hackedteam/core-android-native

View on GitHub
selinux_native/jni/libsepol/src/link.c

Summary

Maintainability
Test Coverage
/* Authors: Karl MacMillan <kmacmillan@mentalrootkit.com>
 *        Joshua Brindle <jbrindle@tresys.com>
 *          Jason Tang <jtang@tresys.com>
 *
 * Copyright (C) 2004-2005 Tresys Technology, LLC
 * Copyright (C) 2007 Red Hat, Inc.
 *
 *  This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Lesser General Public
 *  License as published by the Free Software Foundation; either
 *  version 2.1 of the License, or (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  License along with this library; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */

#include <sepol/policydb/policydb.h>
#include <sepol/policydb/conditional.h>
#include <sepol/policydb/hashtab.h>
#include <sepol/policydb/avrule_block.h>
#include <sepol/policydb/link.h>
#include <sepol/policydb/util.h>

#include <stdlib.h>
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>

#include "debug.h"
#include "log.h"

#undef min
#define min(a,b) (((a) < (b)) ? (a) : (b))

typedef struct policy_module {
    policydb_t *policy;
    uint32_t num_decls;
    uint32_t *map[SYM_NUM];
    uint32_t *avdecl_map;
    uint32_t **perm_map;
    uint32_t *perm_map_len;

    /* a pointer to within the base module's avrule_block chain to
     * where this module's global now resides */
    avrule_block_t *base_global;
} policy_module_t;

typedef struct link_state {
    int verbose;
    policydb_t *base;
    avrule_block_t *last_avrule_block, *last_base_avrule_block;
    uint32_t next_decl_id, current_decl_id;

    /* temporary variables, used during hashtab_map() calls */
    policy_module_t *cur;
    char *cur_mod_name;
    avrule_decl_t *dest_decl;
    class_datum_t *src_class, *dest_class;
    char *dest_class_name;
    char dest_class_req;    /* flag indicating the class was not declared */
    uint32_t symbol_num;
    /* used to report the name of the module if dependancy error occurs */
    policydb_t **decl_to_mod;

    /* error reporting fields */
    sepol_handle_t *handle;
} link_state_t;

typedef struct missing_requirement {
    uint32_t symbol_type;
    uint32_t symbol_value;
    uint32_t perm_value;
} missing_requirement_t;

static const char *symtab_names[SYM_NUM] = {
    "common", "class", "role", "type/attribute", "user",
    "bool", "level", "category"
};

/* Deallocates all elements within a module, but NOT the policydb_t
 * structure within, as well as the pointer itself. */
static void policy_module_destroy(policy_module_t * mod)
{
    unsigned int i;
    if (mod == NULL) {
        return;
    }
    for (i = 0; i < SYM_NUM; i++) {
        free(mod->map[i]);
    }
    for (i = 0; mod->perm_map != NULL && i < mod->policy->p_classes.nprim;
         i++) {
        free(mod->perm_map[i]);
    }
    free(mod->perm_map);
    free(mod->perm_map_len);
    free(mod->avdecl_map);
    free(mod);
}

/***** functions that copy identifiers from a module to base *****/

/* Note: there is currently no scoping for permissions, which causes some
 * strange side-effects. The current approach is this:
 *
 * a) perm is required and the class _and_ perm are declared in base: only add a mapping.
 * b) perm is required and the class and perm are _not_ declared in base: simply add the permissions
 *    to the object class. This means that the requirements for the decl are the union of the permissions
 *    required for all decls, but who cares.
 * c) perm is required, the class is declared in base, but the perm is not present. Nothing we can do
 *    here because we can't mark a single permission as required, so we bail with a requirement error
 *    _even_ if we are in an optional.
 *
 * A is correct behavior, b is wrong but not too bad, c is totall wrong for optionals. Fixing this requires
 * a format change.
 */
static int permission_copy_callback(hashtab_key_t key, hashtab_datum_t datum,
                    void *data)
{
    char *perm_id = key, *new_id = NULL;
    perm_datum_t *perm, *new_perm = NULL, *dest_perm;
    link_state_t *state = (link_state_t *) data;

    class_datum_t *src_class = state->src_class;
    class_datum_t *dest_class = state->dest_class;
    policy_module_t *mod = state->cur;
    uint32_t sclassi = src_class->s.value - 1;
    int ret;

    perm = (perm_datum_t *) datum;
    dest_perm = hashtab_search(dest_class->permissions.table, perm_id);
    if (dest_perm == NULL && dest_class->comdatum != NULL) {
        dest_perm =
            hashtab_search(dest_class->comdatum->permissions.table,
                   perm_id);
    }

    if (dest_perm == NULL) {
        /* If the object class was not declared in the base, add the perm
         * to the object class. */
        if (state->dest_class_req) {
            /* If the class was required (not declared), insert the new permission */
            new_id = strdup(perm_id);
            if (new_id == NULL) {
                LOGD("Memory error");
                ret = SEPOL_ERR;
                goto err;
            }
            new_perm =
                (perm_datum_t *) calloc(1, sizeof(perm_datum_t));
            if (new_perm == NULL) {
                LOGD("Memory error");
                ret = SEPOL_ERR;
                goto err;
            }
            ret = hashtab_insert(dest_class->permissions.table,
                         (hashtab_key_t) new_id,
                         (hashtab_datum_t) new_perm);
            if (ret) {
                LOGD(
                    "could not insert permission into class\n");
                goto err;
            }
            new_perm->s.value = dest_class->permissions.nprim + 1;
            dest_perm = new_perm;
        } else {
            /* this is case c from above */
            LOGD(
                "Module %s depends on permission %s in class %s, not satisfied",
                state->cur_mod_name, perm_id,
                state->dest_class_name);
            return SEPOL_EREQ;
        }
    }

    /* build the mapping for permissions encompassing this class.
     * unlike symbols, the permission map translates between
     * module permission bit to target permission bit.  that bit
     * may have originated from the class -or- it could be from
     * the class's common parent.*/
    if (perm->s.value > mod->perm_map_len[sclassi]) {
        uint32_t *newmap = calloc(perm->s.value, sizeof(*newmap));
        if (newmap == NULL) {
            LOGD("Out of memory!");
            return -1;
        }
        memcpy(newmap, mod->perm_map[sclassi],
               mod->perm_map_len[sclassi] * sizeof(*newmap));
        free(mod->perm_map[sclassi]);
        mod->perm_map[sclassi] = newmap;
        mod->perm_map_len[sclassi] = perm->s.value;
    }
    mod->perm_map[sclassi][perm->s.value - 1] = dest_perm->s.value;

    return 0;
      err:
    free(new_id);
    free(new_perm);
    return ret;
}

static int class_copy_default_new_object(link_state_t *state,
                     class_datum_t *olddatum,
                     class_datum_t *newdatum)
{
    if (olddatum->default_user) {
        if (newdatum->default_user && olddatum->default_user != newdatum->default_user) {
            LOGD("Found conflicting default user definitions");
            return SEPOL_ENOTSUP;
        }
        newdatum->default_user = olddatum->default_user;
    }
    if (olddatum->default_role) {
        if (newdatum->default_role && olddatum->default_role != newdatum->default_role) {
            LOGD("Found conflicting default role definitions");
            return SEPOL_ENOTSUP;
        }
        newdatum->default_role = olddatum->default_role;
    }
    if (olddatum->default_type) {
        if (newdatum->default_type && olddatum->default_type != newdatum->default_type) {
            LOGD("Found conflicting default type definitions");
            return SEPOL_ENOTSUP;
        }
        newdatum->default_type = olddatum->default_type;
    }
    if (olddatum->default_range) {
        if (newdatum->default_range && olddatum->default_range != newdatum->default_range) {
            LOGD("Found conflicting default range definitions");
            return SEPOL_ENOTSUP;
        }
        newdatum->default_range = olddatum->default_range;
    }
    return 0;
}

static int class_copy_callback(hashtab_key_t key, hashtab_datum_t datum,
                   void *data)
{
    char *id = key, *new_id = NULL;
    class_datum_t *cladatum, *new_class = NULL;
    link_state_t *state = (link_state_t *) data;
    scope_datum_t *scope = NULL;
    int ret;

    cladatum = (class_datum_t *) datum;
    state->dest_class_req = 0;

    new_class = hashtab_search(state->base->p_classes.table, id);
    /* If there is not an object class already in the base symtab that means
     * that either a) a module is trying to declare a new object class (which
     * the compiler should prevent) or b) an object class was required that is
     * not in the base.
     */
    if (new_class == NULL) {
        scope =
            hashtab_search(state->cur->policy->p_classes_scope.table,
                   id);
        if (scope == NULL) {
            ret = SEPOL_ERR;
            goto err;
        }
        if (scope->scope == SCOPE_DECL) {
            /* disallow declarations in modules */
            LOGD(
                "%s: Modules may not yet declare new classes.",
                state->cur_mod_name);
            ret = SEPOL_ENOTSUP;
            goto err;
        } else {
            /* It would be nice to error early here because the requirement is
             * not met, but we cannot because the decl might be optional (in which
             * case we should record the requirement so that it is just turned
             * off). Note: this will break horribly if modules can declare object
             * classes because the class numbers will be all wrong (i.e., they
             * might be assigned in the order they were required rather than the
             * current scheme which ensures correct numbering by ordering the 
             * declarations properly). This can't be fixed until some infrastructure
             * for querying the object class numbers is in place. */
            state->dest_class_req = 1;
            new_class =
                (class_datum_t *) calloc(1, sizeof(class_datum_t));
            if (new_class == NULL) {
                LOGD("Memory error\n");
                ret = SEPOL_ERR;
                goto err;
            }
            if (symtab_init
                (&new_class->permissions, PERM_SYMTAB_SIZE)) {
                ret = SEPOL_ERR;
                goto err;
            }
            new_id = strdup(id);
            if (new_id == NULL) {
                LOGD("Memory error\n");
                symtab_destroy(&new_class->permissions);
                ret = SEPOL_ERR;
                goto err;
            }
            ret = hashtab_insert(state->base->p_classes.table,
                         (hashtab_key_t) new_id,
                         (hashtab_datum_t) new_class);
            if (ret) {
              LOGD(
                    "could not insert new class into symtab");
                symtab_destroy(&new_class->permissions);
                goto err;
            }
            new_class->s.value = ++(state->base->p_classes.nprim);
        }
    }

    state->cur->map[SYM_CLASSES][cladatum->s.value - 1] =
        new_class->s.value;

