hongbo-miao/hongbomiao.com

View on GitHub
computational-fluid-dynamics/matlab/simulations/cavity/main.m

Summary

Maintainability
Test Coverage
% https://math.mit.edu/~gs/cse/codes/mit18086_navierstokes.pdf
% https://math.mit.edu/~gs/cse/codes/mit18086_navierstokes.m

function main
    % Solves the incompressible Navier-Stokes equations in a rectangular domain with prescribed velocities along the boundary.
    % The solution method is finite differencing on a staggered grid with implicit diffusion and a Chorin projection method for the pressure.
    % Visualization is done by a colormap-isoline plot for pressure and normalized quiver and streamline plot for the velocity field.
    % The standard setup solves a lid driven cavity problem.
    % -----------------------------------------------------------------------
    Re = 1e2; % Reynolds number
    dt = 1e-2; % time step
    tf = 4e-0; % final time
    lx = 1; % width of box
    ly = 1; % height of box
    nx = 90; % number of x-gridpoints
    ny = 90; % number of y-gridpoints
    nsteps = 10; % number of steps with graphic output
    % -----------------------------------------------------------------------
    nt = ceil(tf / dt);
    dt = tf / nt;
    x = linspace(0, lx, nx + 1);
    hx = lx / nx;
    y = linspace(0, ly, ny + 1);
    hy = ly / ny;
    [X, Y] = meshgrid(y, x);
    % -----------------------------------------------------------------------
    % Initial conditions
    U = zeros(nx - 1, ny);
    V = zeros(nx, ny - 1);
    % Boundary conditions
    uN = x * 0 + 1;
    vN = avg(x) * 0;
    uS = x * 0;
    vS = avg(x) * 0;
    uW = avg(y) * 0;
    vW = y * 0;
    uE = avg(y) * 0;
    vE = y * 0;
    % -----------------------------------------------------------------------
    Ubc = dt / Re * ([2 * uS(2:end - 1)' zeros(nx - 1, ny - 2) 2 * uN(2:end - 1)'] / hx^2 + [uW; zeros(nx - 3, ny); uE] / hy^2);
    Vbc = dt / Re * ([vS' zeros(nx, ny - 3) vN'] / hx^2 + [2 * vW(2:end - 1); zeros(nx - 2, ny - 1); 2 * vE(2:end - 1)] / hy^2);

    fprintf('initialization');
    Lp = kron(speye(ny), K1(nx, hx, 1)) + kron(K1(ny, hy, 1), speye(nx));
    Lp(1, 1) = 3 / 2 * Lp(1, 1);
    perp = symamd(Lp);
    Rp = chol(Lp(perp, perp));
    Rpt = Rp';
    Lu = speye((nx - 1) * ny) + dt / Re * (kron(speye(ny), K1(nx - 1, hx, 2)) + kron(K1(ny, hy, 3), speye(nx - 1)));
    peru = symamd(Lu);
    Ru = chol(Lu(peru, peru));
    Rut = Ru';
    Lv = speye(nx * (ny - 1)) + dt / Re * (kron(speye(ny - 1), K1(nx, hx, 3)) + kron(K1(ny - 1, hy, 2), speye(nx)));
    perv = symamd(Lv);
    Rv = chol(Lv(perv, perv));
    Rvt = Rv';
    Lq = kron(speye(ny - 1), K1(nx - 1, hx, 2)) + kron(K1(ny - 1, hy, 2), speye(nx - 1));
    perq = symamd(Lq);
    Rq = chol(Lq(perq, perq));
    Rqt = Rq';

    fprintf(', time loop\n--20%%--40%%--60%%--80%%-100%%\n');
    for k = 1:nt
        % Treat nonlinear terms
        gamma = min(1.2 * dt * max(max(max(abs(U))) / hx, max(max(abs(V))) / hy), 1);
        Ue = [uW; U; uE];
        Ue = [2 * uS' - Ue(:, 1) Ue 2 * uN' - Ue(:, end)];
        Ve = [vS' V vN'];
        Ve = [2 * vW - Ve(1, :); Ve; 2 * vE - Ve(end, :)];
        Ua = avg(Ue')';
        Ud = diff(Ue')' / 2;
        Va = avg(Ve);
        Vd = diff(Ve) / 2;
        UVx = diff(Ua .* Va - gamma * abs(Ua) .* Vd) / hx;
        UVy = diff((Ua .* Va - gamma * Ud .* abs(Va))')' / hy;
        Ua = avg(Ue(:, 2:end - 1));
        Ud = diff(Ue(:, 2:end - 1)) / 2;
        Va = avg(Ve(2:end - 1, :)')';
        Vd = diff(Ve(2:end - 1, :)')' / 2;
        U2x = diff(Ua.^2 - gamma * abs(Ua) .* Ud) / hx;
        V2y = diff((Va.^2 - gamma * abs(Va) .* Vd)')' / hy;
        U = U - dt * (UVy(2:end - 1, :) + U2x);
        V = V - dt * (UVx(:, 2:end - 1) + V2y);

        % Implicit viscosity
        rhs = reshape(U + Ubc, [], 1);
        u(peru) = Ru \ (Rut \ rhs(peru));
        U = reshape(u, nx - 1, ny);
        rhs = reshape(V + Vbc, [], 1);
        v(perv) = Rv \ (Rvt \ rhs(perv));
        V = reshape(v, nx, ny - 1);

        % Pressure correction
        rhs = reshape(diff([uW; U; uE]) / hx + diff([vS' V vN']')' / hy, [], 1);
        p(perp) = -Rp \ (Rpt \ rhs(perp));
        P = reshape(p, nx, ny);
        U = U - diff(P) / hx;
        V = V - diff(P')' / hy;

        % Visualization
        if floor(25 * k / nt) > floor(25 * (k - 1) / nt)
            fprintf('.');
        end
        if k == 1 | floor(nsteps * k / nt) > floor(nsteps * (k - 1) / nt)
            % Stream function
            rhs = reshape(diff(U')' / hy - diff(V) / hx, [], 1);
            q(perq) = Rq \ (Rqt \ rhs(perq));
            Q = zeros(nx + 1, ny + 1);
            Q(2:end - 1, 2:end - 1) = reshape(q, nx - 1, ny - 1);
            clf;
            contourf(avg(x), avg(y), P', 20, 'w-');
            hold on;
            contour(x, y, Q', 20, 'k-');
            Ue = [uS' avg([uW; U; uE]')' uN'];
            Ve = [vW; avg([vS' V vN']); vE];
            Len = sqrt(Ue.^2 + Ve.^2 + eps);
            quiver(x, y, (Ue ./ Len)', (Ve ./ Len)', .4, 'k-');
            hold off;
            axis equal;
            axis([0 lx 0 ly]);
            p = sort(p);
            caxis(p([8 end - 7]));
            title(sprintf('Re = %0.1g   t = %0.2g', Re, k * dt));
            drawnow;
        end
    end
    fprintf('\n');
    % =======================================================================

function B = avg(A, k)
    if nargin < 2
        k = 1;
    end
    if size(A, 1) == 1
        A = A';
    end
    if k < 2
        B = (A(2:end, :) + A(1:end - 1, :)) / 2;
    else
        B = avg(A, k - 1);
    end
    if size(A, 2) == 1
        B = B';
    end

function A = K1(n, h, a11)
    % a11: Neumann=1, Dirichlet=2, Dirichlet mid=3;
    A = spdiags([-1 a11 0; ones(n - 2, 1) * [-1 2 -1]; 0 a11 -1], -1:1, n, n)' / h^2;