File ConfigReader.php
has 1559 lines of code (exceeds 250 allowed). Consider refactoring. Wontfix
<?php
namespace Weathermap\Core;
/**
Function selfValidate
has a Cognitive Complexity of 33 (exceeds 5 allowed). Consider refactoring. Open
public function selfValidate()
{
$classes = array(
'GLOBAL' => 'Weathermap\\Core\\Map',
'LINK' => 'Weathermap\\Core\\MapLink',
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
ConfigReader
has 30 functions (exceeds 20 allowed). Consider refactoring. Open
class ConfigReader
{
private $lineCount = 0;
/** @var MapDataItem $currentObject */
private $currentObject = null;
Function parseString
has a Cognitive Complexity of 25 (exceeds 5 allowed). Consider refactoring. Open
public function parseString($input)
{
$output = array(); // Array of Output
$cPhraseQuote = null; // Record of the quote that opened the current phrase
$sPhrase = null; // Temp storage for the current phrase we are building
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function dumpKeywords
has a Cognitive Complexity of 22 (exceeds 5 allowed). Consider refactoring. Open
public function dumpKeywords()
{
$count = 0;
print "# Complete configuration keyword list\n\n";
foreach ($this->configKeywords as $scope => $keywords) {
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function handleNODES
has a Cognitive Complexity of 16 (exceeds 5 allowed). Consider refactoring. Open
private function handleNODES($fullcommand, $args, $matches)
{
$offsetDX = array();
$offsetDY = array();
$nodeNames = array();
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method interpretNodeSpec
has 42 lines of code (exceeds 25 allowed). Consider refactoring. Open
private function interpretNodeSpec($input)
{
$endOffset = 'C';
$nodeName = $input;
$xOffset = 0;
Method handleNODES
has 41 lines of code (exceeds 25 allowed). Consider refactoring. Open
private function handleNODES($fullcommand, $args, $matches)
{
$offsetDX = array();
$offsetDY = array();
$nodeNames = array();
Method parseString
has 38 lines of code (exceeds 25 allowed). Consider refactoring. Open
public function parseString($input)
{
$output = array(); // Array of Output
$cPhraseQuote = null; // Record of the quote that opened the current phrase
$sPhrase = null; // Temp storage for the current phrase we are building
Method selfValidate
has 33 lines of code (exceeds 25 allowed). Consider refactoring. Open
public function selfValidate()
{
$classes = array(
'GLOBAL' => 'Weathermap\\Core\\Map',
'LINK' => 'Weathermap\\Core\\MapLink',
Method handleSCALE
has 30 lines of code (exceeds 25 allowed). Consider refactoring. Open
private function handleSCALE($fullcommand, $args, $matches)
{
// The default scale name is DEFAULT
if ($matches[1] == '') {
Method handleNODE_USESCALE
has 29 lines of code (exceeds 25 allowed). Consider refactoring. Open
private function handleNODE_USESCALE($fullcommand, $args, $matches)
{
$svar = '';
$stype = 'percent';
// in or out?
Function readConfigLine
has a Cognitive Complexity of 10 (exceeds 5 allowed). Consider refactoring. Open
private function readConfigLine($args, $buffer)
{
$matches = null;
if (!isset($args[0])) {
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method dumpKeywords
has 26 lines of code (exceeds 25 allowed). Consider refactoring. Open
public function dumpKeywords()
{
$count = 0;
print "# Complete configuration keyword list\n\n";
foreach ($this->configKeywords as $scope => $keywords) {
Function handleFONTDEFINE
has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring. Open
private function handleFONTDEFINE($fullcommand, $args, $matches)
{
if (isset($args[3])) {
MapUtility::debug("New TrueType font in slot %d\n", $args[1]);
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function readConfigLines
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
public function readConfigLines($inputLines)
{
MapUtility::debug("in readConfigLines\n");
foreach ($inputLines as $buffer) {
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function readConfigSimpleAssignment
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
private function readConfigSimpleAssignment($keyword, $matches)
{
foreach ($keyword[1] as $key => $val) {
// so we can poke in numbers too, if the value starts with #
// then take the # off, and treat the rest as a number literal
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function handleSCALE
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
private function handleSCALE($fullcommand, $args, $matches)
{
// The default scale name is DEFAULT
if ($matches[1] == '') {
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function interpretNodeSpec
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
private function interpretNodeSpec($input)
{
$endOffset = 'C';
$nodeName = $input;
$xOffset = 0;
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Avoid too many return
statements within this method. Open
return false;
Avoid too many return
statements within this method. Open
return array($xOffset, $yOffset, $nodeName, $endOffset, false);
Function handleLINK
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
private function handleLINK($fullcommand, $args, $matches)
{
$this->commitItem();
unset($this->currentObject);
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function handleTEMPLATE
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
private function handleTEMPLATE($fullcommand, $args, $matches)
{
$templateName = $matches[1];
if (($this->currentType == 'NODE' && isset($this->mapObject->nodes[$templateName]))
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function handleSET
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
private function handleSET($fullcommand, $args, $matches)
{
global $weathermap_error_suppress;
$key = null;
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function handleNODE
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
private function handleNODE($fullcommand, $args, $matches)
{
$this->commitItem();
unset($this->currentObject);
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function handleNODE_USESCALE
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
private function handleNODE_USESCALE($fullcommand, $args, $matches)
{
$svar = '';
$stype = 'percent';
// in or out?