    /* copy permissions */
    state->src_class = cladatum;
    state->dest_class = new_class;
    state->dest_class_name = (char *)key;

    /* copy default new object rules */
    ret = class_copy_default_new_object(state, cladatum, new_class);
    if (ret)
        return ret;

    ret =
        hashtab_map(cladatum->permissions.table, permission_copy_callback,
            state);
    if (ret != 0) {
        return ret;
    }

    return 0;
      err:
    free(new_class);
    free(new_id);
    return ret;
}

static int role_copy_callback(hashtab_key_t key, hashtab_datum_t datum,
                  void *data)
{
    int ret;
    char *id = key, *new_id = NULL;
    role_datum_t *role, *base_role, *new_role = NULL;
    link_state_t *state = (link_state_t *) data;

    role = (role_datum_t *) datum;

    base_role = hashtab_search(state->base->p_roles.table, id);
    if (base_role != NULL) {
        /* role already exists.  check that it is what this
         * module expected.  duplicate declarations (e.g., two
         * modules both declare role foo_r) is checked during
         * scope_copy_callback(). */
        if (role->flavor == ROLE_ATTRIB
            && base_role->flavor != ROLE_ATTRIB) {
            LOGD(
                "%s: Expected %s to be a role attribute, but it was already declared as a regular role.",
                state->cur_mod_name, id);
            return -1;
        } else if (role->flavor != ROLE_ATTRIB
               && base_role->flavor == ROLE_ATTRIB) {
            LOGD(
                "%s: Expected %s to be a regular role, but it was already declared as a role attribute.",
                state->cur_mod_name, id);
            return -1;
        }
    } else {
        if (state->verbose)
            LOGD( "copying role %s", id);

        if ((new_id = strdup(id)) == NULL) {
            goto cleanup;
        }

        if ((new_role =
             (role_datum_t *) malloc(sizeof(*new_role))) == NULL) {
            goto cleanup;
        }
        role_datum_init(new_role);

        /* new_role's dominates, types and roles field will be copied
         * during role_fix_callback() */
        new_role->flavor = role->flavor;
        new_role->s.value = state->base->p_roles.nprim + 1;

        ret = hashtab_insert(state->base->p_roles.table,
                     (hashtab_key_t) new_id,
                     (hashtab_datum_t) new_role);
        if (ret) {
            goto cleanup;
        }
        state->base->p_roles.nprim++;
        base_role = new_role;
    }

    if (state->dest_decl) {
        new_id = NULL;
        if ((new_role = malloc(sizeof(*new_role))) == NULL) {
            goto cleanup;
        }
        role_datum_init(new_role);
        new_role->flavor = base_role->flavor;
        new_role->s.value = base_role->s.value;
        if ((new_id = strdup(id)) == NULL) {
            goto cleanup;
        }
        if (hashtab_insert
            (state->dest_decl->p_roles.table, new_id, new_role)) {
            goto cleanup;
        }
        state->dest_decl->p_roles.nprim++;
    }

    state->cur->map[SYM_ROLES][role->s.value - 1] = base_role->s.value;
    return 0;

      cleanup:
    LOGD("Out of memory!");
    role_datum_destroy(new_role);
    free(new_id);
    free(new_role);
    return -1;
}

/* Copy types and attributes from a module into the base module. The
 * attributes are copied, but the types that make up this attribute
 * are delayed type_fix_callback(). */
static int type_copy_callback(hashtab_key_t key, hashtab_datum_t datum,
                  void *data)
{
    int ret;
    char *id = key, *new_id = NULL;
    type_datum_t *type, *base_type, *new_type = NULL;
    link_state_t *state = (link_state_t *) data;

    type = (type_datum_t *) datum;
    if ((type->flavor == TYPE_TYPE && !type->primary)
        || type->flavor == TYPE_ALIAS) {
        /* aliases are handled later, in alias_copy_callback() */
        return 0;
    }

    base_type = hashtab_search(state->base->p_types.table, id);
    if (base_type != NULL) {
        /* type already exists.  check that it is what this
         * module expected.  duplicate declarations (e.g., two
         * modules both declare type foo_t) is checked during
         * scope_copy_callback(). */
        if (type->flavor == TYPE_ATTRIB
            && base_type->flavor != TYPE_ATTRIB) {
            LOGD(
                "%s: Expected %s to be an attribute, but it was already declared as a type.",
                state->cur_mod_name, id);
            return -1;
        } else if (type->flavor != TYPE_ATTRIB
               && base_type->flavor == TYPE_ATTRIB) {
            LOGD(
                "%s: Expected %s to be a type, but it was already declared as an attribute.",
                state->cur_mod_name, id);
            return -1;
        }
        /* permissive should pass to the base type */
        base_type->flags |= (type->flags & TYPE_FLAGS_PERMISSIVE);
    } else {
        if (state->verbose)
            LOGD( "copying type %s", id);

        if ((new_id = strdup(id)) == NULL) {
            goto cleanup;
        }

        if ((new_type =
             (type_datum_t *) calloc(1, sizeof(*new_type))) == NULL) {
            goto cleanup;
        }
        new_type->primary = type->primary;
        new_type->flags = type->flags;
        new_type->flavor = type->flavor;
        /* for attributes, the writing of new_type->types is
           done in type_fix_callback() */

        new_type->s.value = state->base->p_types.nprim + 1;

        ret = hashtab_insert(state->base->p_types.table,
                     (hashtab_key_t) new_id,
                     (hashtab_datum_t) new_type);
        if (ret) {
            goto cleanup;
        }
        state->base->p_types.nprim++;
        base_type = new_type;
    }

    if (state->dest_decl) {
        new_id = NULL;
        if ((new_type = calloc(1, sizeof(*new_type))) == NULL) {
            goto cleanup;
        }
        new_type->primary = type->primary;
        new_type->flavor = type->flavor;
        new_type->flags = type->flags;
        new_type->s.value = base_type->s.value;
        if ((new_id = strdup(id)) == NULL) {
            goto cleanup;
        }
        if (hashtab_insert
            (state->dest_decl->p_types.table, new_id, new_type)) {
            goto cleanup;
        }
        state->dest_decl->p_types.nprim++;
    }

    state->cur->map[SYM_TYPES][type->s.value - 1] = base_type->s.value;
    return 0;

      cleanup:
    LOGD("Out of memory!");
    free(new_id);
    free(new_type);
    return -1;
}

static int user_copy_callback(hashtab_key_t key, hashtab_datum_t datum,
                  void *data)
{
    int ret;
    char *id = key, *new_id = NULL;
    user_datum_t *user, *base_user, *new_user = NULL;
    link_state_t *state = (link_state_t *) data;

    user = (user_datum_t *) datum;

    base_user = hashtab_search(state->base->p_users.table, id);
    if (base_user == NULL) {
        if (state->verbose)
            LOGD( "copying user %s", id);

        if ((new_id = strdup(id)) == NULL) {
            goto cleanup;
        }

        if ((new_user =
             (user_datum_t *) malloc(sizeof(*new_user))) == NULL) {
            goto cleanup;
        }
        user_datum_init(new_user);
        /* new_users's roles and MLS fields will be copied during
           user_fix_callback(). */

        new_user->s.value = state->base->p_users.nprim + 1;

        ret = hashtab_insert(state->base->p_users.table,
                     (hashtab_key_t) new_id,
                     (hashtab_datum_t) new_user);
        if (ret) {
            goto cleanup;
        }
        state->base->p_users.nprim++;
        base_user = new_user;
    }

    if (state->dest_decl) {
        new_id = NULL;
        if ((new_user = malloc(sizeof(*new_user))) == NULL) {
            goto cleanup;
        }
        user_datum_init(new_user);
        new_user->s.value = base_user->s.value;
        if ((new_id = strdup(id)) == NULL) {
            goto cleanup;
        }
        if (hashtab_insert
            (state->dest_decl->p_users.table, new_id, new_user)) {
            goto cleanup;
        }
        state->dest_decl->p_users.nprim++;
    }

    state->cur->map[SYM_USERS][user->s.value - 1] = base_user->s.value;
    return 0;

      cleanup:
    LOGD("Out of memory!");
    user_datum_destroy(new_user);
    free(new_id);
    free(new_user);
    return -1;
}

static int bool_copy_callback(hashtab_key_t key, hashtab_datum_t datum,
                  void *data)
{
    int ret;
    char *id = key, *new_id = NULL;
    cond_bool_datum_t *booldatum, *base_bool, *new_bool = NULL;
    link_state_t *state = (link_state_t *) data;
    scope_datum_t *scope;

    booldatum = (cond_bool_datum_t *) datum;

    base_bool = hashtab_search(state->base->p_bools.table, id);
    if (base_bool == NULL) {
        if (state->verbose)
            LOGD( "copying boolean %s", id);

        if ((new_id = strdup(id)) == NULL) {
            goto cleanup;
        }

        if ((new_bool =
             (cond_bool_datum_t *) malloc(sizeof(*new_bool))) == NULL) {
            goto cleanup;
        }
        new_bool->s.value = state->base->p_bools.nprim + 1;

        ret = hashtab_insert(state->base->p_bools.table,
                     (hashtab_key_t) new_id,
                     (hashtab_datum_t) new_bool);
        if (ret) {
            goto cleanup;
        }
        state->base->p_bools.nprim++;
        base_bool = new_bool;
        base_bool->flags = booldatum->flags;
    } else if ((booldatum->flags & COND_BOOL_FLAGS_TUNABLE) !=
           (base_bool->flags & COND_BOOL_FLAGS_TUNABLE)) {
            /* A mismatch between boolean/tunable declaration
             * and usage(for example a boolean used in the
             * tunable_policy() or vice versa).
             *
             * This is not allowed and bail out with errors */
            LOGD(
                "%s: Mismatch between boolean/tunable definition "
                "and usage for %s", state->cur_mod_name, id);
            return -1;
    }

