Assignment Branch Condition size for verify_current_user is too high. [24.1/15] Open
def verify_current_user
return redirect_to log_in_path if session["current_user"].blank?
user_data = {
email: session["current_user"]["email"],
- Read upRead up
- Exclude checks
This cop checks that the ABC size of methods is not higher than the configured maximum. The ABC size is based on assignments, branches (method calls), and conditions. See http://c2.com/cgi/wiki?AbcMetric and https://en.wikipedia.org/wiki/ABC_Software_Metric.
Method has too many lines. [15/10] Open
def load_filtered_category_list(ids)
results = @smart_village.query <<~GRAPHQL
query {
categories(
ids: #{ids}
- Read upRead up
- Exclude checks
This cop checks if the length of a method exceeds some maximum value. Comment lines can optionally be ignored. The maximum allowed length is configurable.
Method has too many lines. [11/10] Open
def nested_values?(value_to_check, result = [])
result << true if value_to_check.class == String && value_to_check.present?
if value_to_check.class == Array
value_to_check.each do |value|
- Read upRead up
- Exclude checks
This cop checks if the length of a method exceeds some maximum value. Comment lines can optionally be ignored. The maximum allowed length is configurable.
Complex method ApplicationController#verify_current_user (28.7) Open
def verify_current_user
return redirect_to log_in_path if session["current_user"].blank?
user_data = {
email: session["current_user"]["email"],
- Read upRead up
- Exclude checks
Flog calculates the ABC score for methods. The ABC score is based on assignments, branches (method calls), and conditions.
You can read more about ABC metrics or the flog tool
ApplicationController#nested_values? refers to 'value_to_check' more than self (maybe move it to another class?) Open
result << true if value_to_check.class == String && value_to_check.present?
if value_to_check.class == Array
value_to_check.each do |value|
nested_values?(value, result)
- Read upRead up
- Exclude checks
Feature Envy occurs when a code fragment references another object more often than it references itself, or when several clients do the same series of manipulations on a particular type of object.
Feature Envy reduces the code's ability to communicate intent: code that "belongs" on one class but which is located in another can be hard to find, and may upset the "System of Names" in the host class.
Feature Envy also affects the design's flexibility: A code fragment that is in the wrong class creates couplings that may not be natural within the application's domain, and creates a loss of cohesion in the unwilling host class.
Feature Envy often arises because it must manipulate other objects (usually its arguments) to get them into a useful form, and one force preventing them (the arguments) doing this themselves is that the common knowledge lives outside the arguments, or the arguments are of too basic a type to justify extending that type. Therefore there must be something which 'knows' about the contents or purposes of the arguments. That thing would have to be more than just a basic type, because the basic types are either containers which don't know about their contents, or they are single objects which can't capture their relationship with their fellows of the same type. So, this thing with the extra knowledge should be reified into a class, and the utility method will most likely belong there.
Example
Running Reek on:
class Warehouse
def sale_price(item)
(item.price - item.rebate) * @vat
end
end
would report:
Warehouse#total_price refers to item more than self (FeatureEnvy)
since this:
(item.price - item.rebate)
belongs to the Item class, not the Warehouse.
ApplicationController#nested_values? has approx 6 statements Open
def nested_values?(value_to_check, result = [])
- Read upRead up
- Exclude checks
A method with Too Many Statements
is any method that has a large number of lines.
Too Many Statements
warns about any method that has more than 5 statements. Reek's smell detector for Too Many Statements
counts +1 for every simple statement in a method and +1 for every statement within a control structure (if
, else
, case
, when
, for
, while
, until
, begin
, rescue
) but it doesn't count the control structure itself.
So the following method would score +6 in Reek's statement-counting algorithm:
def parse(arg, argv, &error)
if !(val = arg) and (argv.empty? or /\A-/ =~ (val = argv[0]))
return nil, block, nil # +1
end
opt = (val = parse_arg(val, &error))[1] # +2
val = conv_arg(*val) # +3
if opt and !arg
argv.shift # +4
else
val[0] = nil # +5
end
val # +6
end
(You might argue that the two assigments within the first @if@ should count as statements, and that perhaps the nested assignment should count as +2.)
ApplicationController#nested_values? calls 'nested_values?(value, result)' 2 times Open
nested_values?(value, result)
end
elsif value_to_check.class.to_s.include?("Hash")
value_to_check.each do |_key, value|
nested_values?(value, result)
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
ApplicationController#nested_values? calls 'value_to_check.each' 2 times Open
value_to_check.each do |value|
nested_values?(value, result)
end
elsif value_to_check.class.to_s.include?("Hash")
value_to_check.each do |_key, value|
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
ApplicationController#verify_current_user calls 'session["current_user"]' 7 times Open
return redirect_to log_in_path if session["current_user"].blank?
user_data = {
email: session["current_user"]["email"],
authentication_token: session["current_user"]["authentication_token"],
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
ApplicationController has no descriptive comment Open
class ApplicationController < ActionController::Base
- Read upRead up
- Exclude checks
Classes and modules are the units of reuse and release. It is therefore considered good practice to annotate every class and module with a brief comment outlining its responsibilities.