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Refactor this function to reduce its Cognitive Complexity from 46 to the 15 allowed. Open
public function parseString($input)
- Read upRead up
- Exclude checks
Cognitive Complexity is a measure of how hard the control flow of a function is to understand. Functions with high Cognitive Complexity will be difficult to maintain.
See
Refactor this function to reduce its Cognitive Complexity from 16 to the 15 allowed. Open
private function handleNODES($fullcommand, $args, $matches)
- Read upRead up
- Exclude checks
Cognitive Complexity is a measure of how hard the control flow of a function is to understand. Functions with high Cognitive Complexity will be difficult to maintain.
See
Refactor this function to reduce its Cognitive Complexity from 33 to the 15 allowed. Open
public function selfValidate()
- Read upRead up
- Exclude checks
Cognitive Complexity is a measure of how hard the control flow of a function is to understand. Functions with high Cognitive Complexity will be difficult to maintain.
See
Class "ConfigReader" has 30 methods, which is greater than 20 authorized. Split it into smaller classes. Open
class ConfigReader
- Read upRead up
- Exclude checks
A class that grows too much tends to aggregate too many responsibilities and inevitably becomes harder to understand and therefore to maintain. Above a specific threshold, it is strongly advised to refactor the class into smaller ones which focus on well defined topics.
Reduce the number of returns of this function 5, down to the maximum allowed 3. Open
private function interpretNodeSpec($input)
- Read upRead up
- Exclude checks
Having too many return statements in a function increases the function's essential complexity because the flow of execution is broken each time a return statement is encountered. This makes it harder to read and understand the logic of the function.
Noncompliant Code Example
With the default threshold of 3:
function myFunction(){ // Noncompliant as there are 4 return statements if (condition1) { return true; } else { if (condition2) { return false; } else { return true; } } return false; }
Reduce the number of returns of this function 5, down to the maximum allowed 3. Open
private function readConfigLine($args, $buffer)
- Read upRead up
- Exclude checks
Having too many return statements in a function increases the function's essential complexity because the flow of execution is broken each time a return statement is encountered. This makes it harder to read and understand the logic of the function.
Noncompliant Code Example
With the default threshold of 3:
function myFunction(){ // Noncompliant as there are 4 return statements if (condition1) { return true; } else { if (condition2) { return false; } else { return true; } } return false; }
Refactor this function to reduce its Cognitive Complexity from 22 to the 15 allowed. Open
public function dumpKeywords()
- Read upRead up
- Exclude checks
Cognitive Complexity is a measure of how hard the control flow of a function is to understand. Functions with high Cognitive Complexity will be difficult to maintain.
See
Remove the unused function parameter "$fullcommand". Open
private function handleOVERLIB($fullcommand, $args, $matches)
- Read upRead up
- Exclude checks
Unused parameters are misleading. Whatever the value passed to such parameters is, the behavior will be the same.
Noncompliant Code Example
function doSomething($a, $b) { // "$a" is unused return compute($b); }
Compliant Solution
function doSomething($b) { return compute($b); }
Exceptions
Functions in classes that override a class or implement interfaces are ignored.
class C extends B { function doSomething($a, $b) { // no issue reported on $b compute($a); } }
See
- MISRA C++:2008, 0-1-11 - There shall be no unused parameters (named or unnamed) in nonvirtual functions.
- MISRA C:2012, 2.7 - There should be no unused parameters in functions
- CERT, MSC12-C. - Detect and remove code that has no effect or is never executed
- CERT, MSC12-CPP. - Detect and remove code that has no effect
Remove the unused function parameter "$fullcommand". Open
private function handleNODE_USESCALE($fullcommand, $args, $matches)
- Read upRead up
- Exclude checks
Unused parameters are misleading. Whatever the value passed to such parameters is, the behavior will be the same.
Noncompliant Code Example
function doSomething($a, $b) { // "$a" is unused return compute($b); }
Compliant Solution
function doSomething($b) { return compute($b); }
Exceptions
Functions in classes that override a class or implement interfaces are ignored.
class C extends B { function doSomething($a, $b) { // no issue reported on $b compute($a); } }
See
- MISRA C++:2008, 0-1-11 - There shall be no unused parameters (named or unnamed) in nonvirtual functions.
- MISRA C:2012, 2.7 - There should be no unused parameters in functions
- CERT, MSC12-C. - Detect and remove code that has no effect or is never executed
- CERT, MSC12-CPP. - Detect and remove code that has no effect
Remove the unused function parameter "$fullcommand". Open
private function handleCOLOR($fullcommand, $args, $matches)
- Read upRead up
- Exclude checks
Unused parameters are misleading. Whatever the value passed to such parameters is, the behavior will be the same.
