freqtrade/freqtrade

View on GitHub
freqtrade/strategy/strategy_helper.py

Summary

Maintainability
A
3 hrs
Test Coverage
from typing import Optional

import pandas as pd

from freqtrade.exchange import timeframe_to_minutes


def merge_informative_pair(dataframe: pd.DataFrame, informative: pd.DataFrame,
                           timeframe: str, timeframe_inf: str, ffill: bool = True,
                           append_timeframe: bool = True,
                           date_column: str = 'date',
                           suffix: Optional[str] = None) -> pd.DataFrame:
    """
    Correctly merge informative samples to the original dataframe, avoiding lookahead bias.

    Since dates are candle open dates, merging a 15m candle that starts at 15:00, and a
    1h candle that starts at 15:00 will result in all candles to know the close at 16:00
    which they should not know.

    Moves the date of the informative pair by 1 time interval forward.
    This way, the 14:00 1h candle is merged to 15:00 15m candle, since the 14:00 1h candle is the
    last candle that's closed at 15:00, 15:15, 15:30 or 15:45.

    Assuming inf_tf = '1d' - then the resulting columns will be:
    date_1d, open_1d, high_1d, low_1d, close_1d, rsi_1d

    :param dataframe: Original dataframe
    :param informative: Informative pair, most likely loaded via dp.get_pair_dataframe
    :param timeframe: Timeframe of the original pair sample.
    :param timeframe_inf: Timeframe of the informative pair sample.
    :param ffill: Forwardfill missing values - optional but usually required
    :param append_timeframe: Rename columns by appending timeframe.
    :param date_column: A custom date column name.
    :param suffix: A string suffix to add at the end of the informative columns. If specified,
                   append_timeframe must be false.
    :return: Merged dataframe
    :raise: ValueError if the secondary timeframe is shorter than the dataframe timeframe
    """
    informative = informative.copy()
    minutes_inf = timeframe_to_minutes(timeframe_inf)
    minutes = timeframe_to_minutes(timeframe)
    if minutes == minutes_inf:
        # No need to forwardshift if the timeframes are identical
        informative['date_merge'] = informative[date_column]
    elif minutes < minutes_inf:
        # Subtract "small" timeframe so merging is not delayed by 1 small candle
        # Detailed explanation in https://github.com/freqtrade/freqtrade/issues/4073
        if not informative.empty:
            if timeframe_inf == '1M':
                informative['date_merge'] = (
                    (informative[date_column] + pd.offsets.MonthBegin(1))
                    - pd.to_timedelta(minutes, 'm')
                )
            else:
                informative['date_merge'] = (
                    informative[date_column] + pd.to_timedelta(minutes_inf, 'm') -
                    pd.to_timedelta(minutes, 'm')
                )
        else:
            informative['date_merge'] = informative[date_column]
    else:
        raise ValueError("Tried to merge a faster timeframe to a slower timeframe."
                         "This would create new rows, and can throw off your regular indicators.")

    # Rename columns to be unique
    date_merge = 'date_merge'
    if suffix and append_timeframe:
        raise ValueError("You can not specify `append_timeframe` as True and a `suffix`.")
    elif append_timeframe:
        date_merge = f'date_merge_{timeframe_inf}'
        informative.columns = [f"{col}_{timeframe_inf}" for col in informative.columns]

    elif suffix:
        date_merge = f'date_merge_{suffix}'
        informative.columns = [f"{col}_{suffix}" for col in informative.columns]

    # Combine the 2 dataframes
    # all indicators on the informative sample MUST be calculated before this point
    if ffill:
        # https://pandas.pydata.org/docs/user_guide/merging.html#timeseries-friendly-merging
        # merge_ordered - ffill method is 2.5x faster than separate ffill()
        dataframe = pd.merge_ordered(dataframe, informative, fill_method="ffill", left_on='date',
                                     right_on=date_merge, how='left')
    else:
        dataframe = pd.merge(dataframe, informative, left_on='date',
                             right_on=date_merge, how='left')
    dataframe = dataframe.drop(date_merge, axis=1)

    return dataframe


def stoploss_from_open(
    open_relative_stop: float,
    current_profit: float,
    is_short: bool = False,
    leverage: float = 1.0
) -> float:
    """
    Given the current profit, and a desired stop loss value relative to the trade entry price,
    return a stop loss value that is relative to the current price, and which can be
    returned from `custom_stoploss`.

    The requested stop can be positive for a stop above the open price, or negative for
    a stop below the open price. The return value is always >= 0.
    `open_relative_stop` will be considered as adjusted for leverage if leverage is provided..

    Returns 0 if the resulting stop price would be above/below (longs/shorts) the current price

    :param open_relative_stop: Desired stop loss percentage, relative to the open price,
                               adjusted for leverage
    :param current_profit: The current profit percentage
    :param is_short: When true, perform the calculation for short instead of long
    :param leverage: Leverage to use for the calculation
    :return: Stop loss value relative to current price
    """

    # formula is undefined for current_profit -1 (longs) or 1 (shorts), return maximum value
    _current_profit = current_profit / leverage
    if (_current_profit == -1 and not is_short) or (is_short and _current_profit == 1):
        return 1

    if is_short is True:
        stoploss = -1 + ((1 - open_relative_stop / leverage) / (1 - _current_profit))
    else:
        stoploss = 1 - ((1 + open_relative_stop / leverage) / (1 + _current_profit))

    # negative stoploss values indicate the requested stop price is higher/lower
    # (long/short) than the current price
    return max(stoploss * leverage, 0.0)


def stoploss_from_absolute(stop_rate: float, current_rate: float, is_short: bool = False,
                           leverage: float = 1.0) -> float:
    """
    Given current price and desired stop price, return a stop loss value that is relative to current
    price.

    The requested stop can be positive for a stop above the open price, or negative for
    a stop below the open price. The return value is always >= 0.

    Returns 0 if the resulting stop price would be above the current price.

    :param stop_rate: Stop loss price.
    :param current_rate: Current asset price.
    :param is_short: When true, perform the calculation for short instead of long
    :param leverage: Leverage to use for the calculation
    :return: Positive stop loss value relative to current price
    """

    # formula is undefined for current_rate 0, return maximum value
    if current_rate == 0:
        return 1

    stoploss = 1 - (stop_rate / current_rate)
    if is_short:
        stoploss = -stoploss

    # negative stoploss values indicate the requested stop price is higher/lower
    # (long/short) than the current price
    # shorts can yield stoploss values higher than 1, so limit that as well
    return max(min(stoploss, 1.0), 0.0) * leverage