hongbo-miao/hongbomiao.com

View on GitHub
automobile/detect-lane-by-lidar-point-cloud/detectLanes.m

Summary

Maintainability
Test Coverage
% Detect lane on a point cloud
function detectedLanePoints = detectLanes(ptCloud, horizontalBinResolution, numVerticalBins, startLanePoints)
    numLanes = numel(startLanePoints);
    verticalBins = zeros(numVerticalBins, 3, numLanes);
    lanes = zeros(numVerticalBins, 3, numLanes);
    laneStartX = linspace(ptCloud.XLimits(1), ptCloud.XLimits(2), numVerticalBins);
    for i = 1:numVerticalBins - 1
        for j = 1:numLanes
            laneStartY = startLanePoints(j);
            % Define a vertical roi window
            roi = [laneStartX(i), laneStartX(i + 1), laneStartY - horizontalBinResolution / 2, laneStartY + horizontalBinResolution / 2, -inf, inf];
            tmpPc = select(ptCloud, findPointsInROI(ptCloud, roi));

            if ~isempty(tmpPc.Location)
                [~, maxIndex] = max(tmpPc.Intensity);
                val = tmpPc.Location(maxIndex, :);
                verticalBins(i, :, j) = val;
                lanes(i, :, j) = val;
                % Slide the window with the update mean value along
                % y direction
                startLanePoints(j) = val(2);
                % For dash lanes update the sliding window by 2D polynomial
            else
                value = lanes(2:end, 1:2, j);
                value(all(value == 0, 2), :) = [];

                if size(value, 1) == 2 % Use linear prediction
                    P = fitPolynomialRANSAC(value, 1, 0.1);
                elseif size(value, 1) > 2 % Use 2 degree polynomial prediction
                    P = fitPolynomialRANSAC(value, 2, 0.1);
                else
                    verticalBins(i, :, j) = verticalBins(end, :, j);
                    continue
                end
                error =  mean(sqrt((polyval(P, value(:, 1)) - value(:, 2)).^2));
                if error < 0.1
                    xval = (roi(1) + roi(2)) / 2;
                    yval = polyval(P, xval);

                    % Use error to regularize the value of predicted y
                    yval = yval - error * abs(yval);
                    startLanePoints(j) = yval;
                    roi(3:4) = [yval - horizontalBinResolution, yval + horizontalBinResolution];
                    % Update the lane point with the centre of the
                    % predicted window
                    tmpPc = select(ptCloud, findPointsInROI(ptCloud, roi));
                    zmean = mean(tmpPc.Location(:, 3));
                    verticalBins(i, :, j) = [xval, yval, zmean];
                else
                    roi(3:4) = [startLanePoints(j) - horizontalBinResolution, startLanePoints(j) + horizontalBinResolution];
                end
            end
        end
    end
    lane1 = lanes(:, :, 1);
    lane2 = lanes(:, :, 2);
    lane1(all(lane1 == 0, 2), :) = [];
    lane2(all(lane2 == 0, 2), :) = [];
    detectedLanePoints{1} = lane1;
    detectedLanePoints{2} = lane2;
end