pair metadata from strategy.
        :returns:
        :model: Trained model which can be used to inference (self.predict)
        """

        logger.info("--------------------Starting training " f"{pair} --------------------")

        features_filtered, labels_filtered = dk.filter_features(
            unfiltered_df,
            dk.training_features_list,
            dk.label_list,
            training_filter=True,
        )

        dd: Dict[str, Any] = dk.make_train_test_datasets(
            features_filtered, labels_filtered)
        self.df_raw = copy.deepcopy(dd["train_features"])
        dk.fit_labels()  # FIXME useless for now, but just satiating append methods

        # normalize all data based on train_dataset only
        prices_train, prices_test = self.build_ohlc_price_dataframes(dk.data_dictionary, pair, dk)

        dk.feature_pipeline = self.define_data_pipeline(threads=dk.thread_count)

        (dd["train_features"],
         dd["train_labels"],
         dd["train_weights"]) = dk.feature_pipeline.fit_transform(dd["train_features"],
                                                                  dd["train_labels"],
                                                                  dd["train_weights"])

        if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
            (dd["test_features"],
             dd["test_labels"],
             dd["test_weights"]) = dk.feature_pipeline.transform(dd["test_features"],
                                                                 dd["test_labels"],
                                                                 dd["test_weights"])

        logger.info(
            f'Training model on {len(dk.data_dictionary["train_features"].columns)}'
            f' features and {len(dd["train_features"])} data points'
        )

        self.set_train_and_eval_environments(dd, prices_train, prices_test, dk)

        model = self.fit(dd, dk)

        logger.info(f"--------------------done training {pair}--------------------")

        return model

    def set_train_and_eval_environments(self, data_dictionary: Dict[str, DataFrame],
                                        prices_train: DataFrame, prices_test: DataFrame,
                                        dk: FreqaiDataKitchen):
        """
        User can override this if they are using a custom MyRLEnv
        :param data_dictionary: dict = common data dictionary containing train and test
            features/labels/weights.
        :param prices_train/test: DataFrame = dataframe comprised of the prices to be used in the
            environment during training or testing
        :param dk: FreqaiDataKitchen = the datakitchen for the current pair
        """
        train_df = data_dictionary["train_features"]
        test_df = data_dictionary["test_features"]

        env_info = self.pack_env_dict(dk.pair)

        self.train_env = self.MyRLEnv(df=train_df, prices=prices_train, **env_info)
        self.eval_env = Monitor(self.MyRLEnv(df=test_df, prices=prices_test, **env_info))
        self.eval_callback = MaskableEvalCallback(self.eval_env, deterministic=True,
                                                  render=False, eval_freq=len(train_df),
                                                  best_model_save_path=str(dk.data_path),
                                                  use_masking=(self.model_type == 'MaskablePPO' and
                                                               is_masking_supported(self.eval_env)))

        actions = self.train_env.get_actions()
        self.tensorboard_callback = TensorboardCallback(verbose=1, actions=actions)

    def pack_env_dict(self, pair: str) -> Dict[str, Any]:
        """
        Create dictionary of environment arguments
        """
        env_info = {"window_size": self.CONV_WIDTH,
                    "reward_kwargs": self.reward_params,
                    "config": self.config,
                    "live": self.live,
                    "can_short": self.can_short,
                    "pair": pair,
                    "df_raw": self.df_raw}
        if self.data_provider:
            env_info["fee"] = self.data_provider._exchange \
                .get_fee(symbol=self.data_provider.current_whitelist()[0])  # type: ignore

        return env_info

    @abstractmethod
    def fit(self, data_dictionary: Dict[str, Any], dk: FreqaiDataKitchen, **kwargs):
        """
        Agent customizations and abstract Reinforcement Learning customizations
        go in here. Abstract method, so this function must be overridden by
        user class.
        """
        return

    def get_state_info(self, pair: str) -> Tuple[float, float, int]:
        """
        State info during dry/live (not backtesting) which is fed back
        into the model.
        :param pair: str = COIN/STAKE to get the environment information for
        :return:
        :market_side: float = representing short, long, or neutral for
            pair
        :current_profit: float = unrealized profit of the current trade
        :trade_duration: int = the number of candles that the trade has
            been open for
        """
        open_trades = Trade.get_trades_proxy(is_open=True)
        market_side = 0.5
        current_profit: float = 0
        trade_duration = 0
        for trade in open_trades:
            if trade.pair == pair:
                if self.data_provider._exchange is None:  # type: ignore
                    logger.error('No exchange available.')
                    return 0, 0, 0
                else:
                    current_rate = self.data_provider._exchange.get_rate(  # type: ignore
                                pair, refresh=False, side="exit", is_short=trade.is_short)