    /* Get the scope info for this boolean to see if this is the declaration, 
      * if so set the state */
    scope = hashtab_search(state->cur->policy->p_bools_scope.table, id);
    if (!scope)
        return SEPOL_ERR;
    if (scope->scope == SCOPE_DECL) {
        base_bool->state = booldatum->state;
        /* Only the declaration rather than requirement
         * decides if it is a boolean or tunable. */
        base_bool->flags = booldatum->flags;
    }
    state->cur->map[SYM_BOOLS][booldatum->s.value - 1] = base_bool->s.value;
    return 0;

      cleanup:
    LOGD("Out of memory!");
    cond_destroy_bool(new_id, new_bool, NULL);
    return -1;
}

static int sens_copy_callback(hashtab_key_t key, hashtab_datum_t datum,
                  void *data)
{
    char *id = key;
    level_datum_t *level, *base_level;
    link_state_t *state = (link_state_t *) data;
    scope_datum_t *scope;

    level = (level_datum_t *) datum;

    base_level = hashtab_search(state->base->p_levels.table, id);
    if (!base_level) {
        scope =
            hashtab_search(state->cur->policy->p_sens_scope.table, id);
        if (!scope)
            return SEPOL_ERR;
        if (scope->scope == SCOPE_DECL) {
            /* disallow declarations in modules */
            LOGD(
                "%s: Modules may not declare new sensitivities.",
                state->cur_mod_name);
            return SEPOL_ENOTSUP;
        } else if (scope->scope == SCOPE_REQ) {
            /* unmet requirement */
            LOGD(
                "%s: Sensitivity %s not declared by base.",
                state->cur_mod_name, id);
            return SEPOL_ENOTSUP;
        } else {
            LOGD(
                "%s: has an unknown scope: %d\n",
                state->cur_mod_name, scope->scope);
            return SEPOL_ENOTSUP;
        }
    }

    state->cur->map[SYM_LEVELS][level->level->sens - 1] =
        base_level->level->sens;

    return 0;
}

static int cat_copy_callback(hashtab_key_t key, hashtab_datum_t datum,
                 void *data)
{
    char *id = key;
    cat_datum_t *cat, *base_cat;
    link_state_t *state = (link_state_t *) data;
    scope_datum_t *scope;

    cat = (cat_datum_t *) datum;

    base_cat = hashtab_search(state->base->p_cats.table, id);
    if (!base_cat) {
        scope = hashtab_search(state->cur->policy->p_cat_scope.table, id);
        if (!scope)
            return SEPOL_ERR;
        if (scope->scope == SCOPE_DECL) {
            /* disallow declarations in modules */
            LOGD(
                "%s: Modules may not declare new categories.",
                state->cur_mod_name);
            return SEPOL_ENOTSUP;
        } else if (scope->scope == SCOPE_REQ) {
            /* unmet requirement */
            LOGD(
                "%s: Category %s not declared by base.",
                state->cur_mod_name, id);
            return SEPOL_ENOTSUP;
        } else {
            /* unknown scope?  malformed policy? */
            LOGD(
                "%s: has an unknown scope: %d\n",
                state->cur_mod_name, scope->scope);
            return SEPOL_ENOTSUP;
        }
    }

    state->cur->map[SYM_CATS][cat->s.value - 1] = base_cat->s.value;

    return 0;
}

static int (*copy_callback_f[SYM_NUM]) (hashtab_key_t key,
                    hashtab_datum_t datum, void *datap) = {
NULL, class_copy_callback, role_copy_callback, type_copy_callback,
        user_copy_callback, bool_copy_callback, sens_copy_callback,
        cat_copy_callback};

/*
 * The boundaries have to be copied after the types/roles/users are copied,
 * because it refers hashtab to lookup destinated objects.
 */
static int type_bounds_copy_callback(hashtab_key_t key,
                     hashtab_datum_t datum, void *data)
{
    link_state_t *state = (link_state_t *) data;
    type_datum_t *type = (type_datum_t *) datum;
    type_datum_t *dest;
    uint32_t bounds_val;

    if (!type->bounds)
        return 0;

    bounds_val = state->cur->map[SYM_TYPES][type->bounds - 1];

    dest = hashtab_search(state->base->p_types.table, key);
    if (!dest) {
        LOGD(
            "Type lookup failed for %s", (char *)key);
        return -1;
    }
    if (dest->bounds != 0 && dest->bounds != bounds_val) {
        LOGD(
            "Inconsistent boundary for %s", (char *)key);
        return -1;
    }
    dest->bounds = bounds_val;

    return 0;
}

static int role_bounds_copy_callback(hashtab_key_t key,
                     hashtab_datum_t datum, void *data)
{
    link_state_t *state = (link_state_t *) data;
    role_datum_t *role = (role_datum_t *) datum;
    role_datum_t *dest;
    uint32_t bounds_val;

    if (!role->bounds)
        return 0;

    bounds_val = state->cur->map[SYM_ROLES][role->bounds - 1];

    dest = hashtab_search(state->base->p_roles.table, key);
    if (!dest) {
        LOGD(
            "Role lookup failed for %s", (char *)key);
        return -1;
    }
    if (dest->bounds != 0 && dest->bounds != bounds_val) {
        LOGD(
            "Inconsistent boundary for %s", (char *)key);
        return -1;
    }
    dest->bounds = bounds_val;

    return 0;
}

static int user_bounds_copy_callback(hashtab_key_t key,
                     hashtab_datum_t datum, void *data)
{
    link_state_t *state = (link_state_t *) data;
    user_datum_t *user = (user_datum_t *) datum;
    user_datum_t *dest;
    uint32_t bounds_val;

    if (!user->bounds)
        return 0;

    bounds_val = state->cur->map[SYM_USERS][user->bounds - 1];

    dest = hashtab_search(state->base->p_users.table, key);
    if (!dest) {
        LOGD(
            "User lookup failed for %s", (char *)key);
        return -1;
    }
    if (dest->bounds != 0 && dest->bounds != bounds_val) {
        LOGD(
            "Inconsistent boundary for %s", (char *)key);
        return -1;
    }
    dest->bounds = bounds_val;

    return 0;
}

/* The aliases have to be copied after the types and attributes to be
 * certain that the base symbol table will have the type that the
 * alias refers. Otherwise, we won't be able to find the type value
 * for the alias. We can't depend on the declaration ordering because
 * of the hash table.
 */
static int alias_copy_callback(hashtab_key_t key, hashtab_datum_t datum,
                   void *data)
{
    char *id = key, *new_id = NULL, *target_id;
    type_datum_t *type, *base_type, *new_type = NULL, *target_type;
    link_state_t *state = (link_state_t *) data;
    policy_module_t *mod = state->cur;
    int primval;

    type = (type_datum_t *) datum;
    /* there are 2 kinds of aliases. Ones with their own value (TYPE_ALIAS)
     * and ones with the value of their primary (TYPE_TYPE && type->primary = 0)
     */
    if (!
        (type->flavor == TYPE_ALIAS
         || (type->flavor == TYPE_TYPE && !type->primary))) {
        /* ignore types and attributes -- they were handled in
         * type_copy_callback() */
        return 0;
    }

    if (type->flavor == TYPE_ALIAS)
        primval = type->primary;
    else
        primval = type->s.value;

    target_id = mod->policy->p_type_val_to_name[primval - 1];
    target_type = hashtab_search(state->base->p_types.table, target_id);
    if (target_type == NULL) {
        LOGD("%s: Could not find type %s for alias %s.",
            state->cur_mod_name, target_id, id);
        return -1;
    }

    if (!strcmp(id, target_id)) {
        LOGD("%s: Self aliasing of %s.",
            state->cur_mod_name, id);
        return -1;
    }

    target_type->flags |= (type->flags & TYPE_FLAGS_PERMISSIVE);

    base_type = hashtab_search(state->base->p_types.table, id);
    if (base_type == NULL) {
        if (state->verbose)
            LOGD( "copying alias %s", id);

        if ((new_type =
             (type_datum_t *) calloc(1, sizeof(*new_type))) == NULL) {
            goto cleanup;
        }
        /* the linked copy always has TYPE_ALIAS style aliases */
        new_type->primary = target_type->s.value;
        new_type->flags = target_type->flags;
        new_type->flavor = TYPE_ALIAS;
        new_type->s.value = state->base->p_types.nprim + 1;
        if ((new_id = strdup(id)) == NULL) {
            goto cleanup;
        }
        if (hashtab_insert
            (state->base->p_types.table, new_id, new_type)) {
            goto cleanup;
        }
        state->base->p_types.nprim++;
        base_type = new_type;
    } else {

        /* if this already exists and isn't an alias it was required by another module (or base)
         * and inserted into the hashtable as a type, fix it up now */

        if (base_type->flavor == TYPE_ALIAS) {
            /* error checking */
            assert(base_type->primary == target_type->s.value);
            assert(base_type->primary ==
                   mod->map[SYM_TYPES][primval - 1]);
            assert(mod->map[SYM_TYPES][type->s.value - 1] ==
                   base_type->primary);
            return 0;
        }

        if (base_type->flavor == TYPE_ATTRIB) {
            LOGD(
                "%s is an alias of an attribute, not allowed", id);
            return -1;
        }

        base_type->flavor = TYPE_ALIAS;
        base_type->primary = target_type->s.value;
        base_type->flags |= (target_type->flags & TYPE_FLAGS_PERMISSIVE);

    }
    /* the aliases map points from its value to its primary so when this module 
     * references this type the value it gets back from the map is the primary */
    mod->map[SYM_TYPES][type->s.value - 1] = base_type->primary;

    return 0;

      cleanup:
    LOGD("Out of memory!");
    free(new_id);
    free(new_type);
    return -1;
}