Noncompliant Code Example
function doSomething($a, $b) { // "$a" is unused return compute($b); }
Compliant Solution
function doSomething($b) { return compute($b); }
Exceptions
Functions in classes that override a class or implement interfaces are ignored.
class C extends B { function doSomething($a, $b) { // no issue reported on $b compute($a); } }
See
- MISRA C++:2008, 0-1-11 - There shall be no unused parameters (named or unnamed) in nonvirtual functions.
- MISRA C:2012, 2.7 - There should be no unused parameters in functions
- CERT, MSC12-C. - Detect and remove code that has no effect or is never executed
- CERT, MSC12-CPP. - Detect and remove code that has no effect
Remove the unused function parameter "$fullcommand". Open
private function handleLINK($fullcommand, $args, $matches)
- Read upRead up
- Exclude checks
Unused parameters are misleading. Whatever the value passed to such parameters is, the behavior will be the same.
Noncompliant Code Example
function doSomething($a, $b) { // "$a" is unused return compute($b); }
Compliant Solution
function doSomething($b) { return compute($b); }
Exceptions
Functions in classes that override a class or implement interfaces are ignored.
class C extends B { function doSomething($a, $b) { // no issue reported on $b compute($a); } }
See
- MISRA C++:2008, 0-1-11 - There shall be no unused parameters (named or unnamed) in nonvirtual functions.
- MISRA C:2012, 2.7 - There should be no unused parameters in functions
- CERT, MSC12-C. - Detect and remove code that has no effect or is never executed
- CERT, MSC12-CPP. - Detect and remove code that has no effect
Remove the unused function parameter "$args". Open
private function handleARROWSTYLE($fullcommand, $args, $matches)
- Read upRead up
- Exclude checks
Unused parameters are misleading. Whatever the value passed to such parameters is, the behavior will be the same.
Noncompliant Code Example
function doSomething($a, $b) { // "$a" is unused return compute($b); }
Compliant Solution
function doSomething($b) { return compute($b); }
Exceptions
Functions in classes that override a class or implement interfaces are ignored.
class C extends B { function doSomething($a, $b) { // no issue reported on $b compute($a); } }
See
- MISRA C++:2008, 0-1-11 - There shall be no unused parameters (named or unnamed) in nonvirtual functions.
- MISRA C:2012, 2.7 - There should be no unused parameters in functions
- CERT, MSC12-C. - Detect and remove code that has no effect or is never executed
- CERT, MSC12-CPP. - Detect and remove code that has no effect
Define a constant instead of duplicating this literal "handleFONTDEFINE" 3 times. Open
array('/^\s*FONTDEFINE\s+(\d+)\s+(\S+)\s+(\d+)\s+(-?\d+)\s*$/i', 'handleFONTDEFINE'),
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Remove the unused function parameter "$matches". Open
private function handleFONTDEFINE($fullcommand, $args, $matches)
- Read upRead up
- Exclude checks
Unused parameters are misleading. Whatever the value passed to such parameters is, the behavior will be the same.
Noncompliant Code Example
function doSomething($a, $b) { // "$a" is unused return compute($b); }
Compliant Solution
function doSomething($b) { return compute($b); }
Exceptions
Functions in classes that override a class or implement interfaces are ignored.
class C extends B { function doSomething($a, $b) { // no issue reported on $b compute($a); } }
See
- MISRA C++:2008, 0-1-11 - There shall be no unused parameters (named or unnamed) in nonvirtual functions.
- MISRA C:2012, 2.7 - There should be no unused parameters in functions
- CERT, MSC12-C. - Detect and remove code that has no effect or is never executed
- CERT, MSC12-CPP. - Detect and remove code that has no effect
Remove the unused function parameter "$args". Open
private function handleDEFINEOFFSET($fullcommand, $args, $matches)
- Read upRead up
- Exclude checks
Unused parameters are misleading. Whatever the value passed to such parameters is, the behavior will be the same.
Noncompliant Code Example
function doSomething($a, $b) { // "$a" is unused return compute($b); }
Compliant Solution
function doSomething($b) { return compute($b); }
Exceptions
Functions in classes that override a class or implement interfaces are ignored.
class C extends B { function doSomething($a, $b) { // no issue reported on $b compute($a); } }
See
- MISRA C++:2008, 0-1-11 - There shall be no unused parameters (named or unnamed) in nonvirtual functions.
- MISRA C:2012, 2.7 - There should be no unused parameters in functions
- CERT, MSC12-C. - Detect and remove code that has no effect or is never executed
- CERT, MSC12-CPP. - Detect and remove code that has no effect
Remove the unused function parameter "$args". Open
private function handleNODES($fullcommand, $args, $matches)
- Read upRead up
- Exclude checks
Unused parameters are misleading. Whatever the value passed to such parameters is, the behavior will be the same.
Noncompliant Code Example
function doSomething($a, $b) { // "$a" is unused return compute($b); }
Compliant Solution
function doSomething($b) { return compute($b); }
Exceptions
Functions in classes that override a class or implement interfaces are ignored.
class C extends B { function doSomething($a, $b) { // no issue reported on $b compute($a); } }
See
- MISRA C++:2008, 0-1-11 - There shall be no unused parameters (named or unnamed) in nonvirtual functions.
