hongbo-miao/hongbomiao.com

View on GitHub
aerospace/hm-openaerostruct/src/main.py

Summary

Maintainability
A
1 hr
Test Coverage
import logging

import numpy as np
import openmdao.api as om
from openaerostruct.aerodynamics.aero_groups import AeroPoint
from openaerostruct.geometry.geometry_group import Geometry
from openaerostruct.geometry.utils import generate_mesh
from openmdao.api import n2


def main() -> None:
    # Create a dictionary to store options about the mesh
    mesh_dict = {
        "num_y": 7,
        "num_x": 2,
        "wing_type": "CRM",  # Common Research Model
        "symmetry": True,
        "num_twist_cp": 5,
    }

    # Generate the aerodynamic mesh based on the previous dictionary
    mesh, twist_cp = generate_mesh(mesh_dict)

    # Create a dictionary with info and options about the aerodynamic lifting surface
    surface = {
        # Wing definition
        "name": "wing",  # name of the surface
        "symmetry": True,  # if true, model one half of wing reflected across the plane y = 0
        "S_ref_type": "wetted",  # how we compute the wing area, can be 'wetted' or 'projected'
        "fem_model_type": "tube",
        "twist_cp": twist_cp,
        "mesh": mesh,
        # Aerodynamic performance of the lifting surface at an angle of attack of 0 (alpha=0).
        # These CL0 and CD0 values are added to the CL and CD obtained from aerodynamic analysis of the surface to get the total CL and CD.
        # These CL0 and CD0 values do not vary wrt alpha.
        "CL0": 0.0,  # CL of the surface at alpha=0
        "CD0": 0.015,  # CD of the surface at alpha=0
        # Airfoil properties for viscous drag calculation
        "k_lam": 0.05,  # percentage of chord with laminar flow, used for viscous drag
        "t_over_c_cp": np.array([0.15]),  # thickness over chord ratio (NACA0015)
        "c_max_t": 0.303,  # chordwise location of maximum (NACA0015)thickness
        "with_viscous": True,  # if true, compute viscous drag
        "with_wave": False,  # if true, compute wave drag
    }

    # Create the OpenMDAO problem
    problem = om.Problem()

    # Create an independent variable component that will supply the flow conditions to the problem
    indep_var_comp = om.IndepVarComp()
    indep_var_comp.add_output("v", val=248.136, units="m/s")
    indep_var_comp.add_output("alpha", val=5.0, units="deg")
    indep_var_comp.add_output("Mach_number", val=0.84)
    indep_var_comp.add_output("re", val=1.0e6, units="1/m")
    indep_var_comp.add_output("rho", val=0.38, units="kg/m**3")
    indep_var_comp.add_output("cg", val=np.zeros((3)), units="m")

    # Add this IndepVarComp to the problem model
    problem.model.add_subsystem("prob_vars", indep_var_comp, promotes=["*"])

    # Create and add a group that handles the geometry for the aerodynamic lifting surface
    geom_group = Geometry(surface=surface)
    problem.model.add_subsystem(surface["name"], geom_group)

    # Create the aero point group, which contains the actual aerodynamic analyses
    aero_group = AeroPoint(surfaces=[surface])
    point_name = "aero_point_0"
    problem.model.add_subsystem(
        point_name,
        aero_group,
        promotes_inputs=["v", "alpha", "Mach_number", "re", "rho", "cg"],
    )

    name = surface["name"]

    # Connect the mesh from the geometry component to the analysis point
    problem.model.connect(name + ".mesh", point_name + "." + name + ".def_mesh")

    # Perform the connections with the modified names within the 'aero_states' group
    problem.model.connect(
        name + ".mesh", point_name + ".aero_states." + name + "_def_mesh"
    )

    problem.model.connect(
        name + ".t_over_c", point_name + "." + name + "_perf." + "t_over_c"
    )

    # Import the Scipy Optimizer and set the driver of the problem to use it, which defaults to an SLSQP optimization method
    problem.driver = om.ScipyOptimizeDriver()
    problem.driver.options["tol"] = 1e-9

    # Setup problem and add design variables, constraint, and objective
    problem.model.add_design_var("wing.twist_cp", lower=-10.0, upper=15.0)
    problem.model.add_constraint(point_name + ".wing_perf.CL", equals=0.5)
    problem.model.add_objective(point_name + ".wing_perf.CD", scaler=1e4)

    # Set up and run the optimization problem
    problem.setup()
    problem.run_driver()

    n2(problem)


if __name__ == "__main__":
    logging.basicConfig(level=logging.INFO)
    main()