/*********** callbacks that fix bitmaps ***********/

static int type_set_convert(type_set_t * types, type_set_t * dst,
                policy_module_t * mod, link_state_t * state
                __attribute__ ((unused)))
{
    unsigned int i;
    ebitmap_node_t *tnode;
    ebitmap_for_each_bit(&types->types, tnode, i) {
        if (ebitmap_node_get_bit(tnode, i)) {
            assert(mod->map[SYM_TYPES][i]);
            if (ebitmap_set_bit
                (&dst->types, mod->map[SYM_TYPES][i] - 1, 1)) {
                goto cleanup;
            }
        }
    }
    ebitmap_for_each_bit(&types->negset, tnode, i) {
        if (ebitmap_node_get_bit(tnode, i)) {
            assert(mod->map[SYM_TYPES][i]);
            if (ebitmap_set_bit
                (&dst->negset, mod->map[SYM_TYPES][i] - 1, 1)) {
                goto cleanup;
            }
        }
    }
    dst->flags = types->flags;
    return 0;

      cleanup:
    return -1;
}

/* OR 2 typemaps together and at the same time map the src types to
 * the correct values in the dst typeset.
 */
static int type_set_or_convert(type_set_t * types, type_set_t * dst,
                   policy_module_t * mod, link_state_t * state)
{
    type_set_t ts_tmp;

    type_set_init(&ts_tmp);
    if (type_set_convert(types, &ts_tmp, mod, state) == -1) {
        goto cleanup;
    }
    if (type_set_or_eq(dst, &ts_tmp)) {
        goto cleanup;
    }
    type_set_destroy(&ts_tmp);
    return 0;

      cleanup:
    LOGD("Out of memory!");
    type_set_destroy(&ts_tmp);
    return -1;
}

static int role_set_or_convert(role_set_t * roles, role_set_t * dst,
                   policy_module_t * mod, link_state_t * state)
{
    unsigned int i;
    ebitmap_t tmp;
    ebitmap_node_t *rnode;

    ebitmap_init(&tmp);
    ebitmap_for_each_bit(&roles->roles, rnode, i) {
        if (ebitmap_node_get_bit(rnode, i)) {
            assert(mod->map[SYM_ROLES][i]);
            if (ebitmap_set_bit
                (&tmp, mod->map[SYM_ROLES][i] - 1, 1)) {
                goto cleanup;
            }
        }
    }
    if (ebitmap_union(&dst->roles, &tmp)) {
        goto cleanup;
    }
    dst->flags |= roles->flags;
    ebitmap_destroy(&tmp);
    return 0;
      cleanup:
    LOGD("Out of memory!");
    ebitmap_destroy(&tmp);
    return -1;
}

static int mls_level_convert(mls_semantic_level_t * src, mls_semantic_level_t * dst,
                 policy_module_t * mod, link_state_t * state)
{
    mls_semantic_cat_t *src_cat, *new_cat;

    if (!mod->policy->mls)
        return 0;

    /* Required not declared. */
    if (!src->sens)
        return 0;

    assert(mod->map[SYM_LEVELS][src->sens - 1]);
    dst->sens = mod->map[SYM_LEVELS][src->sens - 1];

    for (src_cat = src->cat; src_cat; src_cat = src_cat->next) {
        new_cat =
            (mls_semantic_cat_t *) malloc(sizeof(mls_semantic_cat_t));
        if (!new_cat) {
            LOGD("Out of memory");
            return -1;
        }
        mls_semantic_cat_init(new_cat);

        new_cat->next = dst->cat;
        dst->cat = new_cat;

        assert(mod->map[SYM_CATS][src_cat->low - 1]);
        dst->cat->low = mod->map[SYM_CATS][src_cat->low - 1];
        assert(mod->map[SYM_CATS][src_cat->high - 1]);
        dst->cat->high = mod->map[SYM_CATS][src_cat->high - 1];
    }

    return 0;
}

static int mls_range_convert(mls_semantic_range_t * src, mls_semantic_range_t * dst,
                 policy_module_t * mod, link_state_t * state)
{
    int ret;
    ret = mls_level_convert(&src->level[0], &dst->level[0], mod, state);
    if (ret)
        return ret;
    ret = mls_level_convert(&src->level[1], &dst->level[1], mod, state);
    if (ret)
        return ret;
    return 0;
}

static int role_fix_callback(hashtab_key_t key, hashtab_datum_t datum,
                 void *data)
{
    unsigned int i;
    char *id = key;
    role_datum_t *role, *dest_role = NULL;
    link_state_t *state = (link_state_t *) data;
    ebitmap_t e_tmp;
    policy_module_t *mod = state->cur;
    ebitmap_node_t *rnode;
    hashtab_t role_tab;

    role = (role_datum_t *) datum;
    if (state->dest_decl == NULL)
        role_tab = state->base->p_roles.table;
    else
        role_tab = state->dest_decl->p_roles.table;

    dest_role = hashtab_search(role_tab, id);
    assert(dest_role != NULL);

    if (state->verbose) {
        LOGD( "fixing role %s", id);
    }

    ebitmap_init(&e_tmp);
    ebitmap_for_each_bit(&role->dominates, rnode, i) {
        if (ebitmap_node_get_bit(rnode, i)) {
            assert(mod->map[SYM_ROLES][i]);
            if (ebitmap_set_bit
                (&e_tmp, mod->map[SYM_ROLES][i] - 1, 1)) {
                goto cleanup;
            }
        }
    }
    if (ebitmap_union(&dest_role->dominates, &e_tmp)) {
        goto cleanup;
    }
    if (type_set_or_convert(&role->types, &dest_role->types, mod, state)) {
        goto cleanup;
    }
    ebitmap_destroy(&e_tmp);
    
    if (role->flavor == ROLE_ATTRIB) {
        ebitmap_init(&e_tmp);
        ebitmap_for_each_bit(&role->roles, rnode, i) {
            if (ebitmap_node_get_bit(rnode, i)) {
                assert(mod->map[SYM_ROLES][i]);
                if (ebitmap_set_bit
                    (&e_tmp, mod->map[SYM_ROLES][i] - 1, 1)) {
                    goto cleanup;
                }
            }
        }
        if (ebitmap_union(&dest_role->roles, &e_tmp)) {
            goto cleanup;
        }
        ebitmap_destroy(&e_tmp);
    }

    return 0;

      cleanup:
    LOGD("Out of memory!");
    ebitmap_destroy(&e_tmp);
    return -1;
}

static int type_fix_callback(hashtab_key_t key, hashtab_datum_t datum,
                 void *data)
{
    unsigned int i;
    char *id = key;
    type_datum_t *type, *new_type = NULL;
    link_state_t *state = (link_state_t *) data;
    ebitmap_t e_tmp;
    policy_module_t *mod = state->cur;
    ebitmap_node_t *tnode;
    symtab_t *typetab;

    type = (type_datum_t *) datum;

    if (state->dest_decl == NULL)
        typetab = &state->base->p_types;
    else
        typetab = &state->dest_decl->p_types;

    /* only fix attributes */
    if (type->flavor != TYPE_ATTRIB) {
        return 0;
    }

    new_type = hashtab_search(typetab->table, id);
    assert(new_type != NULL && new_type->flavor == TYPE_ATTRIB);

    if (state->verbose) {
        LOGD( "fixing attribute %s", id);
    }

    ebitmap_init(&e_tmp);
    ebitmap_for_each_bit(&type->types, tnode, i) {
        if (ebitmap_node_get_bit(tnode, i)) {
            assert(mod->map[SYM_TYPES][i]);
            if (ebitmap_set_bit
                (&e_tmp, mod->map[SYM_TYPES][i] - 1, 1)) {
                goto cleanup;
            }
        }
    }
    if (ebitmap_union(&new_type->types, &e_tmp)) {
        goto cleanup;
    }
    ebitmap_destroy(&e_tmp);
    return 0;

      cleanup:
    LOGD("Out of memory!");
    ebitmap_destroy(&e_tmp);
    return -1;
}

static int user_fix_callback(hashtab_key_t key, hashtab_datum_t datum,
                 void *data)
{
    char *id = key;
    user_datum_t *user, *new_user = NULL;
    link_state_t *state = (link_state_t *) data;
    policy_module_t *mod = state->cur;
    symtab_t *usertab;

    user = (user_datum_t *) datum;

    if (state->dest_decl == NULL)
        usertab = &state->base->p_users;
    else
        usertab = &state->dest_decl->p_users;

    new_user = hashtab_search(usertab->table, id);
    assert(new_user != NULL);

    if (state->verbose) {
        LOGD( "fixing user %s", id);
    }

    if (role_set_or_convert(&user->roles, &new_user->roles, mod, state)) {
        goto cleanup;
    }

    if (mls_range_convert(&user->range, &new_user->range, mod, state))
        goto cleanup;

    if (mls_level_convert(&user->dfltlevel, &new_user->dfltlevel, mod, state))
        goto cleanup;

    return 0;

      cleanup:
    LOGD("Out of memory!");
    return -1;
}

static int (*fix_callback_f[SYM_NUM]) (hashtab_key_t key, hashtab_datum_t datum,
                       void *datap) = {
NULL, NULL, role_fix_callback, type_fix_callback, user_fix_callback,
        NULL, NULL, NULL};