- MISRA C:2012, 2.7 - There should be no unused parameters in functions
- CERT, MSC12-C. - Detect and remove code that has no effect or is never executed
- CERT, MSC12-CPP. - Detect and remove code that has no effect
Define a constant instead of duplicating this literal "iconscalew" 3 times. Open
'iconscalew' => '#0',
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "handleOVERLIB" 4 times. Open
array('/^OVERLIBGRAPH\s+(.+)$/i', 'handleOVERLIB')
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Remove the unused function parameter "$fullcommand". Open
private function handleFONTDEFINE($fullcommand, $args, $matches)
- Read upRead up
- Exclude checks
Unused parameters are misleading. Whatever the value passed to such parameters is, the behavior will be the same.
Noncompliant Code Example
function doSomething($a, $b) { // "$a" is unused return compute($b); }
Compliant Solution
function doSomething($b) { return compute($b); }
Exceptions
Functions in classes that override a class or implement interfaces are ignored.
class C extends B { function doSomething($a, $b) { // no issue reported on $b compute($a); } }
See
- MISRA C++:2008, 0-1-11 - There shall be no unused parameters (named or unnamed) in nonvirtual functions.
- MISRA C:2012, 2.7 - There should be no unused parameters in functions
- CERT, MSC12-C. - Detect and remove code that has no effect or is never executed
- CERT, MSC12-CPP. - Detect and remove code that has no effect
Remove the unused function parameter "$matches". Open
private function handleCOLOR($fullcommand, $args, $matches)
- Read upRead up
- Exclude checks
Unused parameters are misleading. Whatever the value passed to such parameters is, the behavior will be the same.
Noncompliant Code Example
function doSomething($a, $b) { // "$a" is unused return compute($b); }
Compliant Solution
function doSomething($b) { return compute($b); }
Exceptions
Functions in classes that override a class or implement interfaces are ignored.
class C extends B { function doSomething($a, $b) { // no issue reported on $b compute($a); } }
See
- MISRA C++:2008, 0-1-11 - There shall be no unused parameters (named or unnamed) in nonvirtual functions.
- MISRA C:2012, 2.7 - There should be no unused parameters in functions
- CERT, MSC12-C. - Detect and remove code that has no effect or is never executed
- CERT, MSC12-CPP. - Detect and remove code that has no effect
Remove the unused function parameter "$fullcommand". Open
private function handleNODE($fullcommand, $args, $matches)
- Read upRead up
- Exclude checks
Unused parameters are misleading. Whatever the value passed to such parameters is, the behavior will be the same.
Noncompliant Code Example
function doSomething($a, $b) { // "$a" is unused return compute($b); }
Compliant Solution
function doSomething($b) { return compute($b); }
Exceptions
Functions in classes that override a class or implement interfaces are ignored.
class C extends B { function doSomething($a, $b) { // no issue reported on $b compute($a); } }
See
- MISRA C++:2008, 0-1-11 - There shall be no unused parameters (named or unnamed) in nonvirtual functions.
- MISRA C:2012, 2.7 - There should be no unused parameters in functions
- CERT, MSC12-C. - Detect and remove code that has no effect or is never executed
- CERT, MSC12-CPP. - Detect and remove code that has no effect
Remove the unused function parameter "$fullcommand". Open
private function handleSCALE($fullcommand, $args, $matches)
- Read upRead up
- Exclude checks
Unused parameters are misleading. Whatever the value passed to such parameters is, the behavior will be the same.
Noncompliant Code Example
function doSomething($a, $b) { // "$a" is unused return compute($b); }
Compliant Solution
function doSomething($b) { return compute($b); }
Exceptions
Functions in classes that override a class or implement interfaces are ignored.
class C extends B { function doSomething($a, $b) { // no issue reported on $b compute($a); } }
See
- MISRA C++:2008, 0-1-11 - There shall be no unused parameters (named or unnamed) in nonvirtual functions.
- MISRA C:2012, 2.7 - There should be no unused parameters in functions
- CERT, MSC12-C. - Detect and remove code that has no effect or is never executed
- CERT, MSC12-CPP. - Detect and remove code that has no effect
Define a constant instead of duplicating this literal "INCLUDE" 3 times. Open
'INCLUDE' => array(
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "positionRelativeTo" 3 times. Open
'positionRelativeTo' => 1,
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "originalY" 3 times. Open
'originalY' => 2
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "iconfile" 4 times. Open
'iconfile' => 1,
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "bwlabelformats[OUT]" 5 times. Open
'bwlabelformats[OUT]' => MapLink::FMT_BITS_OUT,
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Remove this commented out code. Open
#}
- Read upRead up
- Exclude checks
Programmers should not comment out code as it bloats programs and reduces readability.
Unused code should be deleted and can be retrieved from source control history if required.
See
- MISRA C:2004, 2.4 - Sections of code should not be "commented out".
- MISRA C++:2008, 2-7-2 - Sections of code shall not be "commented out" using C-style comments.
