hongbo-miao/hongbomiao.com

View on GitHub
aerospace/quadcopter-pd-controller/utils/calculateQuadEOM.m

Summary

Maintainability
Test Coverage
function sdot = calculateQuadEOM(t, s, F, M, params)
    % Solve quadcopter equation of motion
    %   calculateQuadEOM calculate the derivative of the state vector
    %
    % INPUTS:
    % t      - 1 x 1, time
    % s      - 13 x 1, state vector = [x, y, z, xd, yd, zd, qw, qx, qy, qz, p, q, r]
    % F      - 1 x 1, thrust output from controller (only used in simulation)
    % M      - 3 x 1, moments output from controller (only used in simulation)
    % params - struct, output from nanoplus() and whatever parameters you want to pass in
    %
    % OUTPUTS:
    % sdot   - 13 x 1, derivative of state vector s
    %
    % NOTE: You should not modify this function
    % See Also: calculateQuadEOM, nanoplus

    % ************ EQUATIONS OF MOTION ************************
    % Limit the force and moments due to actuator limits
    A = [0.25,                      0, -0.5 / params.arm_length
         0.25,  0.5 / params.arm_length,                      0
         0.25,                      0,  0.5 / params.arm_length
         0.25, -0.5 / params.arm_length,                      0];

    prop_thrusts = A * [F; M(1:2)]; % Not using moment about Z-axis for limits
    prop_thrusts_clamped = max(min(prop_thrusts, params.maxF / 4), params.minF / 4);

    B = [1,                 1,                 1,                  1
         0, params.arm_length,                 0, -params.arm_length
         -params.arm_length,                 0, params.arm_length,                 0];
    F = B(1, :) * prop_thrusts_clamped;
    M = [B(2:3, :) * prop_thrusts_clamped; M(3)];

    % Assign states
    x = s(1);
    y = s(2);
    z = s(3);
    xdot = s(4);
    ydot = s(5);
    zdot = s(6);
    qW = s(7);
    qX = s(8);
    qY = s(9);
    qZ = s(10);
    p = s(11);
    q = s(12);
    r = s(13);

    quat = [qW; qX; qY; qZ];
    bRw = convertQuatToRot(quat);
    wRb = bRw';

    % Acceleration
    accel = 1 / params.mass * (wRb * [0; 0; F] - [0; 0; params.mass * params.gravity]);

    % Angular velocity
    K_quat = 2; % this enforces the magnitude 1 constraint for the quaternion
    quaterror = 1 - (qW^2 + qX^2 + qY^2 + qZ^2);
    qdot = -1 / 2 * [0, -p, -q, -r; ...
                     p,  0, -r,  q; ...
                     q,  r,  0, -p; ...
                     r, -q,  p,  0] * quat + K_quat * quaterror * quat;

    % Angular acceleration
    omega = [p; q; r];
    pqrdot   = params.invI * (M - cross(omega, params.I * omega));

    % Assemble sdot
    sdot = zeros(13, 1);
    sdot(1)  = xdot;
    sdot(2)  = ydot;
    sdot(3)  = zdot;
    sdot(4)  = accel(1);
    sdot(5)  = accel(2);
    sdot(6)  = accel(3);
    sdot(7)  = qdot(1);
    sdot(8)  = qdot(2);
    sdot(9)  = qdot(3);
    sdot(10) = qdot(4);
    sdot(11) = pqrdot(1);
    sdot(12) = pqrdot(2);
    sdot(13) = pqrdot(3);
end