Example
Given
class Dummy
# Do things...
end
Reek would emit the following warning:
test.rb -- 1 warning:
[1]:Dummy has no descriptive comment (IrresponsibleModule)
Fixing this is simple - just an explaining comment:
# The Dummy class is responsible for ...
class Dummy
# Do things...
end
ApplicationController assumes too much for instance variable '@smart_village' Wontfix
class ApplicationController < ActionController::Base
- Read upRead up
- Exclude checks
Classes should not assume that instance variables are set or present outside of the current class definition.
Good:
class Foo
def initialize
@bar = :foo
end
def foo?
@bar == :foo
end
end
Good as well:
class Foo
def foo?
bar == :foo
end
def bar
@bar ||= :foo
end
end
Bad:
class Foo
def go_foo!
@bar = :foo
end
def foo?
@bar == :foo
end
end
Example
Running Reek on:
class Dummy
def test
@ivar
end
end
would report:
[1]:InstanceVariableAssumption: Dummy assumes too much for instance variable @ivar
Note that this example would trigger this smell warning as well:
class Parent
def initialize(omg)
@omg = omg
end
end
class Child < Parent
def foo
@omg
end
end
The way to address the smell warning is that you should create an attr_reader
to use @omg
in the subclass and not access @omg
directly like this:
class Parent
attr_reader :omg
def initialize(omg)
@omg = omg
end
end
class Child < Parent
def foo
omg
end
end
Directly accessing instance variables is considered a smell because it breaks encapsulation and makes it harder to reason about code.
If you don't want to expose those methods as public API just make them private like this:
class Parent
def initialize(omg)
@omg = omg
end
private
attr_reader :omg
end
class Child < Parent
def foo
omg
end
end
Current Support in Reek
An instance variable must:
- be set in the constructor
- or be accessed through a method with lazy initialization / memoization.
If not, Instance Variable Assumption will be reported.
ApplicationController#nested_values? calls 'value_to_check.class' 3 times Open
result << true if value_to_check.class == String && value_to_check.present?
if value_to_check.class == Array
value_to_check.each do |value|
nested_values?(value, result)
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
ApplicationController assumes too much for instance variable '@current_user' Open
class ApplicationController < ActionController::Base
- Read upRead up
- Exclude checks
Classes should not assume that instance variables are set or present outside of the current class definition.
Good:
class Foo
def initialize
@bar = :foo
end
def foo?
@bar == :foo
end
end
Good as well:
class Foo
def foo?
bar == :foo
end
def bar
@bar ||= :foo
end
end
Bad:
class Foo
def go_foo!
@bar = :foo
end
def foo?
@bar == :foo
end
end
Example
Running Reek on:
class Dummy
def test
@ivar
end
end
would report:
[1]:InstanceVariableAssumption: Dummy assumes too much for instance variable @ivar
Note that this example would trigger this smell warning as well:
class Parent
def initialize(omg)
@omg = omg
end
end
class Child < Parent
def foo
@omg
end
end
The way to address the smell warning is that you should create an attr_reader
to use @omg
in the subclass and not access @omg
directly like this:
class Parent
attr_reader :omg
def initialize(omg)
@omg = omg
end
end
class Child < Parent
def foo
omg
end
end
Directly accessing instance variables is considered a smell because it breaks encapsulation and makes it harder to reason about code.
If you don't want to expose those methods as public API just make them private like this:
class Parent
def initialize(omg)
@omg = omg
end
private
attr_reader :omg
end
class Child < Parent
def foo
omg
end
end
Current Support in Reek
An instance variable must:
- be set in the constructor
- or be accessed through a method with lazy initialization / memoization.
If not, Instance Variable Assumption will be reported.
Method nested_values?
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def nested_values?(value_to_check, result = [])
result << true if value_to_check.class == String && value_to_check.present?
if value_to_check.class == Array
value_to_check.each do |value|
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
ApplicationController#not_found_404 has the name 'not_found_404' Open
def not_found_404
- Read upRead up
- Exclude checks
An Uncommunicative Method Name
is a method name that doesn't communicate its intent well enough.
Poor names make it hard for the reader to build a mental picture of what's going on in the code. They can also be mis-interpreted; and they hurt the flow of reading, because the reader must slow down to interpret the names.
Identical blocks of code found in 2 locations. Consider refactoring. Open
def nested_values?(value_to_check, result = [])
result << true if value_to_check.class == String && value_to_check.present?
if value_to_check.class == Array
value_to_check.each do |value|
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 41.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Missing top-level class documentation comment. Open
class ApplicationController < ActionController::Base
- Read upRead up
- Exclude checks
This cop checks for missing top-level documentation of classes and modules. Classes with no body are exempt from the check and so are namespace modules - modules that have nothing in their bodies except classes, other modules, or constant definitions.
The documentation requirement is annulled if the class or module has a "#:nodoc:" comment next to it. Likewise, "#:nodoc: all" does the same for all its children.
Example:
# bad
class Person
# ...
end
# good
# Description/Explanation of Person class
class Person
# ...
end