- MISRA C++:2008, 2-7-3 - Sections of code should not be "commented out" using C++ comments.
- MISRA C:2012, Dir. 4.4 - Sections of code should not be "commented out"
Define a constant instead of duplicating this literal "maxValuesConfigured[OUT]" 6 times. Open
'maxValuesConfigured[OUT]' => 3,
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "TARGET" 4 times. Open
'TARGET' => array(
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "GLOBAL" 6 times. Open
private $currentType = 'GLOBAL';
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "overlibcaption[OUT]" 3 times. Open
'overlibcaption[OUT]' => 1
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "OVERLIBGRAPH" 3 times. Open
'OVERLIBGRAPH' => array(
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "iconscaleh" 3 times. Open
'iconscaleh' => '#0'
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "infourl[OUT]" 3 times. Open
'infourl[OUT]' => 1
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Remove the unused function parameter "$args". Open
private function handleSET($fullcommand, $args, $matches)
- Read upRead up
- Exclude checks
Unused parameters are misleading. Whatever the value passed to such parameters is, the behavior will be the same.
Noncompliant Code Example
function doSomething($a, $b) { // "$a" is unused return compute($b); }
Compliant Solution
function doSomething($b) { return compute($b); }
Exceptions
Functions in classes that override a class or implement interfaces are ignored.
class C extends B { function doSomething($a, $b) { // no issue reported on $b compute($a); } }
See
- MISRA C++:2008, 0-1-11 - There shall be no unused parameters (named or unnamed) in nonvirtual functions.
- MISRA C:2012, 2.7 - There should be no unused parameters in functions
- CERT, MSC12-C. - Detect and remove code that has no effect or is never executed
- CERT, MSC12-CPP. - Detect and remove code that has no effect
Remove the unused function parameter "$fullcommand". Open
private function handleARROWSTYLE($fullcommand, $args, $matches)
- Read upRead up
- Exclude checks
Unused parameters are misleading. Whatever the value passed to such parameters is, the behavior will be the same.
Noncompliant Code Example
function doSomething($a, $b) { // "$a" is unused return compute($b); }
Compliant Solution
function doSomething($b) { return compute($b); }
Exceptions
Functions in classes that override a class or implement interfaces are ignored.
class C extends B { function doSomething($a, $b) { // no issue reported on $b compute($a); } }
See
- MISRA C++:2008, 0-1-11 - There shall be no unused parameters (named or unnamed) in nonvirtual functions.
- MISRA C:2012, 2.7 - There should be no unused parameters in functions
- CERT, MSC12-C. - Detect and remove code that has no effect or is never executed
- CERT, MSC12-CPP. - Detect and remove code that has no effect
Remove the unused function parameter "$fullcommand". Open
private function handleKEYPOS($fullcommand, $args, $matches)
- Read upRead up
- Exclude checks
Unused parameters are misleading. Whatever the value passed to such parameters is, the behavior will be the same.
Noncompliant Code Example
function doSomething($a, $b) { // "$a" is unused return compute($b); }
Compliant Solution
function doSomething($b) { return compute($b); }
Exceptions
Functions in classes that override a class or implement interfaces are ignored.
class C extends B { function doSomething($a, $b) { // no issue reported on $b compute($a); } }
See
- MISRA C++:2008, 0-1-11 - There shall be no unused parameters (named or unnamed) in nonvirtual functions.
- MISRA C:2012, 2.7 - There should be no unused parameters in functions
- CERT, MSC12-C. - Detect and remove code that has no effect or is never executed
- CERT, MSC12-CPP. - Detect and remove code that has no effect
Define a constant instead of duplicating this literal "originalX" 3 times. Open
'originalX' => 1,
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "infourl[IN]" 3 times. Open
'infourl[IN]' => 1,
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Remove this commented out code. Open
# last_seen = 'broken';
- Read upRead up
- Exclude checks
Programmers should not comment out code as it bloats programs and reduces readability.
Unused code should be deleted and can be retrieved from source control history if required.
See
- MISRA C:2004, 2.4 - Sections of code should not be "commented out".
- MISRA C++:2008, 2-7-2 - Sections of code shall not be "commented out" using C-style comments.
- MISRA C++:2008, 2-7-3 - Sections of code should not be "commented out" using C++ comments.
- MISRA C:2012, Dir. 4.4 - Sections of code should not be "commented out"
Remove the unused function parameter "$fullcommand". Open
private function handleKEYSTYLE($fullcommand, $args, $matches)
- Read upRead up
- Exclude checks
Unused parameters are misleading. Whatever the value passed to such parameters is, the behavior will be the same.
Noncompliant Code Example
function doSomething($a, $b) { // "$a" is unused return compute($b); }
Compliant Solution
function doSomething($b) { return compute($b); }
Exceptions
Functions in classes that override a class or implement interfaces are ignored.
class C extends B { function doSomething($a, $b) { // no issue reported on $b compute($a); } }
See
- MISRA C++:2008, 0-1-11 - There shall be no unused parameters (named or unnamed) in nonvirtual functions.
