Showing 10 of 10 total issues
Function isMatch
has a Cognitive Complexity of 37 (exceeds 20 allowed). Consider refactoring. Open
func isMatch(s string, p string) bool {
stringIndex := 0
currentChar := ""
patternIndex := 0
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function myAtoi
has 66 lines of code (exceeds 50 allowed). Consider refactoring. Open
func myAtoi(s string) int {
currentIndex := 0
// Step 1: Leading space
for _, c := range s {
Function myAtoi
has a Cognitive Complexity of 28 (exceeds 20 allowed). Consider refactoring. Open
func myAtoi(s string) int {
currentIndex := 0
// Step 1: Leading space
for _, c := range s {
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function main
has 58 lines of code (exceeds 50 allowed). Consider refactoring. Open
func main() {
arr_cases := [][][]int32{
{
{1, 1, 1, 0, 0, 0},
{0, 1, 0, 0, 0, 0},
Function main
has 54 lines of code (exceeds 50 allowed). Consider refactoring. Open
func main() {
queries_cases := [][][]int32{
{
{1, 1},
{2, 2},
Function isMatch
has 52 lines of code (exceeds 50 allowed). Consider refactoring. Open
func isMatch(s string, p string) bool {
stringIndex := 0
currentChar := ""
patternIndex := 0
Similar blocks of code found in 2 locations. Consider refactoring. Open
func main() {
s_cases := []string{
"aba",
"aba",
"aba",
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 120.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
func main() {
s1_cases := []string{
"hello",
"hi",
"wouldyoulikefries",
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 120.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Function myAtoi
has 7 return statements (exceeds 4 allowed). Open
func myAtoi(s string) int {
currentIndex := 0
// Step 1: Leading space
for _, c := range s {
Method common_child
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
def common_child(s1, s2)
s1_a = s1.chars
s2_a = s2.chars
# Remove non-shared characters
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"