/*********** functions that copy AV rules ***********/

static int copy_avrule_list(avrule_t * list, avrule_t ** dst,
                policy_module_t * module, link_state_t * state)
{
    unsigned int i;
    avrule_t *cur, *new_rule = NULL, *tail;
    class_perm_node_t *cur_perm, *new_perm, *tail_perm = NULL;

    tail = *dst;
    while (tail && tail->next) {
        tail = tail->next;
    }

    cur = list;
    while (cur) {
        if ((new_rule = (avrule_t *) malloc(sizeof(avrule_t))) == NULL) {
            goto cleanup;
        }
        avrule_init(new_rule);

        new_rule->specified = cur->specified;
        new_rule->flags = cur->flags;
        if (type_set_convert
            (&cur->stypes, &new_rule->stypes, module, state) == -1
            || type_set_convert(&cur->ttypes, &new_rule->ttypes, module,
                    state) == -1) {
            goto cleanup;
        }

        cur_perm = cur->perms;
        tail_perm = NULL;
        while (cur_perm) {
            if ((new_perm = (class_perm_node_t *)
                 malloc(sizeof(class_perm_node_t))) == NULL) {
                goto cleanup;
            }
            class_perm_node_init(new_perm);

            new_perm->class =
                module->map[SYM_CLASSES][cur_perm->class - 1];
            assert(new_perm->class);

            if (new_rule->specified & AVRULE_AV) {
                for (i = 0;
                     i <
                     module->perm_map_len[cur_perm->class - 1];
                     i++) {
                    if (!(cur_perm->data & (1U << i)))
                        continue;
                    new_perm->data |=
                        (1U <<
                         (module->
                          perm_map[cur_perm->class - 1][i] -
                          1));
                }
            } else {
                new_perm->data =
                    module->map[SYM_TYPES][cur_perm->data - 1];
            }

            if (new_rule->perms == NULL) {
                new_rule->perms = new_perm;
            } else {
                assert(tail_perm);
                tail_perm->next = new_perm;
            }
            tail_perm = new_perm;
            cur_perm = cur_perm->next;
        }
        new_rule->line = cur->line;
        new_rule->source_line = cur->source_line;
        if (cur->source_filename) {
            new_rule->source_filename = strdup(cur->source_filename);
            if (!new_rule->source_filename)
                goto cleanup;
        }

        cur = cur->next;

        if (*dst == NULL) {
            *dst = new_rule;
        } else {
            tail->next = new_rule;
        }
        tail = new_rule;
    }

    return 0;
      cleanup:
    LOGD("Out of memory!");
    avrule_destroy(new_rule);
    free(new_rule);
    return -1;
}

static int copy_role_trans_list(role_trans_rule_t * list,
                role_trans_rule_t ** dst,
                policy_module_t * module, link_state_t * state)
{
    role_trans_rule_t *cur, *new_rule = NULL, *tail;
    unsigned int i;
    ebitmap_node_t *cnode;

    cur = list;
    tail = *dst;
    while (tail && tail->next) {
        tail = tail->next;
    }
    while (cur) {
        if ((new_rule =
             (role_trans_rule_t *) malloc(sizeof(role_trans_rule_t))) ==
            NULL) {
            goto cleanup;
        }
        role_trans_rule_init(new_rule);

        if (role_set_or_convert
            (&cur->roles, &new_rule->roles, module, state)
            || type_set_or_convert(&cur->types, &new_rule->types,
                       module, state)) {
            goto cleanup;
        }

        ebitmap_for_each_bit(&cur->classes, cnode, i) {
            if (ebitmap_node_get_bit(cnode, i)) {
                assert(module->map[SYM_CLASSES][i]);
                if (ebitmap_set_bit(&new_rule->classes,
                            module->
                            map[SYM_CLASSES][i] - 1,
                            1)) {
                    goto cleanup;
                }
            }
        }

        new_rule->new_role = module->map[SYM_ROLES][cur->new_role - 1];

        if (*dst == NULL) {
            *dst = new_rule;
        } else {
            tail->next = new_rule;
        }
        tail = new_rule;
        cur = cur->next;
    }
    return 0;
      cleanup:
    LOGD("Out of memory!");
    role_trans_rule_list_destroy(new_rule);
    return -1;
}

static int copy_role_allow_list(role_allow_rule_t * list,
                role_allow_rule_t ** dst,
                policy_module_t * module, link_state_t * state)
{
    role_allow_rule_t *cur, *new_rule = NULL, *tail;

    cur = list;
    tail = *dst;
    while (tail && tail->next) {
        tail = tail->next;
    }

    while (cur) {
        if ((new_rule =
             (role_allow_rule_t *) malloc(sizeof(role_allow_rule_t))) ==
            NULL) {
            goto cleanup;
        }
        role_allow_rule_init(new_rule);

        if (role_set_or_convert
            (&cur->roles, &new_rule->roles, module, state)
            || role_set_or_convert(&cur->new_roles,
                       &new_rule->new_roles, module,
                       state)) {
            goto cleanup;
        }
        if (*dst == NULL) {
            *dst = new_rule;
        } else {
            tail->next = new_rule;
        }
        tail = new_rule;
        cur = cur->next;
    }
    return 0;
      cleanup:
    LOGD("Out of memory!");
    role_allow_rule_list_destroy(new_rule);
    return -1;
}

static int copy_filename_trans_list(filename_trans_rule_t * list,
                    filename_trans_rule_t ** dst,
                    policy_module_t * module,
                    link_state_t * state)
{
    filename_trans_rule_t *cur, *new_rule, *tail;

    cur = list;
    tail = *dst;
    while (tail && tail->next)
        tail = tail->next;

    while (cur) {
        new_rule = malloc(sizeof(*new_rule));
        if (!new_rule)
            goto err;

        filename_trans_rule_init(new_rule);

        if (*dst == NULL)
            *dst = new_rule;
        else
            tail->next = new_rule;
        tail = new_rule;

        new_rule->name = strdup(cur->name);
        if (!new_rule->name)
            goto err;

        if (type_set_or_convert(&cur->stypes, &new_rule->stypes, module, state) ||
            type_set_or_convert(&cur->ttypes, &new_rule->ttypes, module, state))
            goto err;

        new_rule->tclass = module->map[SYM_CLASSES][cur->tclass - 1];
        new_rule->otype = module->map[SYM_TYPES][cur->otype - 1];

        cur = cur->next;
    }
    return 0;
err:
    LOGD("Out of memory!");
    return -1;
}

static int copy_range_trans_list(range_trans_rule_t * rules,
                 range_trans_rule_t ** dst,
                 policy_module_t * mod, link_state_t * state)
{
    range_trans_rule_t *rule, *new_rule = NULL;
    unsigned int i;
    ebitmap_node_t *cnode;

    for (rule = rules; rule; rule = rule->next) {
        new_rule =
            (range_trans_rule_t *) malloc(sizeof(range_trans_rule_t));
        if (!new_rule)
            goto cleanup;

        range_trans_rule_init(new_rule);

        new_rule->next = *dst;
        *dst = new_rule;

        if (type_set_convert(&rule->stypes, &new_rule->stypes,
                     mod, state))
            goto cleanup;

        if (type_set_convert(&rule->ttypes, &new_rule->ttypes,
                     mod, state))
            goto cleanup;

        ebitmap_for_each_bit(&rule->tclasses, cnode, i) {
            if (ebitmap_node_get_bit(cnode, i)) {
                assert(mod->map[SYM_CLASSES][i]);
                if (ebitmap_set_bit
                    (&new_rule->tclasses,
                     mod->map[SYM_CLASSES][i] - 1, 1)) {
                    goto cleanup;
                }
            }
        }

        if (mls_range_convert(&rule->trange, &new_rule->trange, mod, state))
            goto cleanup;
    }
    return 0;

      cleanup:
    LOGD("Out of memory!");
    range_trans_rule_list_destroy(new_rule);
    return -1;
}

static int copy_cond_list(cond_node_t * list, cond_node_t ** dst,
              policy_module_t * module, link_state_t * state)
{
    unsigned i;
    cond_node_t *cur, *new_node = NULL, *tail;
    cond_expr_t *cur_expr;
    tail = *dst;
    while (tail && tail->next)
        tail = tail->next;

    cur = list;
    while (cur) {
        new_node = (cond_node_t *) malloc(sizeof(cond_node_t));
        if (!new_node) {
            goto cleanup;
        }
        memset(new_node, 0, sizeof(cond_node_t));

        new_node->cur_state = cur->cur_state;
        new_node->expr = cond_copy_expr(cur->expr);
        if (!new_node->expr)
            goto cleanup;
        /* go back through and remap the expression */
        for (cur_expr = new_node->expr; cur_expr != NULL;
             cur_expr = cur_expr->next) {
            /* expression nodes don't have a bool value of 0 - don't map them */
            if (cur_expr->expr_type != COND_BOOL)
                continue;
            assert(module->map[SYM_BOOLS][cur_expr->bool - 1] != 0);
            cur_expr->bool =
                module->map[SYM_BOOLS][cur_expr->bool - 1];
        }
        new_node->nbools = cur->nbools;
        /* FIXME should COND_MAX_BOOLS be used here? */
        for (i = 0; i < min(cur->nbools, COND_MAX_BOOLS); i++) {
            uint32_t remapped_id =
                module->map[SYM_BOOLS][cur->bool_ids[i] - 1];
            assert(remapped_id != 0);
            new_node->bool_ids[i] = remapped_id;
        }
        new_node->expr_pre_comp = cur->expr_pre_comp;

        if (copy_avrule_list
            (cur->avtrue_list, &new_node->avtrue_list, module, state)
            || copy_avrule_list(cur->avfalse_list,
                    &new_node->avfalse_list, module,
                    state)) {
            goto cleanup;
        }

        if (*dst == NULL) {
            *dst = new_node;
        } else {
            tail->next = new_node;
        }
        tail = new_node;
        cur = cur->next;
    }
    return 0;
      cleanup:
    LOGD("Out of memory!");
    cond_node_destroy(new_node);
    free(new_node);
    return -1;

}

/*********** functions that copy avrule_decls from module to base ***********/

static int copy_identifiers(link_state_t * state, symtab_t * src_symtab,
                avrule_decl_t * dest_decl)
{
    int i, ret;

    state->dest_decl = dest_decl;
    for (i = 0; i < SYM_NUM; i++) {
        if (copy_callback_f[i] != NULL) {
            ret =
                hashtab_map(src_symtab[i].table, copy_callback_f[i],
                    state);
            if (ret) {
                return ret;
            }
        }
    }

    if (hashtab_map(src_symtab[SYM_TYPES].table,
            type_bounds_copy_callback, state))
        return -1;

    if (hashtab_map(src_symtab[SYM_TYPES].table,
            alias_copy_callback, state))
        return -1;

    if (hashtab_map(src_symtab[SYM_ROLES].table,
            role_bounds_copy_callback, state))
        return -1;

    if (hashtab_map(src_symtab[SYM_USERS].table,
            user_bounds_copy_callback, state))
        return -1;