- MISRA C:2012, 2.7 - There should be no unused parameters in functions
- CERT, MSC12-C. - Detect and remove code that has no effect or is never executed
- CERT, MSC12-CPP. - Detect and remove code that has no effect
Remove the unused function parameter "$args". Open
private function handleKEYPOS($fullcommand, $args, $matches)
- Read upRead up
- Exclude checks
Unused parameters are misleading. Whatever the value passed to such parameters is, the behavior will be the same.
Noncompliant Code Example
function doSomething($a, $b) { // "$a" is unused return compute($b); }
Compliant Solution
function doSomething($b) { return compute($b); }
Exceptions
Functions in classes that override a class or implement interfaces are ignored.
class C extends B { function doSomething($a, $b) { // no issue reported on $b compute($a); } }
See
- MISRA C++:2008, 0-1-11 - There shall be no unused parameters (named or unnamed) in nonvirtual functions.
- MISRA C:2012, 2.7 - There should be no unused parameters in functions
- CERT, MSC12-C. - Detect and remove code that has no effect or is never executed
- CERT, MSC12-CPP. - Detect and remove code that has no effect
Define a constant instead of duplicating this literal "/^\s*INCLUDE\s+(.*)\s*$/i" 3 times. Open
array('/^\s*INCLUDE\s+(.*)\s*$/i', 'handleINCLUDE'),
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "handleSET" 3 times. Open
'handleSET'
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "width" 3 times. Open
array('width' => 1)
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "overlibcaption[IN]" 3 times. Open
'overlibcaption[IN]' => 1,
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Remove this commented out code. Open
} #else {
- Read upRead up
- Exclude checks
Programmers should not comment out code as it bloats programs and reduces readability.
Unused code should be deleted and can be retrieved from source control history if required.
See
- MISRA C:2004, 2.4 - Sections of code should not be "commented out".
- MISRA C++:2008, 2-7-2 - Sections of code shall not be "commented out" using C-style comments.
- MISRA C++:2008, 2-7-3 - Sections of code should not be "commented out" using C++ comments.
- MISRA C:2012, Dir. 4.4 - Sections of code should not be "commented out"
Remove the unused function parameter "$fullcommand". Open
private function handleGLOBALCOLOR($fullcommand, $args, $matches)
- Read upRead up
- Exclude checks
Unused parameters are misleading. Whatever the value passed to such parameters is, the behavior will be the same.
Noncompliant Code Example
function doSomething($a, $b) { // "$a" is unused return compute($b); }
Compliant Solution
function doSomething($b) { return compute($b); }
Exceptions
Functions in classes that override a class or implement interfaces are ignored.
class C extends B { function doSomething($a, $b) { // no issue reported on $b compute($a); } }
See
- MISRA C++:2008, 0-1-11 - There shall be no unused parameters (named or unnamed) in nonvirtual functions.
- MISRA C:2012, 2.7 - There should be no unused parameters in functions
- CERT, MSC12-C. - Detect and remove code that has no effect or is never executed
- CERT, MSC12-CPP. - Detect and remove code that has no effect
Define a constant instead of duplicating this literal "usescale" 3 times. Open
array('usescale' => 1)
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "handleINCLUDE" 3 times. Open
array('/^\s*INCLUDE\s+(.*)\s*$/i', 'handleINCLUDE'),
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "DEFAULT" 11 times. Open
if ($args[1] == 'DEFAULT') {
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "notestext[IN]" 3 times. Open
'notestext[IN]' => 1,
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Remove the unused function parameter "$args". Open
private function handleKEYSTYLE($fullcommand, $args, $matches)
- Read upRead up
- Exclude checks
Unused parameters are misleading. Whatever the value passed to such parameters is, the behavior will be the same.
Noncompliant Code Example
function doSomething($a, $b) { // "$a" is unused return compute($b); }
Compliant Solution
function doSomething($b) { return compute($b); }
Exceptions
Functions in classes that override a class or implement interfaces are ignored.
class C extends B { function doSomething($a, $b) { // no issue reported on $b compute($a); } }
See
- MISRA C++:2008, 0-1-11 - There shall be no unused parameters (named or unnamed) in nonvirtual functions.
- MISRA C:2012, 2.7 - There should be no unused parameters in functions
- CERT, MSC12-C. - Detect and remove code that has no effect or is never executed
- CERT, MSC12-CPP. - Detect and remove code that has no effect
Remove the unused function parameter "$fullcommand". Open
private function handleDEFINEOFFSET($fullcommand, $args, $matches)
- Read upRead up
- Exclude checks
Unused parameters are misleading. Whatever the value passed to such parameters is, the behavior will be the same.
Noncompliant Code Example
function doSomething($a, $b) { // "$a" is unused return compute($b); }
Compliant Solution
function doSomething($b) { return compute($b); }
Exceptions
Functions in classes that override a class or implement interfaces are ignored.
class C extends B { function doSomething($a, $b) { // no issue reported on $b compute($a); } }
See
- MISRA C++:2008, 0-1-11 - There shall be no unused parameters (named or unnamed) in nonvirtual functions.
