Showing 12 of 20 total issues
Similar blocks of code found in 2 locations. Consider refactoring. Open
_decrementComponentCount(){
const preMountedComponentCount = this.mountedComponentsCount;
this.mountedComponentsCount -= 1;
if (preMountedComponentCount === 1 && this.mountedComponentsCount === 0) {
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 69.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
_incrementComponentCount(){
const preMountedComponentCount = this.mountedComponentsCount;
this.mountedComponentsCount += 1;
if (preMountedComponentCount === 0 && this.mountedComponentsCount === 1) {
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 69.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Function handleKeyPress
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
handleKeyPress(event, focusTreeId, componentId, options) {
const key = getKeyName(event);
if (this._isIgnoringRepeatedEvent(event, key, KeyEventType.keypress, componentId)) {
return false;
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function _callHandlerIfActionNotHandled
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
_callHandlerIfActionNotHandled(event, keyName, keyEventType, componentId, focusTreeId) {
const eventName = describeKeyEventType(keyEventType);
const combinationName = this._describeCurrentCombination();
if (!this.componentList.anyActionsForEventType(keyEventType)) {
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function keyEventPrefix
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
keyEventPrefix(componentId, options = {}) {
const logIcons = super.constructor.logIcons;
const eventIcons = super.constructor.eventIcons;
const componentIcons = super.constructor.componentIcons;
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function _matchesActionConfig
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
_matchesActionConfig(keyCombination, keyName, eventType, actionOptions) {
if (!canBeMatched(keyCombination, actionOptions) || !actionOptions.events[eventType]) {
/**
* If the combination does not have any actions bound to the key event we are
* currently processing, we skip checking if it matches the current keys being
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function handleKeyUp
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
handleKeyUp(event) {
const key = getKeyName(event);
if (this.currentCombination.isKeyUpSimulated(key)){
this.logger.logEventAlreadySimulated(event, key, KeyEventType.keyup);
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function reactAppHistoryWithEvent
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
reactAppHistoryWithEvent(key, type) {
const previousPropagation =
this.focusOnlyEventStrategy.eventPropagator.previousPropagation;
if (previousPropagation.isForKey(key) && previousPropagation.isForEventType(type)) {
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function _handleEventSimulation
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
_handleEventSimulation(listName, handlerName, {event, eventType, key, focusTreeId, componentId, options}) {
if (this._shouldSimulate(eventType, key) && Configuration.option('simulateMissingKeyPressEvents')) {
/**
* If a key does not have a keypress event, we save the details of the keydown
* event to simulate the keypress event, as the keydown event bubbles through
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function standardizeKeyName
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
function standardizeKeyName(keyName, modifierKeys = { shift: false, alt: false}) {
const _keyName = keyName.toLowerCase();
const keyAfterAliases = MousetrapToReactKeyNamesDictionary[_keyName] || KeyShorthandDictionary[_keyName] || (keyName.match(/^f\d+$/) ? keyName.toUpperCase() : keyName);
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function handleKeyUp
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
handleKeyUp(event, focusTreeId, componentId, options) {
const key = getKeyName(event);
if (this.currentCombination.isKeyUpSimulated(key)) {
this._ignoreAlreadySimulatedEvent(event, key, KeyEventType.keyup, componentId);
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function handleKeyPress
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
handleKeyPress(event) {
const key = getKeyName(event);
if (this._isIgnoringRepeatedEvent(event, key, KeyEventType.keypress)) {
return;
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"