    /* then fix bitmaps associated with those newly copied identifiers */
    for (i = 0; i < SYM_NUM; i++) {
        if (fix_callback_f[i] != NULL &&
            hashtab_map(src_symtab[i].table, fix_callback_f[i],
                state)) {
            return -1;
        }
    }
    return 0;
}

static int copy_scope_index(scope_index_t * src, scope_index_t * dest,
                policy_module_t * module, link_state_t * state)
{
    unsigned int i, j;
    uint32_t largest_mapped_class_value = 0;
    ebitmap_node_t *node;
    /* copy the scoping information for this avrule decl block */
    for (i = 0; i < SYM_NUM; i++) {
        ebitmap_t *srcmap = src->scope + i;
        ebitmap_t *destmap = dest->scope + i;
        if (copy_callback_f[i] == NULL) {
            continue;
        }
        ebitmap_for_each_bit(srcmap, node, j) {
            if (ebitmap_node_get_bit(node, j)) {
                assert(module->map[i][j] != 0);
                if (ebitmap_set_bit
                    (destmap, module->map[i][j] - 1, 1) != 0) {

                    goto cleanup;
                }
                if (i == SYM_CLASSES &&
                    largest_mapped_class_value <
                    module->map[SYM_CLASSES][j]) {
                    largest_mapped_class_value =
                        module->map[SYM_CLASSES][j];
                }
            }
        }
    }

    /* next copy the enabled permissions data  */
    if ((dest->class_perms_map = malloc(largest_mapped_class_value *
                        sizeof(*dest->class_perms_map))) ==
        NULL) {
        goto cleanup;
    }
    for (i = 0; i < largest_mapped_class_value; i++) {
        ebitmap_init(dest->class_perms_map + i);
    }
    dest->class_perms_len = largest_mapped_class_value;
    for (i = 0; i < src->class_perms_len; i++) {
        ebitmap_t *srcmap = src->class_perms_map + i;
        ebitmap_t *destmap =
            dest->class_perms_map + module->map[SYM_CLASSES][i] - 1;
        ebitmap_for_each_bit(srcmap, node, j) {
            if (ebitmap_node_get_bit(node, j) &&
                ebitmap_set_bit(destmap, module->perm_map[i][j] - 1,
                        1)) {
                goto cleanup;
            }
        }
    }

    return 0;

      cleanup:
    LOGD("Out of memory!");
    return -1;
}

static int copy_avrule_decl(link_state_t * state, policy_module_t * module,
                avrule_decl_t * src_decl, avrule_decl_t * dest_decl)
{
    int ret;

    /* copy all of the RBAC and TE rules */
    if (copy_avrule_list
        (src_decl->avrules, &dest_decl->avrules, module, state) == -1
        || copy_role_trans_list(src_decl->role_tr_rules,
                    &dest_decl->role_tr_rules, module,
                    state) == -1
        || copy_role_allow_list(src_decl->role_allow_rules,
                    &dest_decl->role_allow_rules, module,
                    state) == -1
        || copy_cond_list(src_decl->cond_list, &dest_decl->cond_list,
                  module, state) == -1) {
        return -1;
    }

    if (copy_filename_trans_list(src_decl->filename_trans_rules,
                     &dest_decl->filename_trans_rules,
                     module, state))
        return -1;

    if (copy_range_trans_list(src_decl->range_tr_rules,
                  &dest_decl->range_tr_rules, module, state))
        return -1;

    /* finally copy any identifiers local to this declaration */
    ret = copy_identifiers(state, src_decl->symtab, dest_decl);
    if (ret < 0) {
        return ret;
    }

    /* then copy required and declared scope indices here */
    if (copy_scope_index(&src_decl->required, &dest_decl->required,
                 module, state) == -1 ||
        copy_scope_index(&src_decl->declared, &dest_decl->declared,
                 module, state) == -1) {
        return -1;
    }

    return 0;
}

static int copy_avrule_block(link_state_t * state, policy_module_t * module,
                 avrule_block_t * block)
{
    avrule_block_t *new_block = avrule_block_create();
    avrule_decl_t *decl, *last_decl = NULL;
    int ret;

    if (new_block == NULL) {
        LOGD("Out of memory!");
        ret = -1;
        goto cleanup;
    }

    new_block->flags = block->flags;

    for (decl = block->branch_list; decl != NULL; decl = decl->next) {
        avrule_decl_t *new_decl =
            avrule_decl_create(state->next_decl_id);
        if (new_decl == NULL) {
            LOGD("Out of memory!");
            ret = -1;
            goto cleanup;
        }

        if (module->policy->name != NULL) {
            new_decl->module_name = strdup(module->policy->name);
            if (new_decl->module_name == NULL) {
                LOGD("Out of memory\n");
                avrule_decl_destroy(new_decl);
                ret = -1;
                goto cleanup;
            }
        }

        if (last_decl == NULL) {
            new_block->branch_list = new_decl;
        } else {
            last_decl->next = new_decl;
        }
        last_decl = new_decl;
        state->base->decl_val_to_struct[state->next_decl_id - 1] =
            new_decl;
        state->decl_to_mod[state->next_decl_id] = module->policy;

        module->avdecl_map[decl->decl_id] = new_decl->decl_id;

        ret = copy_avrule_decl(state, module, decl, new_decl);
        if (ret) {
            avrule_decl_destroy(new_decl);
            goto cleanup;
        }

        state->next_decl_id++;
    }
    state->last_avrule_block->next = new_block;
    state->last_avrule_block = new_block;
    return 0;

      cleanup:
    avrule_block_list_destroy(new_block);
    return ret;
}

static int scope_copy_callback(hashtab_key_t key, hashtab_datum_t datum,
                   void *data)
{
    unsigned int i;
    int ret;
    char *id = key, *new_id = NULL;
    scope_datum_t *scope, *base_scope;
    link_state_t *state = (link_state_t *) data;
    uint32_t symbol_num = state->symbol_num;
    uint32_t *avdecl_map = state->cur->avdecl_map;

    scope = (scope_datum_t *) datum;

    /* check if the base already has a scope entry */
    base_scope = hashtab_search(state->base->scope[symbol_num].table, id);
    if (base_scope == NULL) {
        scope_datum_t *new_scope;
        if ((new_id = strdup(id)) == NULL) {
            goto cleanup;
        }

        if ((new_scope =
             (scope_datum_t *) calloc(1, sizeof(*new_scope))) == NULL) {
            free(new_id);
            goto cleanup;
        }
        ret = hashtab_insert(state->base->scope[symbol_num].table,
                     (hashtab_key_t) new_id,
                     (hashtab_datum_t) new_scope);
        if (ret) {
            free(new_id);
            free(new_scope);
            goto cleanup;
        }
        new_scope->scope = SCOPE_REQ;    /* this is reset further down */
        base_scope = new_scope;
    }
    if (base_scope->scope == SCOPE_REQ && scope->scope == SCOPE_DECL) {
        /* this module declared symbol, so overwrite the old
         * list with the new decl ids */
        base_scope->scope = SCOPE_DECL;
        free(base_scope->decl_ids);
        base_scope->decl_ids = NULL;
        base_scope->decl_ids_len = 0;
        for (i = 0; i < scope->decl_ids_len; i++) {
            if (add_i_to_a(avdecl_map[scope->decl_ids[i]],
                       &base_scope->decl_ids_len,
                       &base_scope->decl_ids) == -1) {
                goto cleanup;
            }
        }
    } else if (base_scope->scope == SCOPE_DECL && scope->scope == SCOPE_REQ) {
        /* this module depended on a symbol that now exists,
         * so don't do anything */
    } else if (base_scope->scope == SCOPE_REQ && scope->scope == SCOPE_REQ) {
        /* symbol is still required, so add to the list */
        for (i = 0; i < scope->decl_ids_len; i++) {
            if (add_i_to_a(avdecl_map[scope->decl_ids[i]],
                       &base_scope->decl_ids_len,
                       &base_scope->decl_ids) == -1) {
                goto cleanup;
            }
        }
    } else {
        /* this module declared a symbol, and it was already
         * declared.  only roles and users may be multiply
         * declared; for all others this is an error. */
        if (symbol_num != SYM_ROLES && symbol_num != SYM_USERS) {
            LOGD(
                "%s: Duplicate declaration in module: %s %s",
                state->cur_mod_name,
                symtab_names[state->symbol_num], id);
            return -1;
        }
        for (i = 0; i < scope->decl_ids_len; i++) {
            if (add_i_to_a(avdecl_map[scope->decl_ids[i]],
                       &base_scope->decl_ids_len,
                       &base_scope->decl_ids) == -1) {
                goto cleanup;
            }
        }
    }
    return 0;

      cleanup:
    LOGD("Out of memory!");
    return -1;
}

/* Copy a module over to a base, remapping all values within.  After
 * all identifiers and rules are done, copy the scoping information.
 * This is when it checks for duplicate declarations. */
static int copy_module(link_state_t * state, policy_module_t * module)
{
    int i, ret;
    avrule_block_t *cur;
    state->cur = module;
    state->cur_mod_name = module->policy->name;

    /* first copy all of the identifiers */
    ret = copy_identifiers(state, module->policy->symtab, NULL);
    if (ret) {
        return ret;
    }

    /* next copy all of the avrule blocks */
    for (cur = module->policy->global; cur != NULL; cur = cur->next) {
        ret = copy_avrule_block(state, module, cur);
        if (ret) {
            return ret;
        }
    }

    /* then copy the scoping tables */
    for (i = 0; i < SYM_NUM; i++) {
        state->symbol_num = i;
        if (hashtab_map
            (module->policy->scope[i].table, scope_copy_callback,
             state)) {
            return -1;
        }
    }

    return 0;
}

/***** functions that check requirements and enable blocks in a module ******/

/* borrowed from checkpolicy.c */

struct find_perm_arg {
    unsigned int valuep;
    hashtab_key_t key;
};

static int find_perm(hashtab_key_t key, hashtab_datum_t datum, void *varg)
{

    struct find_perm_arg *arg = varg;

    perm_datum_t *perdatum = (perm_datum_t *) datum;
    if (arg->valuep == perdatum->s.value) {
        arg->key = key;
        return 1;
    }

    return 0;
}

/* Check if the requirements are met for a single declaration.  If all
 * are met return 1.  For the first requirement found to be missing,
 * if 'missing_sym_num' and 'missing_value' are both not NULL then
 * write to them the symbol number and value for the missing
 * declaration.  Then return 0 to indicate a missing declaration.
 * Note that if a declaration had no requirement at all (e.g., an ELSE
 * block) this returns 1. */
static int is_decl_requires_met(link_state_t * state,
                avrule_decl_t * decl,
                struct missing_requirement *req)
{
    /* (This algorithm is very unoptimized.  It performs many
     * redundant checks.  A very obvious improvement is to cache
     * which symbols have been verified, so that they do not need
     * to be re-checked.) */
    unsigned int i, j;
    ebitmap_t *bitmap;
    char *id, *perm_id;
    policydb_t *pol = state->base;
    ebitmap_node_t *node;