- MISRA C:2012, 2.7 - There should be no unused parameters in functions
- CERT, MSC12-C. - Detect and remove code that has no effect or is never executed
- CERT, MSC12-CPP. - Detect and remove code that has no effect
Remove the unused function parameter "$fullcommand". Open
private function handleINCLUDE($fullcommand, $args, $matches)
- Read upRead up
- Exclude checks
Unused parameters are misleading. Whatever the value passed to such parameters is, the behavior will be the same.
Noncompliant Code Example
function doSomething($a, $b) { // "$a" is unused return compute($b); }
Compliant Solution
function doSomething($b) { return compute($b); }
Exceptions
Functions in classes that override a class or implement interfaces are ignored.
class C extends B { function doSomething($a, $b) { // no issue reported on $b compute($a); } }
See
- MISRA C++:2008, 0-1-11 - There shall be no unused parameters (named or unnamed) in nonvirtual functions.
- MISRA C:2012, 2.7 - There should be no unused parameters in functions
- CERT, MSC12-C. - Detect and remove code that has no effect or is never executed
- CERT, MSC12-CPP. - Detect and remove code that has no effect
Define a constant instead of duplicating this literal "maxValuesConfigured[IN]" 6 times. Open
'maxValuesConfigured[IN]' => 2,
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "labelStyle" 6 times. Open
'labelStyle' => 'bits',
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "handleGLOBALCOLOR" 8 times. Open
'handleGLOBALCOLOR'
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "notestext[OUT]" 3 times. Open
'notestext[OUT]' => 1
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "handleCOLOR" 22 times. Open
'handleCOLOR'
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "/^\s*NODE\s+(\S+)\s*$/i" 3 times. Open
array('/^\s*NODE\s+(\S+)\s*$/i', 'handleNODE'),
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "bwlabelformats[IN]" 5 times. Open
'bwlabelformats[IN]' => MapLink::FMT_BITS_IN,
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Remove the unused function parameter "$matches". Open
private function handleGLOBALCOLOR($fullcommand, $args, $matches)
- Read upRead up
- Exclude checks
Unused parameters are misleading. Whatever the value passed to such parameters is, the behavior will be the same.
Noncompliant Code Example
function doSomething($a, $b) { // "$a" is unused return compute($b); }
Compliant Solution
function doSomething($b) { return compute($b); }
Exceptions
Functions in classes that override a class or implement interfaces are ignored.
class C extends B { function doSomething($a, $b) { // no issue reported on $b compute($a); } }
See
- MISRA C++:2008, 0-1-11 - There shall be no unused parameters (named or unnamed) in nonvirtual functions.
- MISRA C:2012, 2.7 - There should be no unused parameters in functions
- CERT, MSC12-C. - Detect and remove code that has no effect or is never executed
- CERT, MSC12-CPP. - Detect and remove code that has no effect
Remove the unused function parameter "$fullcommand". Open
private function handleTARGET($fullcommand, $args, $matches)
- Read upRead up
- Exclude checks
Unused parameters are misleading. Whatever the value passed to such parameters is, the behavior will be the same.
Noncompliant Code Example
function doSomething($a, $b) { // "$a" is unused return compute($b); }
Compliant Solution
function doSomething($b) { return compute($b); }
Exceptions
Functions in classes that override a class or implement interfaces are ignored.
class C extends B { function doSomething($a, $b) { // no issue reported on $b compute($a); } }
See
- MISRA C++:2008, 0-1-11 - There shall be no unused parameters (named or unnamed) in nonvirtual functions.
- MISRA C:2012, 2.7 - There should be no unused parameters in functions
- CERT, MSC12-C. - Detect and remove code that has no effect or is never executed
- CERT, MSC12-CPP. - Detect and remove code that has no effect
Remove the unused function parameter "$args". Open
private function handleSCALE($fullcommand, $args, $matches)
- Read upRead up
- Exclude checks
Unused parameters are misleading. Whatever the value passed to such parameters is, the behavior will be the same.
Noncompliant Code Example
function doSomething($a, $b) { // "$a" is unused return compute($b); }
Compliant Solution
function doSomething($b) { return compute($b); }
Exceptions
Functions in classes that override a class or implement interfaces are ignored.
class C extends B { function doSomething($a, $b) { // no issue reported on $b compute($a); } }
See
- MISRA C++:2008, 0-1-11 - There shall be no unused parameters (named or unnamed) in nonvirtual functions.
- MISRA C:2012, 2.7 - There should be no unused parameters in functions
- CERT, MSC12-C. - Detect and remove code that has no effect or is never executed
- CERT, MSC12-CPP. - Detect and remove code that has no effect
Remove the unused function parameter "$fullcommand". Open
private function handleTEMPLATE($fullcommand, $args, $matches)
- Read upRead up
- Exclude checks
Unused parameters are misleading. Whatever the value passed to such parameters is, the behavior will be the same.
