bin/gwin_plot_gelman_rubin
#!/usr/bin/env python# Copyright (C) 2017 Christopher M. Biwer## This program is free software; you can redistribute it and/or modify it# under the terms of the GNU General Public License as published by the# Free Software Foundation; either version 3 of the License, or (at your# option) any later version.## This program is distributed in the hope that it will be useful, but# WITHOUT ANY WARRANTY; without even the implied warranty of# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General# Public License for more details.## You should have received a copy of the GNU General Public License along# with this program; if not, write to the Free Software Foundation, Inc.,# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.""" Plots the Gelman-Rubin convergence diagnositic statistic.""" import argparseimport loggingfrom pycbc import resultsimport matplotlib.pyplot as pltimport sysfrom gwin import (__version__, gelman_rubin, option_utils) # command line usageparser = argparse.ArgumentParser(usage=__file__ + " [--options]", description=__doc__) # verbose optionparser.add_argument("--verbose", action="store_true", default=False, help="Print logging info.")parser.add_argument('--version', action='version', version=__version__, help='show version number and exit') # output optionsparser.add_argument("--output-file", type=str, required=True, help="Path to output plot.")parser.add_argument("--walkers", type=int, nargs="+", default=None, help="Specific walkers to plot. Default is plot " "all walkers.")parser.add_argument("--hline", type=float, default=None, help="Plots a horizontal line.")parser.add_argument("--segment-start", type=int, required=True, help="Index in chain to start calculation.")parser.add_argument("--segment-end", type=int, required=True, help="Index in chain to end calculation.")parser.add_argument("--segment-step", type=int, required=True, help="Step size in chain to next calculation.") # add results groupoption_utils.add_inference_results_option_group(parser) # parse the command lineopts = parser.parse_args() # setup logif opts.verbose: log_level = logging.DEBUGelse: log_level = logging.WARNlogging.basicConfig(format="%(asctime)s : %(message)s", level=log_level) # enfore that this is not a single iterationif opts.iteration is not None: raise ValueError("Cannot use --iteration") # load the resultsfp, params, labels, _ = option_utils.results_from_cli( opts, load_samples=False, walkers=None) # if use wants specific walkerswalkers = range(fp.nwalkers) if opts.walkers is None else opts.walkers # create Figurefig = plt.figure() # loop over parametersstats = []for param, label in zip(params, labels): logging.info("Plotting parameter %s", param) # get samples for each chain chains = [fp.read_samples(param, walkers=i, samples_group=opts.parameters_group, thin_start=opts.thin_start, thin_interval=opts.thin_interval, thin_end=opts.thin_end)[param] for i in walkers] # calculate the Gelman-Rubin convergence diagnostic statistic chains = [chain.reshape(1, len(chain)) for chain in chains] starts, ends, stats = gelman_rubin.walk(chains, opts.segment_start, opts.segment_end, opts.segment_step) # plot plt.plot(ends, stats[0, :], label=label) # format plotplt.ylabel("Potential Scale Reduction Factor")plt.xlabel("Iteration")plt.legend(labelspacing=0.2) # plot horizontal lineif opts.hline: plt.hlines(opts.hline, 0, ends[-1], linestyles="dashed") # save figure with meta-datacaption_kwargs = { "parameters" : ", ".join(labels),}caption = """The Gelman-Rubin convergence diagnostic statistic for {parameters}read from the input file.""".format(**caption_kwargs)title = "Gelman-Rubin Convergence for {parameters}".format(**caption_kwargs)results.save_fig_with_metadata(fig, opts.output_file, cmd=" ".join(sys.argv), title=title, caption=caption)plt.close() # exitfp.close()logging.info("Done")