    /* check that all symbols have been satisfied */
    for (i = 0; i < SYM_NUM; i++) {
        if (i == SYM_CLASSES) {
            /* classes will be checked during permissions
             * checking phase below */
            continue;
        }
        bitmap = &decl->required.scope[i];
        ebitmap_for_each_bit(bitmap, node, j) {
            if (!ebitmap_node_get_bit(node, j)) {
                continue;
            }

            /* check base's scope table */
            id = pol->sym_val_to_name[i][j];
            if (!is_id_enabled(id, state->base, i)) {
                /* this symbol was not found */
                if (req != NULL) {
                    req->symbol_type = i;
                    req->symbol_value = j + 1;
                }
                return 0;
            }
        }
    }
    /* check that all classes and permissions have been satisfied */
    for (i = 0; i < decl->required.class_perms_len; i++) {

        bitmap = decl->required.class_perms_map + i;
        ebitmap_for_each_bit(bitmap, node, j) {
            struct find_perm_arg fparg;
            class_datum_t *cladatum;
            uint32_t perm_value = j + 1;
            int rc;
            scope_datum_t *scope;

            if (!ebitmap_node_get_bit(node, j)) {
                continue;
            }
            id = pol->p_class_val_to_name[i];
            cladatum = pol->class_val_to_struct[i];

            scope =
                hashtab_search(state->base->p_classes_scope.table,
                       id);
            if (scope == NULL) {
                LOGD(
                    "Could not find scope information for class %s",
                    id);
                return -1;
            }

            fparg.valuep = perm_value;
            fparg.key = NULL;

            (void)hashtab_map(cladatum->permissions.table, find_perm,
                    &fparg);
            if (fparg.key == NULL && cladatum->comdatum != NULL) {
                rc = hashtab_map(cladatum->comdatum->permissions.table,
                         find_perm, &fparg);
                assert(rc == 1);
            }
            perm_id = fparg.key;

            assert(perm_id != NULL);
            if (!is_perm_enabled(id, perm_id, state->base)) {
                if (req != NULL) {
                    req->symbol_type = SYM_CLASSES;
                    req->symbol_value = i + 1;
                    req->perm_value = perm_value;
                }
                return 0;
            }
        }
    }

    /* all requirements have been met */
    return 1;
}

static int debug_requirements(link_state_t * state, policydb_t * p)
{
    int ret;
    avrule_block_t *cur;
    missing_requirement_t req;
    memset(&req, 0, sizeof(req));

    for (cur = p->global; cur != NULL; cur = cur->next) {
        if (cur->enabled != NULL)
            continue;

        ret = is_decl_requires_met(state, cur->branch_list, &req);
        if (ret < 0) {
            return ret;
        } else if (ret == 0) {
            char *mod_name = cur->branch_list->module_name ?
                cur->branch_list->module_name : "BASE";
            if (req.symbol_type == SYM_CLASSES) {
                struct find_perm_arg fparg;

                class_datum_t *cladatum;
                cladatum = p->class_val_to_struct[req.symbol_value - 1];

                fparg.valuep = req.perm_value;
                fparg.key = NULL;
                (void)hashtab_map(cladatum->permissions.table,
                          find_perm, &fparg);

                if (cur->flags & AVRULE_OPTIONAL) {
                    LOGD(
                        "%s[%d]'s optional requirements were not met: class %s, permission %s",
                        mod_name, cur->branch_list->decl_id,
                        p->p_class_val_to_name[req.symbol_value - 1],
                        fparg.key);
                } else {
                    LOGD(
                        "%s[%d]'s global requirements were not met: class %s, permission %s",
                        mod_name, cur->branch_list->decl_id,
                        p->p_class_val_to_name[req.symbol_value - 1],
                        fparg.key);
                }
            } else {
                if (cur->flags & AVRULE_OPTIONAL) {
                    LOGD(
                        "%s[%d]'s optional requirements were not met: %s %s",
                        mod_name, cur->branch_list->decl_id,
                        symtab_names[req.symbol_type],
                        p->sym_val_to_name[req.
                                   symbol_type][req.
                                        symbol_value
                                        -
                                        1]);
                } else {
                    LOGD(
                        "%s[%d]'s global requirements were not met: %s %s",
                        mod_name, cur->branch_list->decl_id,
                        symtab_names[req.symbol_type],
                        p->sym_val_to_name[req.
                                   symbol_type][req.
                                        symbol_value
                                        -
                                        1]);
                }
            }
        }
    }
    return 0;
}

static void print_missing_requirements(link_state_t * state,
                       avrule_block_t * cur,
                       missing_requirement_t * req)
{
    policydb_t *p = state->base;
    char *mod_name = cur->branch_list->module_name ?
        cur->branch_list->module_name : "BASE";

    if (req->symbol_type == SYM_CLASSES) {

        struct find_perm_arg fparg;

        class_datum_t *cladatum;
        cladatum = p->class_val_to_struct[req->symbol_value - 1];

        fparg.valuep = req->perm_value;
        fparg.key = NULL;
        (void)hashtab_map(cladatum->permissions.table, find_perm, &fparg);

        LOGD(
            "%s's global requirements were not met: class %s, permission %s",
            mod_name,
            p->p_class_val_to_name[req->symbol_value - 1], fparg.key);
    } else {
        LOGD(
            "%s's global requirements were not met: %s %s",
            mod_name,
            symtab_names[req->symbol_type],
            p->sym_val_to_name[req->symbol_type][req->symbol_value - 1]);
    }
}

/* Enable all of the avrule_decl blocks for the policy. This simple
 * algorithm is the following:
 *
 * 1) Enable all of the non-else avrule_decls for all blocks.
 * 2) Iterate through the non-else decls looking for decls whose requirements
 *    are not met.
 *    2a) If the decl is non-optional, return immediately with an error.
 *    2b) If the decl is optional, disable the block and mark changed = 1
 * 3) If changed == 1 goto 2.
 * 4) Iterate through all blocks looking for those that have no enabled
 *    decl. If the block has an else decl, enable.
 *
 * This will correctly handle all dependencies, including mutual and
 * cicular. The only downside is that it is slow.
 */
static int enable_avrules(link_state_t * state, policydb_t * pol)
{
    int changed = 1;
    avrule_block_t *block;
    avrule_decl_t *decl;
    missing_requirement_t req;
    int ret = 0, rc;

    if (state->verbose) {
        LOGD( "Determining which avrules to enable.");
    }

    /* 1) enable all of the non-else blocks */
    for (block = pol->global; block != NULL; block = block->next) {
        block->enabled = block->branch_list;
        block->enabled->enabled = 1;
        for (decl = block->branch_list->next; decl != NULL;
             decl = decl->next)
            decl->enabled = 0;
    }

    /* 2) Iterate */
    while (changed) {
        changed = 0;
        for (block = pol->global; block != NULL; block = block->next) {
            if (block->enabled == NULL) {
                continue;
            }
            decl = block->branch_list;
            if (state->verbose) {
                char *mod_name = decl->module_name ?
                    decl->module_name : "BASE";
                LOGD( "check module %s decl %d\n",
                     mod_name, decl->decl_id);
            }
            rc = is_decl_requires_met(state, decl, &req);
            if (rc < 0) {
                ret = SEPOL_ERR;
                goto out;
            } else if (rc == 0) {
                decl->enabled = 0;
                block->enabled = NULL;
                changed = 1;
                if (!(block->flags & AVRULE_OPTIONAL)) {
                    print_missing_requirements(state, block,
                                   &req);
                    ret = SEPOL_EREQ;
                    goto out;
                }
            }
        }
    }

    /* 4) else handling
     *
     * Iterate through all of the blocks skipping the first (which is the
     * global block, is required to be present, and cannot have an else).
     * If the block is disabled and has an else decl, enable that.
     *
     * This code assumes that the second block in the branch list is the else
     * block. This is currently supported by the compiler.
     */
    for (block = pol->global->next; block != NULL; block = block->next) {
        if (block->enabled == NULL) {
            if (block->branch_list->next != NULL) {
                block->enabled = block->branch_list->next;
                block->branch_list->next->enabled = 1;
            }
        }
    }

      out:
    if (state->verbose)
        debug_requirements(state, pol);

    return ret;
}

/*********** the main linking functions ***********/

/* Given a module's policy, normalize all conditional expressions
 * within.  Return 0 on success, -1 on error. */
static int cond_normalize(policydb_t * p)
{
    avrule_block_t *block;
    for (block = p->global; block != NULL; block = block->next) {
        avrule_decl_t *decl;
        for (decl = block->branch_list; decl != NULL; decl = decl->next) {
            cond_list_t *cond = decl->cond_list;
            while (cond) {
                if (cond_normalize_expr(p, cond) < 0)
                    return -1;
                cond = cond->next;
            }
        }
    }
    return 0;
}

/* Allocate space for the various remapping arrays. */
static int prepare_module(link_state_t * state, policy_module_t * module)
{
    int i;
    uint32_t items, num_decls = 0;
    avrule_block_t *cur;

    /* allocate the maps */
    for (i = 0; i < SYM_NUM; i++) {
        items = module->policy->symtab[i].nprim;
        if ((module->map[i] =
             (uint32_t *) calloc(items,
                     sizeof(*module->map[i]))) == NULL) {
            LOGD("Out of memory!");
            return -1;
        }
    }

    /* allocate the permissions remap here */
    items = module->policy->p_classes.nprim;
    if ((module->perm_map_len =
         calloc(items, sizeof(*module->perm_map_len))) == NULL) {
        LOGD("Out of memory!");
        return -1;
    }
    if ((module->perm_map =
         calloc(items, sizeof(*module->perm_map))) == NULL) {
        LOGD("Out of memory!");
        return -1;
    }