Noncompliant Code Example
function doSomething($a, $b) { // "$a" is unused return compute($b); }
Compliant Solution
function doSomething($b) { return compute($b); }
Exceptions
Functions in classes that override a class or implement interfaces are ignored.
class C extends B { function doSomething($a, $b) { // no issue reported on $b compute($a); } }
See
- MISRA C++:2008, 0-1-11 - There shall be no unused parameters (named or unnamed) in nonvirtual functions.
- MISRA C:2012, 2.7 - There should be no unused parameters in functions
- CERT, MSC12-C. - Detect and remove code that has no effect or is never executed
- CERT, MSC12-CPP. - Detect and remove code that has no effect
Remove the unused function parameter "$args". Open
private function handleTEMPLATE($fullcommand, $args, $matches)
- Read upRead up
- Exclude checks
Unused parameters are misleading. Whatever the value passed to such parameters is, the behavior will be the same.
Noncompliant Code Example
function doSomething($a, $b) { // "$a" is unused return compute($b); }
Compliant Solution
function doSomething($b) { return compute($b); }
Exceptions
Functions in classes that override a class or implement interfaces are ignored.
class C extends B { function doSomething($a, $b) { // no issue reported on $b compute($a); } }
See
- MISRA C++:2008, 0-1-11 - There shall be no unused parameters (named or unnamed) in nonvirtual functions.
- MISRA C:2012, 2.7 - There should be no unused parameters in functions
- CERT, MSC12-C. - Detect and remove code that has no effect or is never executed
- CERT, MSC12-CPP. - Detect and remove code that has no effect
Remove the unused function parameter "$args". Open
private function handleVIA($fullcommand, $args, $matches)
- Read upRead up
- Exclude checks
Unused parameters are misleading. Whatever the value passed to such parameters is, the behavior will be the same.
Noncompliant Code Example
function doSomething($a, $b) { // "$a" is unused return compute($b); }
Compliant Solution
function doSomething($b) { return compute($b); }
Exceptions
Functions in classes that override a class or implement interfaces are ignored.
class C extends B { function doSomething($a, $b) { // no issue reported on $b compute($a); } }
See
- MISRA C++:2008, 0-1-11 - There shall be no unused parameters (named or unnamed) in nonvirtual functions.
- MISRA C:2012, 2.7 - There should be no unused parameters in functions
- CERT, MSC12-C. - Detect and remove code that has no effect or is never executed
- CERT, MSC12-CPP. - Detect and remove code that has no effect
Define a constant instead of duplicating this literal "labeloffset" 3 times. Open
array('labeloffset' => 1)
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Remove the unused function parameter "$matches". Open
private function handleTARGET($fullcommand, $args, $matches)
- Read upRead up
- Exclude checks
Unused parameters are misleading. Whatever the value passed to such parameters is, the behavior will be the same.
Noncompliant Code Example
function doSomething($a, $b) { // "$a" is unused return compute($b); }
Compliant Solution
function doSomething($b) { return compute($b); }
Exceptions
Functions in classes that override a class or implement interfaces are ignored.
class C extends B { function doSomething($a, $b) { // no issue reported on $b compute($a); } }
See
- MISRA C++:2008, 0-1-11 - There shall be no unused parameters (named or unnamed) in nonvirtual functions.
- MISRA C:2012, 2.7 - There should be no unused parameters in functions
- CERT, MSC12-C. - Detect and remove code that has no effect or is never executed
- CERT, MSC12-CPP. - Detect and remove code that has no effect
Define a constant instead of duplicating this literal "handleLINK" 3 times. Open
array('/^\s*LINK\s+(\S+)\s*$/i', 'handleLINK'),
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Remove the unused function parameter "$args". Open
private function handleINCLUDE($fullcommand, $args, $matches)
- Read upRead up
- Exclude checks
Unused parameters are misleading. Whatever the value passed to such parameters is, the behavior will be the same.
Noncompliant Code Example
function doSomething($a, $b) { // "$a" is unused return compute($b); }
Compliant Solution
function doSomething($b) { return compute($b); }
Exceptions
Functions in classes that override a class or implement interfaces are ignored.
class C extends B { function doSomething($a, $b) { // no issue reported on $b compute($a); } }
See
- MISRA C++:2008, 0-1-11 - There shall be no unused parameters (named or unnamed) in nonvirtual functions.
- MISRA C:2012, 2.7 - There should be no unused parameters in functions
- CERT, MSC12-C. - Detect and remove code that has no effect or is never executed
- CERT, MSC12-CPP. - Detect and remove code that has no effect
Define a constant instead of duplicating this literal "/^\s*LINK\s+(\S+)\s*$/i" 3 times. Open
array('/^\s*LINK\s+(\S+)\s*$/i', 'handleLINK'),
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "relativePositionResolved" 3 times. Open
'relativePositionResolved' => false
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Define a constant instead of duplicating this literal "handleNODE" 3 times. Open
array('/^\s*NODE\s+(\S+)\s*$/i', 'handleNODE'),
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
function run() { prepare('action1'); // Non-Compliant - 'action1' is duplicated 3 times execute('action1'); release('action1'); }
Compliant Solution
ACTION_1 = 'action1'; function run() { prepare(ACTION_1); execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.