Examples/Python/plot.py
# #############################################################################
# This is an example of how to use the visualization function.
# #############################################################################
import optuna
n_trials = 50
def objective(trial):
# Rosenbrock function
x = trial.suggest_float("x", -5, 5, step=0.1)
y = trial.suggest_int("y", -5, 5)
trial.set_user_attr("too_long_str", "too_long_str, " * 100)
return [(1 - x) ** 2 + 100 * (y - x**2) ** 2, x]
tpe = optuna.samplers.TPESampler()
study = optuna.create_study(sampler=tpe, directions=["minimize", "minimize"])
study.optimize(objective, n_trials=n_trials)
name = "Rosenbrock function"
optuna.visualization.plot_slice(
study,
params=["x", "y"],
target=lambda t: t.values[0],
target_name=name,
).show()
optuna.visualization.plot_pareto_front(
study,
target_names=[name, "x"],
).show()
optuna.visualization.plot_param_importances(
study,
target=lambda t: t.values[0],
target_name=name,
).show()
optuna.visualization.plot_contour(
study,
params=["x", "y"],
target=lambda t: t.values[0],
target_name=name,
).show()
optuna.visualization.plot_optimization_history(
study, target=lambda t: t.values[0], target_name=name
).show()
optuna.visualization.plot_parallel_coordinate(
study, params=["x", "y"], target=lambda t: t.values[0], target_name=name
).show()
optuna.visualization.plot_edf(
study,
target=lambda t: t.values[0],
target_name=name,
).show()