                now = datetime.now(timezone.utc).timestamp()
                trade_duration = int((now - trade.open_date_utc.timestamp()) / self.base_tf_seconds)
                current_profit = trade.calc_profit_ratio(current_rate)
                if trade.is_short:
                    market_side = 0
                else:
                    market_side = 1

        return market_side, current_profit, int(trade_duration)

    def predict(
        self, unfiltered_df: DataFrame, dk: FreqaiDataKitchen, **kwargs
    ) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
        """
        Filter the prediction features data and predict with it.
        :param unfiltered_dataframe: Full dataframe for the current backtest period.
        :return:
        :pred_df: dataframe containing the predictions
        :do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
        data (NaNs) or felt uncertain about data (PCA and DI index)
        """

        dk.find_features(unfiltered_df)
        filtered_dataframe, _ = dk.filter_features(
            unfiltered_df, dk.training_features_list, training_filter=False
        )

        dk.data_dictionary["prediction_features"] = self.drop_ohlc_from_df(filtered_dataframe, dk)

        dk.data_dictionary["prediction_features"], _, _ = dk.feature_pipeline.transform(
            dk.data_dictionary["prediction_features"], outlier_check=True)

        pred_df = self.rl_model_predict(
            dk.data_dictionary["prediction_features"], dk, self.model)
        pred_df.fillna(0, inplace=True)

        return (pred_df, dk.do_predict)

    def rl_model_predict(self, dataframe: DataFrame,
                         dk: FreqaiDataKitchen, model: Any) -> DataFrame:
        """
        A helper function to make predictions in the Reinforcement learning module.
        :param dataframe: DataFrame = the dataframe of features to make the predictions on
        :param dk: FreqaiDatakitchen = data kitchen for the current pair
        :param model: Any = the trained model used to inference the features.
        """
        output = pd.DataFrame(np.zeros(len(dataframe)), columns=dk.label_list)

        def _predict(window):
            observations = dataframe.iloc[window.index]
            if self.live and self.rl_config.get('add_state_info', False):
                market_side, current_profit, trade_duration = self.get_state_info(dk.pair)
                observations['current_profit_pct'] = current_profit
                observations['position'] = market_side
                observations['trade_duration'] = trade_duration
            res, _ = model.predict(observations, deterministic=True)
            return res

        output = output.rolling(window=self.CONV_WIDTH).apply(_predict)

        return output

    def build_ohlc_price_dataframes(self, data_dictionary: dict,
                                    pair: str, dk: FreqaiDataKitchen) -> Tuple[DataFrame,
                                                                               DataFrame]:
        """
        Builds the train prices and test prices for the environment.
        """

        pair = pair.replace(':', '')
        train_df = data_dictionary["train_features"]
        test_df = data_dictionary["test_features"]

        # price data for model training and evaluation
        tf = self.config['timeframe']
        rename_dict = {'%-raw_open': 'open', '%-raw_low': 'low',
                       '%-raw_high': ' high', '%-raw_close': 'close'}
        rename_dict_old = {f'%-{pair}raw_open_{tf}': 'open', f'%-{pair}raw_low_{tf}': 'low',
                           f'%-{pair}raw_high_{tf}': ' high', f'%-{pair}raw_close_{tf}': 'close'}

        prices_train = train_df.filter(rename_dict.keys(), axis=1)
        prices_train_old = train_df.filter(rename_dict_old.keys(), axis=1)
        if prices_train.empty or not prices_train_old.empty:
            if not prices_train_old.empty:
                prices_train = prices_train_old
                rename_dict = rename_dict_old
            logger.warning('Reinforcement learning module didn\'t find the correct raw prices '
                           'assigned in feature_engineering_standard(). '
                           'Please assign them with:\n'
                           'dataframe["%-raw_close"] = dataframe["close"]\n'
                           'dataframe["%-raw_open"] = dataframe["open"]\n'
                           'dataframe["%-raw_high"] = dataframe["high"]\n'
                           'dataframe["%-raw_low"] = dataframe["low"]\n'
                           'inside `feature_engineering_standard()')
        elif prices_train.empty:
            raise OperationalException("No prices found, please follow log warning "
                                       "instructions to correct the strategy.")