    /* allocate a map for avrule_decls */
    for (cur = module->policy->global; cur != NULL; cur = cur->next) {
        avrule_decl_t *decl;
        for (decl = cur->branch_list; decl != NULL; decl = decl->next) {
            if (decl->decl_id > num_decls) {
                num_decls = decl->decl_id;
            }
        }
    }
    num_decls++;
    if ((module->avdecl_map = calloc(num_decls, sizeof(uint32_t))) == NULL) {
        LOGD("Out of memory!");
        return -1;
    }
    module->num_decls = num_decls;

    /* normalize conditionals within */
    if (cond_normalize(module->policy) < 0) {
        LOGD(
            "Error while normalizing conditionals within the module %s.",
            module->policy->name);
        return -1;
    }
    return 0;
}

static int prepare_base(link_state_t * state, uint32_t num_mod_decls)
{
    avrule_block_t *cur = state->base->global;
    assert(cur != NULL);
    state->next_decl_id = 0;

    /* iterate through all of the declarations in the base, to
       determine what the next decl_id should be */
    while (cur != NULL) {
        avrule_decl_t *decl;
        for (decl = cur->branch_list; decl != NULL; decl = decl->next) {
            if (decl->decl_id > state->next_decl_id) {
                state->next_decl_id = decl->decl_id;
            }
        }
        state->last_avrule_block = cur;
        cur = cur->next;
    }
    state->last_base_avrule_block = state->last_avrule_block;
    state->next_decl_id++;

    /* allocate the table mapping from base's decl_id to its
     * avrule_decls and set the initial mappings */
    free(state->base->decl_val_to_struct);
    if ((state->base->decl_val_to_struct =
         calloc(state->next_decl_id + num_mod_decls,
            sizeof(*(state->base->decl_val_to_struct)))) == NULL) {
        LOGD("Out of memory!");
        return -1;
    }
    /* This allocates the decl block to module mapping used for error reporting */
    if ((state->decl_to_mod = calloc(state->next_decl_id + num_mod_decls,
                     sizeof(*(state->decl_to_mod)))) ==
        NULL) {
        LOGD("Out of memory!");
        return -1;
    }
    cur = state->base->global;
    while (cur != NULL) {
        avrule_decl_t *decl = cur->branch_list;
        while (decl != NULL) {
            state->base->decl_val_to_struct[decl->decl_id - 1] =
                decl;
            state->decl_to_mod[decl->decl_id] = state->base;
            decl = decl->next;
        }
        cur = cur->next;
    }

    /* normalize conditionals within */
    if (cond_normalize(state->base) < 0) {
        LOGD(
            "Error while normalizing conditionals within the base module.");
        return -1;
    }
    return 0;
}

static int expand_role_attributes(hashtab_key_t key, hashtab_datum_t datum,
                  void * data)
{
    char *id;
    role_datum_t *role, *sub_attr;
    link_state_t *state;
    unsigned int i;
    ebitmap_node_t *rnode;

    id = key;
    role = (role_datum_t *)datum;
    state = (link_state_t *)data;

    if (strcmp(id, OBJECT_R) == 0){
        /* object_r is never a role attribute by far */
        return 0;
    }

    if (role->flavor != ROLE_ATTRIB)
        return 0;

    if (state->verbose)
        LOGD( "expanding role attribute %s", id);

restart:
    ebitmap_for_each_bit(&role->roles, rnode, i) {
        if (ebitmap_node_get_bit(rnode, i)) {
            sub_attr = state->base->role_val_to_struct[i];
            if (sub_attr->flavor != ROLE_ATTRIB)
                continue;
            
            /* remove the sub role attribute from the parent
             * role attribute's roles ebitmap */
            if (ebitmap_set_bit(&role->roles, i, 0))
                return -1;

            /* loop dependency of role attributes */
            if (sub_attr->s.value == role->s.value)
                continue;

            /* now go on to expand a sub role attribute
             * by escalating its roles ebitmap */
            if (ebitmap_union(&role->roles, &sub_attr->roles)) {
                LOGD("Out of memory!");
                return -1;
            }
            
            /* sub_attr->roles may contain other role attributes,
             * re-scan the parent role attribute's roles ebitmap */
            goto restart;
        }
    }

    return 0;
}

/* For any role attribute in a declaration's local symtab[SYM_ROLES] table,
 * copy its roles ebitmap into its duplicate's in the base->p_roles.table.
 */
static int populate_decl_roleattributes(hashtab_key_t key, 
                    hashtab_datum_t datum,
                    void *data)
{
    char *id = key;
    role_datum_t *decl_role, *base_role;
    link_state_t *state = (link_state_t *)data;

    decl_role = (role_datum_t *)datum;

    if (strcmp(id, OBJECT_R) == 0) {
        /* object_r is never a role attribute by far */
        return 0;
    }

    if (decl_role->flavor != ROLE_ATTRIB)
        return 0;

    base_role = (role_datum_t *)hashtab_search(state->base->p_roles.table,
                           id);
    assert(base_role != NULL && base_role->flavor == ROLE_ATTRIB);

    if (ebitmap_union(&base_role->roles, &decl_role->roles)) {
        LOGD("Out of memory!");
        return -1;
    }

    return 0;
}

static int populate_roleattributes(link_state_t *state, policydb_t *pol)
{
    avrule_block_t *block;
    avrule_decl_t *decl;

    if (state->verbose)
        LOGD( "Populating role-attribute relationship "
                "from enabled declarations' local symtab.");

    /* Iterate through all of the blocks skipping the first(which is the
     * global block, is required to be present and can't have an else).
     * If the block is disabled or not having an enabled decl, skip it.
     */
    for (block = pol->global->next; block != NULL; block = block->next)
    {
        decl = block->enabled;
        if (decl == NULL || decl->enabled == 0)
            continue;

        if (hashtab_map(decl->symtab[SYM_ROLES].table, 
                populate_decl_roleattributes, state))
            return -1;
    }

    return 0;
}

/* Link a set of modules into a base module. This process is somewhat
 * similar to an actual compiler: it requires a set of order dependent
 * steps.  The base and every module must have been indexed prior to
 * calling this function.
 */
int link_modules(sepol_handle_t * handle,
         policydb_t * b, policydb_t ** mods, int len, int verbose)
{
    int i, ret, retval = -1;
    policy_module_t **modules = NULL;
    link_state_t state;
    uint32_t num_mod_decls = 0;

    memset(&state, 0, sizeof(state));
    state.base = b;
    state.verbose = verbose;
    state.handle = handle;

    if (b->policy_type != POLICY_BASE) {
        ERR(state.handle, "Target of link was not a base policy.");
        return -1;
    }

    /* first allocate some space to hold the maps from module
     * symbol's value to the destination symbol value; then do
     * other preparation work */
    if ((modules =
         (policy_module_t **) calloc(len, sizeof(*modules))) == NULL) {
        ERR(state.handle, "Out of memory!");
        return -1;
    }
    for (i = 0; i < len; i++) {
        if (mods[i]->policy_type != POLICY_MOD) {
            ERR(state.handle,
                "Tried to link in a policy that was not a module.");
            goto cleanup;
        }

        if (mods[i]->mls != b->mls) {
            if (b->mls)
                ERR(state.handle,
                    "Tried to link in a non-MLS module with an MLS base.");
            else
                ERR(state.handle,
                    "Tried to link in an MLS module with a non-MLS base.");
            goto cleanup;
        }

        if ((modules[i] =
             (policy_module_t *) calloc(1,
                        sizeof(policy_module_t))) ==
            NULL) {
            ERR(state.handle, "Out of memory!");
            goto cleanup;
        }
        modules[i]->policy = mods[i];
        if (prepare_module(&state, modules[i]) == -1) {
            goto cleanup;
        }
        num_mod_decls += modules[i]->num_decls;
    }
    if (prepare_base(&state, num_mod_decls) == -1) {
        goto cleanup;
    }

    /* copy all types, declared and required */
    for (i = 0; i < len; i++) {
        state.cur = modules[i];
        state.cur_mod_name = modules[i]->policy->name;
        ret =
            hashtab_map(modules[i]->policy->p_types.table,
                type_copy_callback, &state);
        if (ret) {
            retval = ret;
            goto cleanup;
        }
    }

    /* then copy everything else, including aliases, and fixup attributes */
    for (i = 0; i < len; i++) {
        state.cur = modules[i];
        state.cur_mod_name = modules[i]->policy->name;
        ret =
            copy_identifiers(&state, modules[i]->policy->symtab, NULL);
        if (ret) {
            retval = ret;
            goto cleanup;
        }
    }

    if (policydb_index_others(state.handle, state.base, 0)) {
        ERR(state.handle, "Error while indexing others");
        goto cleanup;
    }

    /* copy and remap the module's data over to base */
    for (i = 0; i < len; i++) {
        state.cur = modules[i];
        ret = copy_module(&state, modules[i]);
        if (ret) {
            retval = ret;
            goto cleanup;
        }
    }

    /* re-index base, for symbols were added to symbol tables  */
    if (policydb_index_classes(state.base)) {
        ERR(state.handle, "Error while indexing classes");
        goto cleanup;
    }
    if (policydb_index_others(state.handle, state.base, 0)) {
        ERR(state.handle, "Error while indexing others");
        goto cleanup;
    }

    if (enable_avrules(&state, state.base)) {
        retval = SEPOL_EREQ;
        goto cleanup;
    }

    /* Now that all role attribute's roles ebitmap have been settled,
     * escalate sub role attribute's roles ebitmap into that of parent.
     *
     * First, since some role-attribute relationships could be recorded
     * in some decl's local symtab(see get_local_role()), we need to
     * populate them up to the base.p_roles table. */
    if (populate_roleattributes(&state, state.base)) {
        retval = SEPOL_EREQ;
        goto cleanup;
    }
    
    /* Now do the escalation. */
    if (hashtab_map(state.base->p_roles.table, expand_role_attributes,
            &state))
        goto cleanup;

    retval = 0;
      cleanup:
    for (i = 0; modules != NULL && i < len; i++) {
        policy_module_destroy(modules[i]);
    }
    free(modules);
    free(state.decl_to_mod);
    return retval;
}