        prices_train.rename(columns=rename_dict, inplace=True)
        prices_train.reset_index(drop=True)

        prices_test = test_df.filter(rename_dict.keys(), axis=1)
        prices_test.rename(columns=rename_dict, inplace=True)
        prices_test.reset_index(drop=True)

        train_df = self.drop_ohlc_from_df(train_df, dk)
        test_df = self.drop_ohlc_from_df(test_df, dk)

        return prices_train, prices_test

    def drop_ohlc_from_df(self, df: DataFrame, dk: FreqaiDataKitchen):
        """
        Given a dataframe, drop the ohlc data
        """
        drop_list = ['%-raw_open', '%-raw_low', '%-raw_high', '%-raw_close']

        if self.rl_config["drop_ohlc_from_features"]:
            df.drop(drop_list, axis=1, inplace=True)
            feature_list = dk.training_features_list
            dk.training_features_list = [e for e in feature_list if e not in drop_list]

        return df

    def load_model_from_disk(self, dk: FreqaiDataKitchen) -> Any:
        """
        Can be used by user if they are trying to limit_ram_usage *and*
        perform continual learning.
        For now, this is unused.
        """
        exists = Path(dk.data_path / f"{dk.model_filename}_model").is_file()
        if exists:
            model = self.MODELCLASS.load(dk.data_path / f"{dk.model_filename}_model")
        else:
            logger.info('No model file on disk to continue learning from.')

        return model

    def _on_stop(self):
        """
        Hook called on bot shutdown. Close SubprocVecEnv subprocesses for clean shutdown.
        """

        if self.train_env:
            self.train_env.close()

        if self.eval_env:
            self.eval_env.close()

    # Nested class which can be overridden by user to customize further
    class MyRLEnv(Base5ActionRLEnv):
        """
        User can override any function in BaseRLEnv and gym.Env. Here the user
        sets a custom reward based on profit and trade duration.
        """

        def calculate_reward(self, action: int) -> float:  # noqa: C901
            """
            An example reward function. This is the one function that users will likely
            wish to inject their own creativity into.

            Warning!
            This is function is a showcase of functionality designed to show as many possible
            environment control features as possible. It is also designed to run quickly
            on small computers. This is a benchmark, it is *not* for live production.

            :param action: int = The action made by the agent for the current candle.
            :return:
            float = the reward to give to the agent for current step (used for optimization
                of weights in NN)
            """
            # first, penalize if the action is not valid
            if not self._is_valid(action):
                return -2

            pnl = self.get_unrealized_profit()
            factor = 100.

            # you can use feature values from dataframe
            rsi_now = self.raw_features[f"%-rsi-period-10_shift-1_{self.pair}_"
                                        f"{self.config['timeframe']}"].iloc[self._current_tick]

            # reward agent for entering trades
            if (action in (Actions.Long_enter.value, Actions.Short_enter.value)
                    and self._position == Positions.Neutral):
                if rsi_now < 40:
                    factor = 40 / rsi_now
                else:
                    factor = 1
                return 25 * factor

            # discourage agent from not entering trades
            if action == Actions.Neutral.value and self._position == Positions.Neutral:
                return -1

            max_trade_duration = self.rl_config.get('max_trade_duration_candles', 300)
            if self._last_trade_tick:
                trade_duration = self._current_tick - self._last_trade_tick
            else:
                trade_duration = 0

            if trade_duration <= max_trade_duration:
                factor *= 1.5
            elif trade_duration > max_trade_duration:
                factor *= 0.5

            # discourage sitting in position
            if (self._position in (Positions.Short, Positions.Long) and
               action == Actions.Neutral.value):
                return -1 * trade_duration / max_trade_duration

            # close long
            if action == Actions.Long_exit.value and self._position == Positions.Long:
                if pnl > self.profit_aim * self.rr:
                    factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
                return float(pnl * factor)

            # close short
            if action == Actions.Short_exit.value and self._position == Positions.Short:
                if pnl > self.profit_aim * self.rr:
                    factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
                return float(pnl * factor)

            return 0.


def make_env(MyRLEnv: Type[BaseEnvironment], env_id: str, rank: int,
             seed: int, train_df: DataFrame, price: DataFrame,
             env_info: Dict[str, Any] = {}) -> Callable:
    """
    Utility function for multiprocessed env.

    :param env_id: (str) the environment ID
    :param num_env: (int) the number of environment you wish to have in subprocesses
    :param seed: (int) the initial seed for RNG
    :param rank: (int) index of the subprocess
    :param env_info: (dict) all required arguments to instantiate the environment.
    :return: (Callable)
    """

    def _init() -> gym.Env:

        env = MyRLEnv(df=train_df, prices=price, id=env_id, seed=seed + rank,
                      **env_info)

        return env
    set_random_seed(seed)
    return _init